References
[1] A. Barros and E.Jr. Ribeiro, Characterizations and integral formulae for generalizedm-quasi-Einstein metrics, Bull. Brazilian Math. Soc. 45 (2014), 324–341. CrossRef
[2] C.L. Bejan and M. Crasmareanu, Second order parallel tensors and Ricci solitons in3-dimensional normal paracontact geometry, Ann. Global Anal. Geom. 46 (2014),117–127. CrossRef
[3] D.E. Blair, The theory of quasi-Sasakian structures, J. Differ. Geom. 1 (1967), 331–345. CrossRef
[4] D.E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Progressin Mathematics, 203, Birkhäuser, Boston, 2010. CrossRef
[5] C. Calin and M. Crasmareanu, From the Eisenhart problem to Ricci solitons inf -Kenmotsu manifolds, Bull. Malays. Mat. Sci. Soc. 33 (2010), 361–368.
[6] B. Cappelletti-Montano, A.D. Nicola, and I. Yudin, A survey on cosymplectic geometry, Rev. Math. Phys. 25 (2013), 1343002. CrossRef
[7] J. Case, Y. Shu, and G. Wei, Rigidity of quasi-Einstein metrics, Differential Geom.Appl. 29 (2011), 93–100. CrossRef
[8] G. Catino, Generalized quasi-Einstein manifolds with harmonic Weyl tensor, Math.Z. 271 (2012), 751–756. CrossRef
[9] G. Catino and L. Mazzieri, Gradient Einstein-solitons, preprint, https://arxiv.org/abs/1201.6620.
[10] X. Chen, Ricci solitons in almost f -cosymplectic manifolds, Bull. Belg. Math. Soc.Simon Stevin 25 (2018), 305–319. CrossRef
[11] J. T. Cho, Almost contact 3-manifolds and Ricci solitons, Int. J. Geom. MethodsMod. Phys. 10 (2013), 1220022. CrossRef
[12] M. Crasmareanu, Parallel tensors and Ricci solitons in N (κ)-quasi Einstein manifolds, Indian J. Pure Appl. Math. 43 (2012), 359–369. CrossRef
[13] P. Dacko, On almost cosymplectic manifolds with the structure vector field ξbelonging to the κ-nullity distribution, Balkan J. Geom. Appl. 5 (2000), 47–60.
[14] K.L. Duggal and R. Sharma, Symmetries of Spacetimes and Riemannian Manifolds,Kluwer, Dordrecht, 1999. CrossRef
[15] H. Endo, Non-existence of almost cosymplectic manifolds satisfying a certain condition, Tensor (N.S.) 63 (2002), 272–284.
[16] A. Ghosh, Kenmotsu 3-metric as a Ricci soliton, Chaos Solitons Fractals 44 (2011),647–650. CrossRef
[17] A. Ghosh, An η-Einstein Kenmotsu metric as a Ricci soliton, Publ. Math. Debrecen82 (2013), 591–598. CrossRef
[18] A. Ghosh, (m, ρ)-quasi Einstein metrics in the frame work of K-contact manifold,Math. Phys. Anal. Geom. 17 (2014), 369–376. CrossRef
[19] A. Ghosh, Generalized m-quasi-Einstein metric within the framework of Sasakianand K-contact manifolds, Ann. Polon. Math. 115 (2015), 33–41. CrossRef
[20] A. Ghosh and R. Sharma Some results on contact metric manifolds, Ann. GlobalAnal. Geom. 15 (1997), 497–507. CrossRef
[21] S.I. Goldberg and K. Yano, Integrability of almost cosymplectic structures PacificJ. Math. 31 (1969), 373–382. CrossRef
[22] R.S. Hamilton, The Ricci flow on surfaces, Contemp. Math. 71 (1988), 237–261. CrossRef
[23] C. He, P. Petersen and W. Wylie, On the classification of warped product Einsteinmetrics, Comm. Anal. Geom. 20 (2012), 271–311. CrossRef
[24] G. Huang and Y. Wei, The classification of (m, ρ)-quasi-Einstein manifolds, Ann.Global Anal. Geom. 44 (2013), 269–282. CrossRef
[25] H. Li, Topology of co-symplectic/co-Kähler manifolds Asian J. Math. 12 (2008),527–544. CrossRef
[26] D.M. Naik and V. Venkatesha, η-Ricci solitons and almost η-Ricci solitons on paraSasakian manifolds, Int. J. Geom. Methods Mod. Phys. 16 (2019), 1950134. CrossRef
[27] D.M. Naik, V. Venkatesha, and D. G. Prakasha, Certain results on Kenmotsupseudo-metric manifolds, Miskolc Math. Notes 20 (2019), 1083–1099. CrossRef
[28] Z. Olszak, On almost cosymplectic manifolds, Kodai Math. J. 4 (1981), 239–250. CrossRef
[29] H. Oztürk, N. Aktan and C. Murathan, Almost α-cosymplectic (κ, µ, ν)-spaces,preprint, https://arxiv.org/abs/1007.0527v1.
[30] G. Perelman, The entropy formula for the Ricci flow and its geometric applications,preprint, https://arxiv.org/abs/math/0211159v1.
[31] R. Sharma, Certain results on K-contact and (κ, µ)-contact manifolds, J. Geom. 89(2008), 138–147. CrossRef
[32] Y. J. Suh and U. C. De, Yamabe solitons and Ricci solitons on almost co-Kählermanifolds, Canad. Math. Bull. (2019) CrossRef
[33] S. Tanno, The automorphism group of almost contact Riemannian manifolds, Tohoku Math. J. 21 (1969), 21–38. CrossRef
[34] M. Turan, U. C. De and A. Yildiz, Ricci solitons and gradient Ricci solitons in threedimensional trans-Sasakian manifolds, Filomat 26 (2012), 363–370. CrossRef
[35] V. Venkatesha, D.M. Naik and H. A. Kumara, ∗-Ricci solitons and gradient almost∗-Ricci solitons on Kenmotsu manifolds, Math. Slovaca, 69 (2019), 1–12. CrossRef
[36] V. Venkatesha, H. A. Kumara and D. M. Naik, Almost ∗-Ricci Soliton on ParaKenmotsu Manifolds, Arab. J. Math. (2019). CrossRef
[37] Y. Wang, A generalization of the Goldberg conjecture for coKähler manifolds,Mediterr. J. Math. 13 (2016), 2679–2690. CrossRef
[38] Y. Wang, Ricci solitons on 3-dimensional cosymplectic manifolds, Math. Slovaca,67 (2017), 979–984. CrossRef
[39] Y. Wang, Ricci solitons on almost co-Kähler manifolds, Canad. Math. Bull.62(2019), 912–922. CrossRef
[40] Y. Wang and X. Liu, Ricci solitons on three dimensional η-Einstein almost Kenmotsu manifolds, Taiwanese. J. Math. 19 (2015), 91–100. CrossRef
[41] K. Yano, Integral Formulas in Riemannian Ggeometry, New York, Marcel Dekker,1970.