References
[1] M.-D. Choi, A Schwarz inequality for positive linear maps on C ∗ -algebras, Illinois J. Math. 18 (1974), 565–574. CrossRef

[2] A. Ebadian, I. Nikoufar, and M. Eshagi Gordji, Perspectives of matrix convex functions, Proc. Natl. Acad. Sci. 108 (2011), 7313–7314. CrossRef

[3] E.G. Effros, A matrix convexity approach to some celebrated quantum inequalities, Proc. Natl. Acad. Sci. 106 (2009), 1006–1008. CrossRef

[4] S.S. Dragomir, Lower bounds on partial subadditivity of noncommutative perspectives for operators in Hilbert spaces: the second variables, RGMIA Res. Rep. Coll. 23 (2020), Art. 127.

[5] S. Furuichi, K. Yanagi, and K. Kuriyama, A note on operator inequalities of Tsallis relative operator entropy, Linear Algebra Appl. 407 (2005), 19–31. CrossRef

[6] T. Furuta, J. Micic Hot, J.E. Pecaric and Y. Seo, Mond–Pecaric Method in Operator Inequalities, Element, Zagreb, 2005.

[7] F. Hansen and G. Pedersen, Jensen’s Inequality for Operators and Löwner’s Theorem, Math. Ann. 258 (1982), 229–241. CrossRef

[8] F. Hansen and G. Pedersen, Jensen’s operator inequality, Bull. London Math. Soc. 35 (2003), 553–564. CrossRef

[9] F. Hansen, The fast track to Lowner’s theorem, Linear Algebra Appl. 438 (2013), 4557–4571. CrossRef

[10] F. Hiai and M. Mosonyi, Different quantum f -divergences and the reversibility of quantum operations, Rev. Math. Phys. 29 (2017), 1750023. CrossRef

[11] F. Kubo and T. Ando, Means of positive linear operators, Math. Ann. 246 (1979– 1980), 205–224. CrossRef

[12] M.S. Moslehian, J. Mićić, and M. Kian, An operator inequality and its consequences, Linear Algebra Appl. 439 (2013), 584–591. CrossRef

[13] I. Nikoufar, A. Ebadian, and M. Eshagi Gordji, The simplest proof of Lieb concavity theorem, Adv. Math. 248 (2013), 531–533. CrossRef

[14] I. Nikoufar, On operator inequalities of some relative operator entropies, Adv. Math. 259 (2014), 376–383. CrossRef

[15] I. Nikoufar, A perspective approach for characterization of Lieb concavity theorem, Demonstratio Math. 49 (2016), 463–469. CrossRef

[16] I. Nikoufar and M. Alinejad, Bounds of generalized relative operator entropies, Math. Inequal. Appl. 20 (2017), 1067–1078. CrossRef

[17] I. Nikoufar and M. Shamohammadi, The converse of the Loewner–Heinz inequality via perspective, Linear Multilinear Algebra 66 (2018), 243–249. CrossRef

[18] I. Nikoufar, Convexity of parameter extensions of some relative operator entropies with a perspective approach, Glasgow Math. J. 62 (2020), 737–744. CrossRef

[19] I. Nikoufar, A new characterization of the operator perspective, Linear Multilinear Algebra (2021), https://doi.org/10.1080/03081087.2021.1877247.

[20] J. Pecaric, Power matrix means and related inequalities, Math. Commun. 1 (1996), 91–112.

[21] O. E. Tikhonov, On matrix-subadditive functions and a relevant trace inequality, Linear Multilinear Algebra, 44 (1998), 25–28. CrossRef

[22] K. Yanagi, K. Kuriyama, and S. Furuichi, Generalized Shannon inequalities based on Tsallis relative operator entropy, Linear Algebra Appl. 394 (2005), 109–118. CrossRef

[23] K. Nishio and T. Ando, Characterizations of operations derived from network connections, J. Math. Anal. Appl. 53 (1976), 539–549. CrossRef

[24] M. Uchiyama, A. Uchiyama, and M. Giga, Superadditivity and derivative of operator functions, Linear Algebra Appl. 465 (2015), 401–411. CrossRef

[25] L. Zou, Operator inequalities associated with Tsallis relative operator entropy, Math. Inequal. Appl. 18 (2015), 401–406. CrossRef