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The Law of Multiplication of Large Random
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The paper deals with the eigenvalue distribution of the product of two
n × n positive definite matrices Bτ , τ = ±1, rotated with respect to each
other by the random orthogonal and Haar distributed matrix. The prob-
lem has been considered in several works by using various techniques. We
propose a streamlined approach based on the random matrix theory tech-
niques and a certain symmetry of the problem. We prove the convergence
with probability 1 as n tends to infinity of the Normalized Counting Mea-
sure (NCM) of eigenvalues of the product to a non-random limit, derive a
functional equation that determines the Stieltjes transform of the limiting
NCM of the product in terms of limiting NCMs of the factors Bτ , τ = ±1,
and consider an interesting example.
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1. Introduction

The objective of the paper is the eigenvalue distribution of the n×n positive
definite random matrices

Mn = A1/2
n OnBnO

∗
nA

1/2
n , (1.1)

where An and Bn are positive definite and On ∈ SO(n) is random and Haar
distributed. We are interested in the Normalized Counting Measure (NCM) of

eigenvalues {λ(n)
α }nα=1 (possible coinciding) of Mn

νMn = n−1
n∑

α=1

δ
λ
(n)
α
, νMn(R) = 1. (1.2)

More precisely, we assume, as usual in random matrix theory, that we have infinite
sequences {An}n, {Bn}n, and {On}n, hence, an infinite sequence {Mn}n, and we
want to find a description of νMn in terms of νAn and νBn in the limit n→∞.

One may mention several motivations for the problem. First, the problem
seems quite natural from the point of view of random matrix theory. It is also
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can be viewed as an analog of the sample covariance matrices of statistics where
the role of the data matrix plays the orthogonal matrix instead of the matrix
with i.i.d (often Gaussian) entries, see, e.g., [5, 7, 11, 14, 15] for the latter. The
random matrix (2.3) appeared recently in the studies of random deep neural
networks [4, 12, 17] and in certain models of quantum information science [13].
One more aspect is related to the general problem to describe the eigenvalues of
the product of two positive definite matrices in terms of eigenvalues of two factors
of the product (see, e.g., [2], Section III.4 for a review). It seems unlikely to expect
in general a sufficiently simple and closed expression for eigenvalues of the product
(sum) of two given matrices via eigenvalues of factors (terms). Hence, it is natural
to look for a “generic” asymptotic answer, studying a randomized version of the
problem. Such an approach to the analysis of eigenvalues of Hermitian matrices
was considered in [9, 15,16].

The problem has been treated by several authors who used various techniques,
the most known are the free probability techniques [9] and the random matrix
techniques [15, 18]. We will use a version of the latter taking into account a
certain symmetry of the problem.

The paper is organized as follows. In the next Section 2 we prove our main
result, Theorem 2.1. We also discuss there an interesting particular case of the
theorem where matrices An and Bn of (1.1) are orthogonal projections. Various
auxiliary results that are used in the proof of the theorem are given in Section 3.

2. Main results

The non-zero eigenvalues of (1.1) coincide with those of B
1/2
n O∗nAnOnB

1/2
n .

Thus, it is convenient to consider the both matrices simultaneously as can be
seen from the theorem below.

Theorem 2.1. Let Bτ,n, τ = ±1, be n × n positive definite matrices such
that

sup
n
n−1TrB2

τ,n ≤ b2 <∞ (2.1)

and their Normalized Counting Measures νBτ,n, τ = ±1, converge weakly to the
measures

lim
n→∞

νBτ,n = νBτ , νBτ (R+) = 1, τ = ±1, (2.2)

which are not concentrated at zero.
Consider the n× n positive definite random matrices

Mτ,n = B1/2
τ,nO

τ
nB−τ,nO

−τ
n B1/2

τ,n , τ = ±1, (2.3)

where On ∈ SO(n) is the random Haar distributed orthogonal matrix, and denote
by νMτ,n the NCM’s of Mτ,n (see (1.2)).

Then:

(i) νMτ,n do not depend on τ = ±1

νM+1,n = νM−1,n =: νMn , (2.4)
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and we have with probability 1 the weak non-random limit

lim
n→∞

νMτ,n = lim
n→∞

νM−1,n =: νM ; (2.5)

(ii) the Stieltjes transform

fM (z) :=

∫ ∞
0

νM (dλ)

λ− z
, z ∈ C \ R+, (2.6)

of the limiting NCM νM in (2.5) solves the system

(1 + zfM (z))fM (z)− h+1(z)h−1(z) = 0, (2.7)

fBτ (zfM (z)/h−τ (z)) = h−τ (z), τ = ±1, (2.8)

with respect to the triple (fM , h+, h−), where

fBτ (z) :=

∫ ∞
0

νBτ (dλ)

λ− z
, τ = ±1, z ∈ C \ R+, (2.9)

are the Stieltjes transforms of limiting νBτ , τ = ±1, of (2.2) and d(z) =
dist(z,R+) is large enough;

(iii) the solution of (2.7)–(2.8) is unique in the class of triples (fM , h+, h−) of
functions that belong to the class N+ of functions that are analytic in C \
R+, continuous and positive on the open negative semi-axis and such that

=s(z)=z > 0, =z 6= 0, sup
y≥1

ys(iy) <∞, s ∈ N+. (2.10)

Theorem 2.1 is proved below in this section. The corresponding assertion
for the unitary Haar distributed matrices is analogous, see [15, 18] for earlier
results in this case. We will give a streamlined approach for orthogonal matrices.
Being applied to unitary matrices, the approach proves to be simpler than those
in [15,18].

Remark 2.2. The system (2.7)–(2.8) can be viewed as that determining a
binary operation in the set (cone) of functions of the class N+, allowing one to
determine a unique fM given fBτ , τ = ±1. Recalling the one-to-one correspon-
dence between N+ and the set (cone) of non-negative measures supported on
R+, one can also say that the system (2.7)–(2.8) determines a binary operation
in the latter set as well. The operation is known in free probability as the free
multiplicative convolution of measures, see [9], Chapter 3 and [12].

Here is an interesting particular case of the theorem, see e.g [3, 6] for similar
results.

Example 2.3. Consider the case of (2.3) where Bτ,n = Pτ,n are the orthogonal
projections with rankPτ,n = rτ and

lim
n→∞

rτ/n = ρτ ∈ (0, 1). (2.11)
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In this case the limiting measures νBτ of (2.2) are

νBτ = (1− ρτ )δ0 + ρτδ1, ρτ = 1− ρτ .

Plugging them into (2.7)–(2.8), we obtain the quadratic equation

z2(z − 1)f2 + z (z − ρ) f − ρ+ρ−, ρ = ρ+ + ρ−.

The equation and (2.10) yield

f(z) = − ρ

2z
+

1− ρ
2(1− z)

+

√
(z − p+)(z − p−)

2z(1− z)
, (2.12)

p± =
(√

ρ+ρ− ±
√
ρ−ρ+

)2 ∈ (0, 1),

where the branch of square root is fixed by the condition to behave as z +O(1),
z →∞.

By using the inversion formula

ν(∆) =
1

π
lim
ε→0+

∫
∆
=f(λ+ iε) dλ,

relating a measure ν and its Stieltjes transform f , we obtain

νM = max
τ

ρτ δ0 + (ρ− 1)+ δ1 + νcM , x+ = max{0, x},

νcM (dλ) = ψM (λ)dλ, ψM (λ) =

√
(p+ − λ)(λ− p−)

2πλ(1− λ)
1[p+,p−].

Proof of Theorem 2.1. The proof is essentially based on the tools of the
branch of random matrix theory that deals with large random matrices whose
“randomness” is due to classical compact groups, the group S(n) in our case, see,
e.g., Chapters 8–10 of [15].

Assume temporarily that Bτ,n, τ = ±1, are bounded uniformly in n→∞:

‖Bτ,n‖ ≤ b <∞. (2.13)

This assumption is removed at the end of the proof.

In view of the one-to-one correspondence between non-negative measures and
their Stieltjes transforms (see, e.g., [15], Section 2.1), it suffices to prove that the
Stieltjes transform

gMτ,n(z) :=

∫ ∞
0

νMτ,n(dλ)

λ− z
, z ∈ C \ R+, (2.14)

of the NCM νMτ,n of (1.2) converges with probability 1 as n→∞ to a limit fM
of (2.6) on a compact set K ∈ C\R+. It is convenient to assume that (see (2.13))

K ⊂
{
z ∈ C \ R+ : |z| ≥ 2b2

}
. (2.15)
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It is important that since the sequences {gMτ,n}n, τ = ±1, consists of functions
analytic in C \ R+, the convergence on K implies that everywhere in C \ R+.

By using the definition (1.2) of the NCM and spectral theorem for Mτ,n, we
can write the representation

gMτ,n(z) = n−1Tr GMτ,n(z), z ∈ C \ R+,

GMτ,n(z) = (Mτ,n − z)−1, z ∈ C \ R+,

‖GMτ,n(z)‖ ≤ 1/d(z), d(z) = dist(z,R+) (2.16)

of gMτ,n via the resolvent GMτ,n of Mτ,n.
Taking into account (2.15) and the bound (see (2.13))

‖Mτ,n‖ ≤ b2, τ = ±1, (2.17)

we have the norm convergent expansion

GMτ,n(z) = −
∞∑
l=0

M l
τ,n

zl+1
, τ = ±1, (2.18)

in (2.15). This and the equalities (see (2.3))

Tr M l
τ,n = Tr M l

−τ,n, τ = ±1, l = 1, 2 . . . , (2.19)

yield
n−1Tr GMτ,n = n−1Tr GM−τ,n , τ = ±1, (2.20)

implying in view of (2.16) the independence of (2.14) on τ = ±1

gMτ,n(z) =: gMn(z), (2.21)

hence, the validity of (2.4).
We will use now Lemma 3.3 with B0 = 1n, b0 = 1 and (2.21) to obtain the

bound
Var{gMn(z)} ≤ 8Cb4/n2d4(z) (2.22)

with d(z) defined in (2.16).
The bound and the Borel–Cantelli lemma imply that it suffices to find the

n→∞ limit of the expectation

fMn(z) := E{gMn(z)} =

∫ ∞
0

νMn(dλ)

λ− z
, νMn := E{νMn}. (2.23)

for z ∈ K of (2.15). Then, in view of the one-to one correspondence between
non-negative measures and their Stieltjes transforms, (see, e.g., [15], Section 2.1),
we obtain with probability 1 the weak limit

lim
n→∞

νMn = lim
n→∞

νMn =: νM (2.24)

implying (2.5) under condition (2.13).
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In what follows we do not write the subindex n in those matrices where this
does not lead to misunderstanding.

Introduce the matrix (cf. (2.3))

Mτ = BτO
τB−τO

−τ , τ = ±1. (2.25)

It follows from (2.13) that ‖Mτ‖ ≤ b2 (cf. (2.17)), hence we have the norm
convergent series (cf. (2.18))

GMτ (z) := −
∞∑
l=0

Ml
τ

zl+1
, τ = ±1, z ∈ K,

‖GMτ (z)‖ ≤ 1/b2. (2.26)

We have obviously (cf. (2.19))

TrM l
τ = TrMl

τ , l = 1, 2, . . .∞, (2.27)

and then (2.16), (2.18), and (2.26) yield

gMτ,n(z) := n−1Tr GMτ (z) = n−1Tr GMτ (z) = gMn(z). (2.28)

We conclude that it suffices to deal with E{n−1Tr GMτ (z)} instead of
E{n−1Tr GMτ (z)} of (2.16).

We will use now the differentiation formulas (3.1) for GM+(z) of (2.26) as the
map Φ in the first formula and GM−1(z) in the second formula respectively.

Let
O → (1 +A)O +O(A2), O → O(1 +A) +O(A2)

be the infinitesimal left (τ = +1) and right (τ = −1) shifts in SO(n) and let

δτO
τ := τAO, δτO

−τ := −τAO−τ (2.29)

be the corresponding linear variations with an infinitesimal antisymmetric matrix
A (cf. (3.3)). We have then from (2.25) and (2.29)

δτMτ = τBτ [A,B−τ (O−τ )], B−τ (Oτ ) = OτB−τO
−τ ,

δτGMτ = −GMτ δMτGMτ , (2.30)

where for any two matrices D1 and D2 we denote

[D1, D2] = D1D2 −D2D1 (2.31)

their commutator.
This yields

E{GMτBτ [A,B−τ (Oτ )]GMτ } = 0, τ = ±1. (2.32)

Choosing here A = A(jk) of (3.3) for j, k = 1, . . . , n, we obtain the following
entry-wise version of (2.32) for a, b = 1, . . . , n:

E{(GMτBτ )aj(B−τ (O)GMτ )kb − (MτGMτ )aj(GMτ )kb} = (Tτ )jkab,
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(Tτ )jkab = E{(GMτBτ )ak(B−τ (Oτ )GMτ )jb

−(GMτBτB−τ (Oτ ))ak(GMτ )jb}, (2.33)

i.e., Tτ is given by the left-hand side of the first line of above relation with the
interchanged j and k.

Set here b = k and apply to the result the operation

n−1
n∑
k=1

, (2.34)

taking into account that MτGMτ = 1 + zGMτ , τ = ±1 (see (2.26)). This and
(2.16) yields for τ = ±1

E{GMτBτh
B−τ (Oτ )
Mτ

− (1 + zGMτ )gMn} = Tτ ,

h
B−τ (Oτ )
Mτ

:= n−1Tr B−τ (Oτ )GMτ ,

Tτ := n−1E{GMτBτGMτB−τ (Oτ )−GMτMτGMτ }, (2.35)

where we used (2.28) to identify gMτ,n and gMn .

We will use now (2.3), (2.18), and (2.25)–(2.26) to write h
B−τ (Oτ )
Mτ

as

h
B−τ (Oτ )
Mτ

:= n−1Tr B−τ (Oτ )GMτ

= n−1Tr B−τGM−τ =: h−τ,n, τ = ±1. (2.36)

As a result, the first line of (2.35) becomes

E{GMτBτh−τ,n − (1 + zGMτ )gMn} = Tτ . (2.37)

This is our basic intermediate result. We will outline now an argument based on
(2.37) and leading to the system (2.7)–(2.8).

Introduce the notation (see (2.14) and (2.23))

δgMn = gMn − fMn , δhτ,n = hτ,n − hτ,n,
hτ,n := E{hτ,n}, GMτ,n := E{GMτ,n}, (2.38)

allowing us to write (2.37) as

GMτh−τ,n(Bτ − zfMn/h−τ,n) = fMn + Eτ + Tτ , (2.39)

where

Eτ = −E{GMτBτδh−τ,n}+ zE{GMnδgMn} (2.40)

is the contribution of the deviation terms δgMn and δhτ,n of (2.38).

Applying to (2.39) the operation n−1Tr and using formulas (2.28) and

GMτ,nBτ = B1/2
τ,nGMτ,nB

1/2
τ,n ,
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we obtain in view of (2.23), (2.36), and (2.38)

hτ,n(z)h−τ,n(z)− (1 + zfMn(z))fMn(z) = r(1)
τ,n(z),

r(1)
τ,n(z) = n−1TrEτ + n−1Tr Tτ , τ = ±1. (2.41)

Next, denote {λα}α and {ψα}α the eigenvalues and eigenvectors of the positive
definite matrix Mτ,n of (2.3). Then (2.36) and spectral theorem for Mτ,n imply

hτ,n(z) =

∫ ∞
0

µτ,n(dλ)

λ− z
, z ∈ C \ R+,

µτ,n = n−1
∑
α

δλα(Bτψα, ψα), µτ,n(R+) = n−1TrBτ := βτ,n. (2.42)

It follows from Lemma 3.2 that

z∗τ,n(z) := zfMn(z)/hτ,n(z)

= (z/βτ )(1 + o(1), d(z)→∞, n→∞. (2.43)

We conclude that the matrix (Bτ − z∗τ,n(z)) of (2.39) is invertible and if

GBτ (ζ) = (Bτ − ζ)−1, ‖GBτ (ζ)‖ ≤ 1/d(ζ),

is the resolvent of the positive definite matrix Bτ , then we have in view of (2.43)

(Bτ − z∗τ,n(z))−1 = GBτ (z∗τ,n(z)), ‖GBτ (z∗τ,n(z))‖ ≤ 2βτ/d(z), (2.44)

Hence, (2.39) is equivalent to

h−τ,n(z)GMτ (z)− fMn(z)GBτ (z∗τ,n(z)) = (Eτ + Tτ )GBτ (z∗τ,n(z)). (2.45)

Applying to (2.45) the operation n−1Tr, we obtain in view of (2.16), (2.21), (2.23),
and (2.36)

fBτ,n(zfMn(z)/h−τ,n(z)) = h−τ,n(z) + r(2)
τ,n(z),

r(2)
τ,n(z) = −n−1Tr EτGBτ (z∗τ,n(z)/fMn(z)

− n−1Tr TτGBτ (z∗τ,n(z)/fMn(z), τ = ±1. (2.46)

We observe that (2.41) and (2.46) are prelimit versions of system (2.7)–(2.8).

We will derive now (2.7)–(2.8) from (2.41)–(2.46). This is just a version of a
standard argument of random matrix theory.

Consider first (2.41) and let us show that the error term r
(1)
τ,n vanishes as n→

∞ under conditions (2.13) and (2.15).

Indeed, by using (2.28) and (2.40), we obtain for the contribution of the first

term of the right-hand side of r
(1)
τ,n in (2.41)

n−1TrEτ = −E{δhτ,nδh−τ,n} − zE{(δgMn)2}
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and then Schwarz inequality for expectations and Lemma 3.3 with B0 = 1n, B0 =
Bτ,n, hence b0 = 1, b0 = b, imply

|n−1TrEτ,n| = Var1/2{hτ,n}Var1/2{h−τ,n}+ |z|Var{gMn}
≤ 8Cb4(b2 + |z|)/n2d4(z). (2.47)

To bound the second term in r
(1)
τ,n in (2.41) we use the inequality

|TrA| ≤ n‖A‖ (2.48)

valid for any n× n matrix A. The inequality, (2.17), (2.26), and (2.35) yield

‖Tτ‖ ≤ 2/nb2, (2.49)

and then (2.48) implies that the second term in r
(1)
τ,n in (2.41) admits the same

bound 2/nb2.

We conclude that the error term r
(1)
τ,n in (2.41) vanishes as n→∞.

Furthermore, functions fMn and hτ,n are the Stieltjes transforms of expecta-
tions νMn and µτ,n of νMn in (2.23) and µτ,n in (2.42). According to (1.2) and
Lemma 3.2, we have νMn(R+) = 1 and µτ,n(R+) = βτ (1 + o(1)), n → ∞ and
then ((2.23) and (2.36) imply for sufficiently large n

|fMn(z)| ≤ 1/d(z), |hτ,n(z)| ≤ 2βτ/d(z). (2.50)

Thus, the sequence {(fMn , h+1,n, h−1,n)}n of triples of analytic and uniformly in
n bounded in C\R+ functions has a subsequence that converge as n→∞ on K of
(2.15) to certain (fM , h+1, h−1) and, by the one-to-one correspondence between
the nonnegative measures and their Stiltjes transforms, we have the triple of the
corresponding limiting measures

(νM , µ+1, µ−1). (2.51)

This allows us to pass to the limit n→∞ in the right-hand side of (2.41) and to
obtain (2.7).

Consider now (2.46) and show first that the error term r
(2)
τ,n vanishes. It follows

from (2.40) and (2.48) that the first term in the right-hand side of r
(2)
τ,n (see (2.46))

is bounded by

‖E{GMτ (z)δh−τ,n}BτGBτ (z∗τ,n(z)‖ |fMn(z)|−1

+ z‖E{δgMnGMτ (z)}GMτ (z)GBτ (z∗τ,n(z)‖ |fMn(z)|−1,

which, in turn, is bounded by

2βτ |z|
bd(z)

(E{|δh−τ,n|}+ |z|b−1E{|δgMn |}),
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where we used (2.13), (2.26), (2.44), and Lemma 3.2. Now, Schwarz inequality
for expectations and Lemma 3.3 imply that the first term in the right-hand side

of r
(2)
τ,n (see (2.46)) is bounded by

2βτ |z|
bd(z)

(Var1/2{h−τ,n}+ |z|b−1Var1/2{gMn}) ≤
6βτ b|z|C1/2

nbd(z)
(b2 + |z|).

Likewise, it follows from (2.13), (2.48), (2.49), (2.44), and Lemma 3.2 that the

second term in r
(2)
τ,n of (2.46)) is bounded by

2βτ |z|
d(z)

‖Tτ‖ ≤
4βτ |z|
nd(z)

.

Thus, according to the two last bounds, the error term r
(2)
τ,n in (2.46) vanishes as

n→∞.
Next, it was already explained while analyzing (2.41) how to pass to the n→

∞ limit in fMn and h−τ,n, hence, in and z∗τ,n(z) of (2.46) and to obtain the
limiting fM , hτ and z∗τ (z). Thus, we can write for the left-hand side of (2.46) as

fBτ,n(z∗−τ,n(z)) =

∫ ∞
0

νBτ,n(dλ)

λ− z∗−τ,n(z)
=

∫ ∞
0

νBτ,n(dλ)

λ− z∗−τ (z)

+ (z∗−τ,n(z)− z∗−τ (z))

∫ ∞
0

νBτ,n(dλ)

(λ− z∗−τ,n(z))(λ− z∗−τ (z))
.

The limit of the first term of the right-hand side is obviously fBτ (z∗−τ (z)), i.e., the
left-hand side of (2.8) in view of the above and (2.2). The factor (z∗τ,n(z)− z∗τ (z))
in the second term of the right-hand side vanishes as n → ∞, thus it suffices to
show that the integral in the second term is bonded uniformly in n → ∞. To
this end recall that we assume that d(z) of (2.16) is large enough, hence, (2.43)
applies. This and Lemma 3.2 yield the bounds for d(z)→∞, n→∞

|λ− z∗τ (z)| ≥ d(z∗τ (z)) = β−1
τ d(z)(1 + o(1)) ≥ (2βτ )−1d(z),

|λ− z∗τ,n(z)| ≥ d(z∗τ,n(z)) = β−1
τ d(z)(1 + o(1)) ≥ (2βτ )−1d(z)

implying in view of (2.1) that the integral in the second term on the right is
bonded by 4βτβ

2
−τ/d

2(z).
This proves (2.8). In addition, it follows from (2.1) that measures µτ , τ =

±1, of (2.51) satisfy (3.21) and then Lemma 3.4 implies that the whole sequences
{(fMn , h+1,n, h−1,n)}n converges to a certain (fM , h+1, h−1), a unique solution of
(2.7)–(2.8).

Thus, we proved the theorem under condition (2.13). Let us show that con-
ditions (2.1) and (2.2) are already sufficient for the validity of the theorem.

Denote {bτ,α}nα=1 and {uτ,α}nα=1 the eigenvalues and the eigenvectors of Bτ
in (2.1)–(2.3), denoted Bτ below. It follows from spectral theorem that

Bτ =
n∑

α=1

bτ,αuτ,α ⊗ uτ,α.
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Introduce a sequence
{b(r)}∞r=1, lim

r→∞
b(r) =∞. (2.52)

and write for each b(r)

Bτ = Br
τ + Crτ , Crτ :=

∑
bτ,α∈Ir

bτ,αuτ,α ⊗ uτ,α, Ir := [b(r),∞], (2.53)

and (cf. (2.3))

M r
τ,n = B1/2

τ OτBr
−τO

−τB1/2
τ , M rr

τ,n = (Br
τ )1/2OτBr

−τO
−τ (Br

τ )1/2. (2.54)

It follows then from (2.53)–(2.54) that

M r
+,n = M rr

+,n +
∑

b−,α∈Ir

yr+,α ⊗ yr+,α, yr+,α = b
1/2
−,α(Br

+)1/2Ou−,α, (2.55)

i.e., M r
+,n is a perturbation of M rr

+,n of rank

]{b−,α ∈ Ir} = nνB−,n(Ir). (2.56)

This and the min-max principle of linear algebra (see [2], Section III.1) imply for
any interval ∆ ⊂ R+

|νMr
n
(∆)− νMrr

n
(∆)| ≤ νB−,n(Ir), (2.57)

where we took into account that the spectra, hence, the NCMs of M rr
τ,n, τ = ±1,

and M r
τ,n, τ = ±1, do not depend on τ .

We then consider the pair (M−,M
r
−) where M− of (2.3) satisfies the conditions

of the theorem. Using an argument analogous to that leading to (2.57), we obtain

|νMn(∆)− νMr
n
(∆)| ≤ νB+,n(Ir), ∆ ⊂ R+,

Combining this bound and (2.57), we get

|νMn(∆)− νMrr
n

(∆)| ≤ νB+,n(Ir) + νB−,n(Ir), ∆ ⊂ R+,

hence, in view of (2.1)

|νMn(∆)− νMrr
n

(∆)| ≤ 2b2/(b
(r))2, ∆ ⊂ R+. (2.58)

It is important that the above bound holds for any realization of random matrices
in question and is uniform in n.

According to the above proof, the theorem is valid with probability 1 for every
b(r), hence, for the whole sequence {b(r)}∞r=1 with the same probability.

Denote νMrr and νM the measures determined via the system (2.7)–(2.8) with
the limiting measures νBrτ and νBτ respectively (see (2.2)) and write

|νMn(∆)− νM (∆)| ≤ |νMn(∆)− νMrr
n

(∆)|
+ |νMrr

n
(∆)− νMrr(∆)|+ |νMrr(∆)− νM (∆)|. (2.59)
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Replacing the first term on the right of (2.59) by (2.58) and taking into account
that the n→∞ limit of the second term of the right-hand side of (2.59) vanishes
with probability 1 for any r by the above proof (see (2.13)) and that the third
term is non-random and independent of n, we obtain with probability 1:

lim sup
n→∞

|νMn(∆)− νM+,n(∆)| ≤ 2b2/(b
(r))2 + |νMr(∆)− νM (∆)|.

The right-hand side here vanishes as r →∞ in view of (2.52) and the continuity
of solutions of (2.7)–(2.8) with respect to the weak convergence of νBτ , see Lemma
3.4.

Thus, we have proved that the theorem holds under conditions (2.1) and (2.2),
but not necessarily (2.13). �

3. Auxiliary results

We will begin with a proposition that provides the tools of random matrix
theory dealing with “randomness” due to Haar distributed orthogonal random
matrices. Their proofs and discussion are given in [15].

Recall that we do not write the subindex n in various matrices where this
does not lead to misunderstanding.

Proposition 3.1. Given a positive integer n, consider the group SO(n) of
n× n orthogonal matrices with determinant 1 viewing it as the probability space
with the normalized Haar measure of the group as the probability measure of the
space.

(i) Let Φ : SO(n)→Mn(C) be a C1 map admitting a C1 continuation into an
open neighborhood of SO(n) in the whole algebra Mn(R). Denote En{· · · }
the integration (expectation) with respect to the normalized Haar measure of
SO(n). Then we have

En{Φ′(On) ·AnOn} = En{Φ′(On)OnAn} = 0, ∀An ∈ An, (3.1)

where An is the space of n×n real antisymmetric matrices and the derivative
Φ′ is viewed as a linear map from Mn(R) to Mn(C).

(ii) We have in the above notation for a map ϕ : SO(n)→ C and a sufficiently
large n

Varn{ϕ} := En{|ϕ|2} − |En{ϕ}|2

≤ C

n
En

{ n∑
1≤j<k≤n

∣∣∣ϕ(τ)
jk

∣∣∣2 }, τ = ±1, (3.2)

where C is an absolute constant and

ϕ
(+)
jk (On) = ϕ′(On)A(jk)

n On = lim
ε→∞

(ϕ((1n + εA(jk)
n )On)− ϕ(On))ε−1,

ϕ
(−)
jk (On) = ϕ′(On)OnA

(jk)
n = lim

ε→∞
(ϕ(On(1n + εA(jk)))− ϕ(On))ε−1,
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A(jk) = {A(jk)
ab }

n
a,b=1, A

(jk)
ab = δajδbk − δakδbj , (3.3)

i.e., {A(jk)}0≤j<k≤n is the basis of An.

(iii) There exists an infinite-dimensional probability space ΩO on which all On,
n ≥ 1, are simultaneously defined.

Item (i) follows from the invariance of the Haar measure of SO(n) with respect
to the left O → eεAO and the right O → OeεA group shifts with ε→ 0, see [15],
Section 8.1. Item (ii) is a version of the Poincaré inequality for SO(n), see [15],
Section 8.1 and item (iii) is a structure property of SO(n), see [10], Section 2.10
and [15], Section 8.1.

Next is an important bound for the fluctuations of various functions of the
Haar distributed orthogonal matrices.

Lemma 3.2. Consider the functions fn and hτ,n given by (2.23) and (2.36)
and the non-negative measures νMn and µτ,n which provide the Stieltjes represen-
tations (2.23) and (cf. (2.42))

hτ,n(z) =

∫ ∞
0

µτ,n(dλ)

λ− z
, z ∈ C \ R+. (3.4)

Then we have under condition (2.1):

(i) the uniform in n tail estimates

νMn([T,∞]) ≤ b2/T, µτ,n([T,∞]) ≤ b3/22 /T, (3.5)

where b2 is defined in (2.1);

(ii) the bounds

|zfn(z) + 1| ≤ b2/d(z), |hτ,n(z) + βτ,n| ≤ b3/22 /d(z); (3.6)

where d(z) are defined in (2.16);

(iii) the limit

βτ := lim
n→∞

βτ,n =

∫ ∞
0

λνBτ (dλ) > 0, (3.7)

where

βτ,n = n−1TrBτ,n =

∫ ∞
0

λνBτ,n(dλ), (3.8)

and νBτ,n and νBτ is given by (2.2).

Proof. (i) It follows from the definition (1.2) of νMn that∫ ∞
0

λνMn(dλ) = E{n−1TrMτ}. (3.9)

By using the orthogonality relations for SO(n)

E{Oj1k1Oj2k2} = n−1δj1j2δj2k2 (3.10)
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and Schwarz inequality for traces, we obtain in view of (2.3) and (2.1)

E{n−1TrMτ} = E{n−1TrBτO
τB−τO

−τ}
= n−1TrBτ n

−1TrB−τ,n ≤ b2. (3.11)

Now a standard argument implies the first estimate in (3.5).
Likewise, we have from (2.42)∫ ∞

0
λµτ,n(dλ) = E{n−1TrBτMτ}. (3.12)

By using again (3.10) and (2.3), implying

E{n−1TrBτMτ} = E{n−1TrB2
τO

τB−τO
−τ}

= n−1TrB2
τ n
−1TrB−τ,n ≤ b3/22 , (3.13)

we obtain the second estimates in (3.5) in view of (2.1) and Schwarz inequality
for traces.

(ii) It follows from (2.23) that

|zfMn(z) + 1| =
∣∣∣∣∫ ∞

0

λνMn(dλ)

λ− z

∣∣∣∣ ≤ d−1(z)

∫ ∞
0

λνMn(dλ).

By using (3.9) and (3.13) in the right-hand side, we obtain the first bound in
(3.6).

To get the second bound in (3.6), we use (2.42), (3.4), and (3.8) to write

|zhτ,n(z) + βτ,n| =
∣∣∣∣∫ ∞

0

λµτ,n(dλ)

λ− z

∣∣∣∣ ≤ d−1(z)

∫ ∞
0

λµτ,n(dλ).

By using (3.12) and (3.13), we obtain the second bound in (3.6).
(iii) If νBτ,n is the NCM of Bτ (see (2.2)), then we have for any T > 0:∫ T

0
λνBτ (dλ) ≤ βτ,n =

∫ ∞
0

λνBτ,n(dλ)

=

∫ T

0
λνBτ,n(dλ) +

∫ ∞
T

λνBτ,n(dλ). (3.14)

Writing (2.1) as ∫ ∞
0

λ2νBτ,n(dλ) ≤ b2,

we can bound the second term in the right-hand side of (3.14) by b2/T . Now,
using (2.2) to pass first to the limit n → ∞ in (3.14) and then passing to the
limit T →∞, we obtain (3.7) with the strictly positive right-hand side, because
νBτ is not concentrated at zero according to the condition of the theorem.

Next is an important bound for the fluctuations of various functions of the
Haar distributed orthogonal matrices.
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Lemma 3.3. Assume that positive definite matrices Bτ,n, τ = ±1, in (2.3)
satisfies (2.13) and let B0,n be a real symmetric n× n matrix such that

sup
n
‖B0,n‖ ≤ b0 <∞. (3.15)

Set
ϕτ,n := n−1Tr B0,nGMτ,n(z), (3.16)

where GMτ,n is defined by (2.3) and (2.16).
Then we have for sufficiently large n:

Var{ϕτ} ≤ 8Cb20b
4/n2d4(z). (3.17)

Proof. We will use an analog of the Poincaré inequality for orthogonal ma-
trices given by (3.2)–(3.3), see, e.g., [8] for other approaches to estimate the
fluctuations. To this end we choose the right-hand side of (3.16) as the map ϕ in
(3.2). By using(2.25) and (2.29) (2.30)–(2.31), we obtain (cf. (2.30))

δMτ = τB1/2
τ [A,B−τ (Oτ )]B1/2

τ

hence,

δτϕτ = n−1Tr B0δτGMτ = n−1Tr CτA,

Cτ = [B−τ (Oτ ), Hτ ], Hτ = B1/2
τ GMτB0GMτB

1/2
τ , (3.18)

implying for the derivative ϕjk of (3.3)

(ϕτ,n)jk = (Cτ )jk − (Cτ )kj = 2(Cτ )jk, 1 ≤ j < k ≤ n. (3.19)

since Cτ is antisymmetric. The right-hand side of the above formula is well defined
for all 1 ≤ j, k ≤ n and is antisymmetric in (j, k). This and a standard linear
algebra argument, that takes into account that Bτ , τ = 0,±1, are symmetric,
yield ∑

1≤j<k≤n
E
{
|(ϕτ,n)jk|2

}
=

2

n2

n∑
j,k=1

E
{
|(Cτ )jk|2

}
≤ 4n−2Tr B2

−τ (Oτ )(HτH
∗
τ +H∗τHτ ). (3.20)

We will use now (2.48), (2.16), (2.13), and (3.15) implying that ‖Cτ‖ ≤ 2b3/d2(z).
Combining this with (3.2), we obtain (3.17) for sufficiently large n.

Next is the unique solvability of functional equations (2.7)–(2.8).

Lemma 3.4. Consider the system (2.7)–(2.8) with the condition∫ ∞
0

λ2νBτ (dλ) <∞, τ = ±1, (3.21)

for the triple (f, h−+1, h−1) of functions that belong to the class N+ (see assertion
(iii) of Theorem 2.1).

We have:
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(i) there exists at most one triple satisfying (2.7)–(2.8) for all sufficiently large
d(z) := dist(z,R+);

(ii) if {ν(r)
Bτ
}r is a sequence of non-negative measures satisfying (3.21) and con-

verging to a limit νBτ also satisfying (3.21) and {(f (r), h
(r)
+ , h

(r)
− )}r is the

sequence of the corresponding solutions of (2.7)–(2.8), then the sequence
converges as r → ∞ to a triple (f, h+, h−) which is a unique of solution
(2.7)–(2.8) with limiting νBτ .

Proof. (i) A function s of class admits the Stieltjes representation

s(z) =

∫ ∞
0

σ(dλ)

λ− z
, z ∈ C \ R+, (3.22)

with a non-negative and bounded measure σ, see [1], Section III.4.

Denote by ν̂ and µ̂τ the measures corresponding to f and hτ of the lemma
and write

h0(z) := zf(z) = −1 +

∫ ∞
0

λν̂(dλ)

λ− z
, z ∈ C \ R+,

hτ (z) =

∫ ∞
0

λµ̂τ (dλ)

λ− z
, z ∈ C \ R+. (3.23)

The system (2.7)–(2.8) written via h = (h0, h+1, h−1) is

h0(1 + h0)− zh+1h−1 = 0, (3.24)∫ ∞
0

νB−τ (dλ)

λhτ − h0
= 1, τ = ±1. (3.25)

Assume that there exists two solutions h(a) = (h
(a)
0 , h

(a)
−+1, h

(a)
−1), a = 1, 2 of

(3.24)–(3.25) and denote

δh = h(1) − h(2) = {δhτ}τ=0,±1.

It follows then from (2.7)–(2.8) that δh satisfies the linear system

(h
(1)
0 + h

(2)
0 + 1)δh0 − zh(1)

− δh+ − zh(2)
+ δh− = 0,

I+δh0 − J+δh+ = 0,

I−δh0 − J−δh− = 0,

where

Iτ (z) =

∫ ∞
0

νB−τ (dλ)

(λh
(1)
τ − h(1)

0 )(λh
(2)
τ − h(2)

0 )
,

Jτ (z) =

∫ ∞
0

λνB−τ (dλ)

(λh
(1)
τ − h(1)

0 )(λh
(2)
τ − h(2)

0 )
. (3.26)
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Hence, the solution of (2.7)–(2.8) is unique if the determinant ∆(z) of the above
linear system is not zero. We have

∆ = (h
(1)
0 + h

(2)
0 + 1)J+J− − zI+J−h

(1)
− − zI−J+h

(2)
−+.

Functions h
(a)
τ , a = 1, 2, τ = 0,±1 are analytic in C \ R+, hence, it suffices to

prove that
h(1)
τ (−ξ) = h(2)

τ (−ξ), τ = 0,±1, ξ ≥ ξ0,

where ξ0 is large enough (cf. (2.15)).

Let ν̂(a) and µ̂
(a)
τ be the measures in the Stieltjes representations of f (a) and

h
(a)
τ . It follows from the representations with z = −ξ (cf. (3.23))

f (a)(−ξ) =

∫ ∞
0

ν
(a)
M (dλ)

λ+ ξ
, h(a)

τ (−ξ) =

∫ ∞
0

λν
(a)
Bτ

(dλ)

λ+ ξ

that

h
(a)
0 (−ξ) = −m(a)

0 +m
(a)
1 ξ−1 + o(ξ−1),

h(a)
τ (−ξ) = m

(a)
0,τξ

−1(1 + o(1)), ξ →∞, (3.27)

where

m(a)
s =

∫ ∞
0

λtν
(a)
M (dλ), t = 0, 1, m

(a)
0,τ =

∫ ∞
0

λν
(a)
Bτ

(dλ).

It follows then from (2.7)–(2.8) with ξ →∞ that

m
(a)
0 = 1, m

(a)
1 = β+β−, m(a)

τ = βτ , τ = ±1,

hence, (3.27) becomes

h
(a)
0 (−ξ) = −1 + β+β−ξ

−1 + o(ξ−1),

h(a)
τ (−ξ) = βτξ

−1(1 + o(1)), ξ →∞, τ = ±. (3.28)

This and (3.26) lead to the asymptotic formulas

Iτ (−ξ) = 1 + o(1), Jτ (−ξ) = β−τ + o(1), ξ →∞

and we obtain
∆(−ξ) = β+β−1 + o(1) > 0, ξ →∞.

(ii) Every triple
(
f (r), h

(r)
+ , h

(r)
−
)

consists of functions analytic and uniformly

in r bounded in C \ R+, hence, the sequence
{(
f (r), h

(r)
+ , h

(r)
−
)}

r
contains a sub-

sequence converging uniformly in any compact of C \ R+.
It is clear that the limiting triple satisfies (2.7) if d(z) is large enough. Let us

show that it satisfies (2.8) for the same d(z). Indeed, use (2.8) for
(
f (r), h

(r)
+ , h

(r)
−
)

to write

1−
∫ ∞

0

νBτ (dλ)

Dτ (z)
=

∫ ∞
0

ν
(b)
B−τ

(dλ)

D
(r)
τ (z)

−
∫ ∞

0

νBτ (dλ)

Dτ (z)
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=

∫ ∞
0

ν
(b)
B−τ

(dλ)

Dτ (z)
+ (hτ (z)− h(r)

τ (z))

∫ ∞
0

λνBτ (dλ)

Dτ (z)D
(r)
τ (z)

− (h0(z)− h(r)
0 (z))

∫ ∞
0

νBτ (dλ)

Dτ (z)D
(r)
τ (z)

, (3.29)

where Dτ = λhτ−h0, D
(r)
τ = λh

(r)
τ −h(r)

0 . It follows from (3.23) and (3.27)–(3.28)
for d(z)→∞

h
(r)
0 (z) = −1 +O(d−1(z)), h(r)

τ (z) = −β(r)
τ /z(1 +O(d−1(z)) (3.30)

and analogous formulas for the r →∞ limits of these functions. Thus, we have

|D(r)
τ (z)| = |h(r)

τ (z)| |λ− h(r)
0 (z)/h(r)

τ (z)|

≥ |h(r)
τ (z)| |=h(r)

0 (z)/h(r)
τ (z)| = |=z|/|z|(1 + o(1)), d(z)→∞,

and in passing to the last equality we used (3.30). This allows us to show that
the right-hand side of (3.29) vanishes as r → ∞ and =z 6= 0. If, however, =z =

0, then we have even a better bound D
(r)
τ (−ξ) = 1+O(ξ−1), ξ →∞, that follows

from (3.28).
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Закон множення великих випадкових матриць:
ще раз

Leonid Pastur

У статтi розглядається розподiл власних значень добутку двох n×n
додатно визначених матриць Bτ , τ = ±1, якi “повертаються” одна вiд-
носно одної випадковою ортогональною матрицею, що має мiру Хаара
ортогональної групи як її розподiл ймовiрностi. Задача розглядалася в
кiлькох роботах з використанням рiзних методiв. Ми пропонуємо спро-
щений пiдхiд, оснований на технiцi теорiї випадкових матриць i певнiй

http://proceedings.mlr.press/v84/pennington18a/pennington18a.pdf
mailto:pastur@ilt.kharkov.ua
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симетрiї задачi. Ми доводимо, що нормована мiра розподiлу власних зна-
чень добутку прямує до невипадкової граничної мiри коли порядок ма-
трицi прямує до нескiнченностi, одержуємо функцiональнi рiвняння, що
однозначно визначають перетворення Стiлтьєса граничної мiри, через
граничнi мiри множникiв Bτ , τ = ±1, та розглядаємо цiкавий приклад.

Ключовi слова: випадковi матрицi, ортогональнi матрицi, розподiл
власних значень
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