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The Law of Multiplication of Large Random
Matrices Revisited
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The paper deals with the eigenvalue distribution of the product of two
n X n positive definite matrices B,, 7 = =£1, rotated with respect to each
other by the random orthogonal and Haar distributed matrix. The prob-
lem has been considered in several works by using various techniques. We
propose a streamlined approach based on the random matrix theory tech-
niques and a certain symmetry of the problem. We prove the convergence
with probability 1 as n tends to infinity of the Normalized Counting Mea-
sure (NCM) of eigenvalues of the product to a non-random limit, derive a
functional equation that determines the Stieltjes transform of the limiting
NCM of the product in terms of limiting NCMs of the factors B, 7 = +1,
and consider an interesting example.
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1. Introduction

The objective of the paper is the eigenvalue distribution of the n X n positive
definite random matrices

M, = AY20,B,0% A2, (1.1)

where A,, and B, are positive definite and O,, € SO(n) is random and Haar
distributed. We are interested in the Normalized Counting Measure (NCM) of

eigenvalues {)\&n)}gzl (possible coinciding) of M,
n
vi, =0ty 8os v, (R) = 1. (1.2)
a=1

More precisely, we assume, as usual in random matrix theory, that we have infinite
sequences { A, }n, {Bn}n, and {O, },, hence, an infinite sequence { M, },,, and we
want to find a description of vy, in terms of v4, and vp, in the limit n — oo.
One may mention several motivations for the problem. First, the problem
seems quite natural from the point of view of random matrix theory. It is also
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can be viewed as an analog of the sample covariance matrices of statistics where
the role of the data matrix plays the orthogonal matrix instead of the matrix
with i.i.d (often Gaussian) entries, see, e.g., [5,7,11,14,15] for the latter. The
random matrix (2.3) appeared recently in the studies of random deep neural
networks [4,12,17] and in certain models of quantum information science [13].
One more aspect is related to the general problem to describe the eigenvalues of
the product of two positive definite matrices in terms of eigenvalues of two factors
of the product (see, e.g., [2], Section II1.4 for a review). It seems unlikely to expect
in general a sufficiently simple and closed expression for eigenvalues of the product
(sum) of two given matrices via eigenvalues of factors (terms). Hence, it is natural
to look for a “generic” asymptotic answer, studying a randomized version of the
problem. Such an approach to the analysis of eigenvalues of Hermitian matrices
was considered in [9,15,16].

The problem has been treated by several authors who used various techniques,
the most known are the free probability techniques [9] and the random matrix
techniques [15, 18]. We will use a version of the latter taking into account a
certain symmetry of the problem.

The paper is organized as follows. In the next Section 2 we prove our main
result, Theorem 2.1. We also discuss there an interesting particular case of the
theorem where matrices A4,, and B,, of (1.1) are orthogonal projections. Various
auxiliary results that are used in the proof of the theorem are given in Section 3.

2. Main results

The non-zero eigenvalues of (1.1) coincide with those of By 2O;AnOnB,1/ 2,
Thus, it is convenient to consider the both matrices simultaneously as can be
seen from the theorem below.

Theorem 2.1. Let B;,, 7 = %1, be n X n positive definite matrices such
that
supn'Tr B%n < by < 0 (2.1)
n
and their Normalized Counting Measures vp_,, T = %1, converge weakly to the
measures
lim vp,_, =vp,, v, (Ry)=1 71==I, (2.2)

n—oo

which are not concentrated at zero.
Consider the n X n positive definite random matrices

M, = BY?OlB_.,0,"BM2, 1 =x+l, (2.3)

n ™no

where O,, € SO(n) is the random Haar distributed orthogonal matriz, and denote
by vu,, the NCM’s of M;, (see (1.2)).
Then:

(i) vam,, do not depend on T = £1

VM+1,n = VM—l,n = VM, (2.4)
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and we have with probability 1 the weak non-random limit

lim vy, = lim Uy, =t var; (2.5)
n—r00 ’ n—r00 ’

(ii) the Stieltjes transform

> VM(d)\)
0 A—2z ’

fu(z) = z € C\ Ry, (2.6)

of the limiting NCM vyy in (2.5) solves the system

(1 + 2fm(2)) far(2) = hya(2)ha(2)
f8.(2fm(2)/h—(2))

with respect to the triple (far, hy, h—), where

0,
h-r(z), 7==1,

[e.e]
5.(2) ::/ ve[dN) 4 L eC\R,, (2.9)
0o A—z

are the Stieltjes transforms of limiting vp_, T = £1, of (2.2) and d(z) =
dist(z,Ry) is large enough;

(iii) the solution of (2.7)—(2.8) is unique in the class of triples (far, h4,h—) of
functions that belong to the class Ny of functions that are analytic in C\
R, continuous and positive on the open negative semi-axis and such that

Js(2)32 >0, Sz#0, supys(iy) < oo, seN,. (2.10)

y>1
Theorem 2.1 is proved below in this section. The corresponding assertion
for the unitary Haar distributed matrices is analogous, see [15, 18] for earlier
results in this case. We will give a streamlined approach for orthogonal matrices.

Being applied to unitary matrices, the approach proves to be simpler than those
in [15,18].

Remark 2.2. The system (2.7)—(2.8) can be viewed as that determining a
binary operation in the set (cone) of functions of the class N, allowing one to
determine a unique fjs given fp_, 7 = £1. Recalling the one-to-one correspon-
dence between N and the set (cone) of non-negative measures supported on
R, one can also say that the system (2.7)—(2.8) determines a binary operation
in the latter set as well. The operation is known in free probability as the free
multiplicative convolution of measures, see [9], Chapter 3 and [12].

Here is an interesting particular case of the theorem, see e.g [3, 6] for similar
results.

Example 2.3. Consider the case of (2.3) where B, , = P, are the orthogonal
projections with rank P, = r, and

ILm r-/n = pr € (0,1). (2.11)
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In this case the limiting measures v, of (2.2) are
ve, = (1 —pr)do +p:o1, pr=1—ps.
Plugging them into (2.7)—(2.8), we obtain the quadratic equation
P-4+ z2(z-p)f—pp, P=Py+D_.

The equation and (2.10) yield

_ 1= VE-p)E-p)
/() = S22 2(1—2) * 2z(r— z) ’ (2.12)

pe = (Vpip_ = /ppy) €(0,1),

where the branch of square root is fixed by the condition to behave as z + O(1),
z — 00.
By using the inversion formula

V(A =2 tim [ SFO+ic) dn,

T e—=0t JA
relating a measure v and its Stieltjes transform f, we obtain
VM:mf_iX ﬁ‘réOjL(ﬁ*l)JréleV]CW’ $+:max{0,x},

Vs =N —p)
oAl — ) ler

vir(d\) = Y (N)dA,  u(N) =

Proof of Theorem 2.1. The proof is essentially based on the tools of the
branch of random matrix theory that deals with large random matrices whose
“randomness” is due to classical compact groups, the group S(n) in our case, see,
e.g., Chapters 8-10 of [15].

Assume temporarily that B;,, 7 = £1, are bounded uniformly in n — oo:

| Brnll < b < 0. (2.13)

This assumption is removed at the end of the proof.

In view of the one-to-one correspondence between non-negative measures and
their Stieltjes transforms (see, e.g., [15], Section 2.1), it suffices to prove that the
Stieltjes transform

o0 d\
g, (2) = / VMA"() z € C\Ry, (2.14)
0 —Z

of the NCM vy, ,, of (1.2) converges with probability 1 as n — oo to a limit fas

of (2.6) on a compact set K € C\R_. It is convenient to assume that (see (2.13))

KcC {zeC\Ry: [2] >2b%}. (2.15)
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It is important that since the sequences {gus, , }n, 7 = %1, consists of functions

analytic in C \ Ry, the convergence on K implies that everywhere in C \ R;..
By using the definition (1.2) of the NCM and spectral theorem for M, ,,, we
can write the representation

g, (2) =n~'Tr Gur, ,(2), z€C\Ry,
GMTn(Z) (Mrp — 2)~ 17 z € C\ Ry,
G, (2)]] < 1/d(2), d(z) = dist(z, Ry) (2.16)

of g, ,, via the resolvent Gy, of M. .
Taking into account (2.15) and the bound (see (2.13))

||MT,nH < b27 T = %1, (217)

we have the norm convergent expansion

LML
Mo (2) ==Y T = (2.18)
=0

in (2.15). This and the equalities (see (2.3))

Tr ML, =Tr M

-7,

r=41,1=12..., (2.19)

yield

n'Tr G, =n 'Tr Gar T = =1, (2.20)

T,n)

implying in view of (2.16) the independence of (2.14) on 7 = +1

9gnr,  (2) =2 g, (2), (2.21)

hence, the validity of (2.4).
We will use now Lemma 3.3 with By = 1,,, by = 1 and (2.21) to obtain the
bound
Var{gy, (2)} < 8Cb*/n%d*(2) (2.22)

with d(z) defined in (2.16).
The bound and the Borel-Cantelli lemma imply that it suffices to find the
n — oo limit of the expectation

) =Bl = [ vy =B} 2)

for z € K of (2.15). Then, in view of the one-to one correspondence between
non-negative measures and their Stieltjes transforms, (see, e.g., [15], Section 2.1),
we obtain with probability 1 the weak limit

lim vy, = hm UM, =: VM (2.24)
n—oo

implying (2.5) under condition (2.13).
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In what follows we do not write the subindex n in those matrices where this
does not lead to misunderstanding.
Introduce the matrix (cf. (2.3))

MT - BTOTB—TO_T7 T = +1. (225)

It follows from (2.13) that | M| < b2 (cf. (2.17)), hence we have the norm
convergent series (cf. (2.18))

GMT(Z) = F? T==1, z €K,
1=0
Gt ()] < 1/02. (2.26)
We have obviously (cf. (2.19))
TTML=Tr M., 1=1,2,... 00, (2.27)

and then (2.16), (2.18), and (2.26) yield
IM,., (2) = n~ Ty Gm, (2) = n~ Ty G (2) = gum, (2). (2.28)

We conclude that it suffices to deal with E{n 'Tr Gy, (z)} instead of
E{n'Tr Gy (2)} of (2.16).
We will use now the differentiation formulas (3.1) for G o, (2) of (2.26) as the
map ® in the first formula and G, (2) in the second formula respectively.
Let
O — (14+A)0+0(4%), 0 — O(1+A)+0(A?

be the infinitesimal left (7 = +1) and right (7 = —1) shifts in SO(n) and let
00" :=7AO0, 6,077 :=—-TAO" (2.29)

be the corresponding linear variations with an infinitesimal antisymmetric matrix
A (cf. (3.3)). We have then from (2.25) and (2.29)

§;M, =7B.[A,B_,(0™")], B_,(0")=0"B_.0",
8,Grt, = —Gar, 6M, Gy, (2.30)

where for any two matrices D; and Dy we denote
[D1, D2] = D1Dy — D2 D4 (2.31)

their commutator.
This yields

E{Gu, B-[A, B_-(0")|Ga} =0, 7= +1. (2.32)

Choosing here A = AUk of (3.3) for j,k = 1,...,n, we obtain the following
entry-wise version of (2.32) for a,b=1,...,n:

E{(Gm, Br)aj(B—r(0)G i, )iy — (MrGat, )aj (G, i} = (T2),
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(T)2% = E{(Gat, Br)ak (B (07)Gat, )t
(G, BrB_r(0™))a (Gt ) o} (2.33)

i.e., T, is given by the left-hand side of the first line of above relation with the
interchanged j and k.
Set here b = k and apply to the result the operation

n 'y (2.34)
k=1

taking into account that M,Gaq, =1+ 2Gaq,, 7 = £1 (see (2.26)). This and
(2.16) yields for 7 = £1

E{Gm, B, 1577

T - (1 + ZGMT)gMn} = TT7
hf/(_:(OT) =n "Mt B_-(0O")Gum,,

T, == n""E{Gam, B;Gp.B_(07) — Gp, MG g, }, (2.35)

where we used (2.28) to identify g4, ,, and ga, .

We will use now (2.3), (2.18), and (2.25)-(2.26) to write Ay~

T as
hﬁ:(OT) =n"1Tr B_.(O7)G
=n 't B.,.Gy_. = h_rp, 7==I (2.36)
As a result, the first line of (2.35) becomes
E{Gut, Brh_., — (1+ 2Gag )gus, } = T, (2.37)

This is our basic intermediate result. We will outline now an argument based on
(2.37) and leading to the system (2.7)—(2.8).
Introduce the notation (see (2.14) and (2.23))

0gm, = gm, — fays Ohep = Ry — By,
R = B{hrn}, Gat, =BG, }, (2.38)

allowing us to write (2.37) as
a/\/[7—5—7'777,(-87' - Zan /E—TJL) = an + E‘r + T’T‘) (239)

where

E, = —E{Gu, B;6h_rn} + 2B{G 1, 6001, } (2.40)

is the contribution of the deviation terms dgaz, and dh,,, of (2.38).
Applying to (2.39) the operation n~'Tr and using formulas (2.28) and

GMT,TLBT = B71',/’I7?GMT,7LB1/2

T,n?
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we obtain in view of (2.23), (2.36), and (2.38)

Rrn(2)hrn(2) = (14 2fa1,(2)) oz, (2) = i (2),
r ) =n ' B, 07T Ty, 7= +1. (2.41)

v

Next, denote {A\y}o and {1, }q the eigenvalues and eigenvectors of the positive
definite matrix M, of (2.3). Then (2.36) and spectral theorem for M, ,, imply

> prn(dA)
h‘rn = — R )
)= [T secvm,

Hrmn = nil Z 5)\.1 (BTwOH T/’a% /’LT,H(R-I—) - nilTrBT = /87',71' (242)

It follows from Lemma 3.2 that
Z;n(z) = zfum, (Z)/ET,n(Z)
=(z/6:)(1+0(1), d(z) — o0, n — 0. (2.43)

We conclude that the matrix (B, — 27 ,,(z)) of (2.39) is invertible and if

Gp.(Q)=(B-—¢)7" G5 (Ol <1/d(Q),

is the resolvent of the positive definite matrix B, then we have in view of (2.43)

(Br — 20(2) 7 = G (50(2)), G, ()] < 26,/d(2),  (244)
Hence, (2.39) is equivalent to

hern(2)Gm. (2) = far, (2)GB, (27,,(2)) = (Br + T7)Gp, (27 ,(2)).  (2.45)

Applying to (2.45) the operation n~'Tr, we obtain in view of (2.16), (2.21), (2.23),
and (2.36)

FBon (I, (2) [hr(2)) = B (2) + 700 (2),
r?(z) = —n'Tr B,Gp, (25,(2)/ far, (2)
—n ' T .G, (2, (2)/ far, (2), 7 =%1. (2.46)

We observe that (2.41) and (2.46) are prelimit versions of system (2.7)—-(2.8).
We will derive now (2.7)—(2.8) from (2.41)—(2.46). This is just a version of a
standard argument of random matrix theory.

Consider first (2.41) and let us show that the error term T‘QT)L vanishes as n —
oo under conditions (2.13) and (2.15).
Indeed, by using (2.28) and (2.40), we obtain for the contribution of the first

term of the right-hand side of TQT)L in (2.41)

nITr By = —E{0h, n0h_r ) — 2E{(8gu,)%}
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and then Schwarz inequality for expectations and Lemma 3.3 with By = 1,,, By =
B; ., hence by = 1, by = b, imply

In"'Tr E, .| = Var'/?{h, ,}Var'/>{h_, .} + |z|Var{ga, }
< 8CH(b? + |2|) /nPdY(2). (2.47)

(1)

To bound the second term in 7+, in (2.41) we use the inequality
|Tr A| < nl| Al (2.48)
valid for any n x n matrix A. The inequality, (2.17), (2.26), and (2.35) yield
T < 2/nb?, (2.49)

and then (2.48) implies that the second term in 7"9% in (2.41) admits the same

bound 2/nb?.
We conclude that the error term r&% in (2.41) vanishes as n — oc.
Furthermore, functions fy;, and Eﬂn are the Stieltjes transforms of expecta-
tions ¥y, and fi,,, of vy, in (2.23) and iy in (2.42). According to (1.2) and
Lemma 3.2, we have 7p7, (Ry) = 1 and 7, ,,(Ry) = B,(1 + o(1)), n — oo and
then ((2.23) and (2.36) imply for sufficiently large n

|[fan, (2)] < 1/d(2),  |hen(2)] < 26-/d(2). (2.50)

Thus, the sequence {(fas,, 41,0, h—1,n)}n of triples of analytic and uniformly in
n bounded in C\ R, functions has a subsequence that converge as n — oo on K of
(2.15) to certain (fas, hy1,h—1) and, by the one-to-one correspondence between
the nonnegative measures and their Stiltjes transforms, we have the triple of the
corresponding limiting measures

(VMa/“LHaM*l)' (251)

This allows us to pass to the limit n — oo in the right-hand side of (2.41) and to
obtain (2.7).

Consider now (2.46) and show first that the error term 7“52% vanishes. It follows

from (2.40) and (2.48) that the first term in the right-hand side of 7"527)1 (see (2.46))
is bounded by

IE{Gu, (2)8h 10} Br G, (25 (2)Il | for,, (2)] 7
+ 2| B{8ga1, G, (2)}Gm, (2) G, (25 (2) | | Far, ()|

which, in turn, is bounded by

28-|z|
bd(z)

(E{|6h—ranl} + 26 E{|0gar,[}),
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where we used (2.13), (2.26), (2.44), and Lemma 3.2. Now, Schwarz inequality
for expectations and Lemma 3.3 imply that the first term in the right-hand side
of 7“97)1 (see (2.46)) is bounded by

26, |2| 68,b|z|C1/?
bd(z) nbd(z)

Likewise, it follows from (2.13), (2.48), (2.49), (2.44), and Lemma 3.2 that the
second term in rg% of (2.46)) is bounded by

206:|z| 46;|z|
d(z) nd(z)

Thus, according to the two last bounds, the error term r% in (2.46) vanishes as
n — 0.

Next, it was already explained while analyzing (2.41) how to pass to the n —
co limit in fyz, and h_r,, hence, in and 27 ,(z) of (2.46) and to obtain the
limiting fas, hr and zZ(z). Thus, we can write for the left-hand side of (2.46) as

(Var'?{h_rn} + |2[b™ Var'{gyr, }) < (6% + [21).

1T <

VBM (dA) [ vB,(dY)
qu—n an / A — —‘rn ) - 0 )\_Zi‘l'(z)
AN vp.., (dX)
@) =20 [ o N0

The limit of the first term of the right-hand side is obviously fp_(2*.(2)), i.e., the
left-hand side of (2.8) in view of the above and (2.2). The factor (z; ,(2) — 25(2))
in the second term of the right-hand side vanishes as n — oo, thus it suffices to
show that the integral in the second term is bonded uniformly in n — oco. To
this end recall that we assume that d(z) of (2.16) is large enough, hence, (2.43)

applies. This and Lemma 3.2 yield the bounds for d(z) — oo, n — o

A= 22(2)] 2 d(27(2)) = B Hd(2)(1 + o(1)) = (26;)7d(2),
A= 270 (2)] 2 d(27,(2)) = B71d(2) (1 + o(1)) > (26,) 7 d(=)

implying in view of (2.1) that the integral in the second term on the right is
bonded by 483,32 /d?(z).

This proves (2.8). In addition, it follows from (2.1) that measures p,, 7 =
+1, of (2.51) satisfy (3.21) and then Lemma 3.4 implies that the whole sequences
{(an,EH,n,E_Ln)}n converges to a certain (fas, hi1,h_1), a unique solution of
(2.7)—(2.8).

Thus, we proved the theorem under condition (2.13). Let us show that con-
ditions (2.1) and (2.2) are already sufficient for the validity of the theorem.

Denote {b; o}l _; and {uro}7_; the eigenvalues and the eigenvectors of B;
n (2.1)—(2.3), denoted B; below. It follows from spectral theorem that

n
B; = g b‘r,au‘r,a R Urq-

a=1
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Introduce a sequence

(pOR2y, lim b = cc. (2.52)
and write for each b(")
B; = B: + er‘? C; = Z bT,auT,a ® Ur, o I, = [b<r), OO], (253)
bT,aEIr

and (cf. (2.3))
M:, = BY?0"BT O7TBY? M = (BL)'207BT .O7T(BL)Y2  (2.54)
It follows then from (2.53)—(2.54) that

1/2
M, =M+ Y @Y o = b 2(B)YV20u_ g, (2.55)
b_ o€l

ie., MY , is a perturbation of MY", of rank
tH{o—a € I} =nvp_, (I)). (2.56)

This and the min-max principle of linear algebra (see [2], Section III.1) imply for
any interval A C Ry

v (A) — vagrr (A)] < v, (1r), (2.57)

where we took into account that the spectra, hence, the NCMs of M, 7 = £1,
and MT 7= +1, do not depend on 7.

no
We then consider the pair (M_, M") where M_ of (2.3) satisfies the conditions
of the theorem. Using an argument analogous to that leading to (2.57), we obtain

v, (A) —vag (A)| <vp, (1), ACRy,
Combining this bound and (2.57), we get
var, (A) —vagr (B)| <wp, ,(I) +vp_,(Ir), ACRy,
hence, in view of (2.1)
v, (A) — v (A)] < 2b2/(6T)2, A C Ry (2.58)

It is important that the above bound holds for any realization of random matrices
in question and is uniform in n.

According to the above proof, the theorem is valid with probability 1 for every
b("), hence, for the whole sequence {b(r) o2, with the same probability.

Denote vy and vy the measures determined via the system (2.7)—(2.8) with
the limiting measures vpr and v, respectively (see (2.2)) and write

v, (A) = vm (D) < var, (A) = vargr (A))]
+ |VM£T(A) — VMM(A)’ + |VMM(A) — I/M(A)| (259)
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Replacing the first term on the right of (2.59) by (2.58) and taking into account
that the n — oo limit of the second term of the right-hand side of (2.59) vanishes
with probability 1 for any r by the above proof (see (2.13)) and that the third
term is non-random and independent of n, we obtain with probability 1:

lim sup [var, (A) = var,, (A)] < 262/ (6™)% + [varr (A) — var(A)].
n—oo
The right-hand side here vanishes as r — oo in view of (2.52) and the continuity
of solutions of (2.7)—(2.8) with respect to the weak convergence of vp,, see Lemma
3.4.
Thus, we have proved that the theorem holds under conditions (2.1) and (2.2),
but not necessarily (2.13). O

3. Auxiliary results

We will begin with a proposition that provides the tools of random matrix
theory dealing with “randomness” due to Haar distributed orthogonal random
matrices. Their proofs and discussion are given in [15].

Recall that we do not write the subindex n in various matrices where this
does not lead to misunderstanding.

Proposition 3.1. Given a positive integer n, consider the group SO(n) of
n X n orthogonal matrices with determinant 1 viewing it as the probability space
with the normalized Haar measure of the group as the probability measure of the
space.

(i) Let ®:S0(n) — M,(C) be a C' map admitting a C* continuation into an
open neighborhood of SO(n) in the whole algebra M, (R). Denote E,{---}
the integration (expectation) with respect to the normalized Haar measure of

SO(n). Then we have
E. {®(0,) - A,0,} = E,{®(0,)0,A,} =0, VA, € A,, (3.1)

where Ay, is the space of n xn real antisymmetric matrices and the derivative
@' is viewed as a linear map from My (R) to M, (C).

(ii) We have in the above notation for a map ¢ : SO(n) — C and a sufficiently
large n

Var,{¢} := Eof{l¢*} — [En{p}?
C " P
< Bf Y Mk)

n :
1<j<k<n

}, =41, (3.2)

where C' is an absolute constant and
5 (On) = ¢ (0n)ATNO, = Tim (p((1n +ATD)05) = 9(On))e ™,

5 (On) = ¢'(02)0, AT = Tim (p(On (1, + £ATD)) = o(0n))e ™,

E—0OQ



The Law of Multiplication of Large Random Matrices Revisited 203

AR = (AT AGY = Baj0u — Sardi, (3.3)

i.e., {A(jk)}0§j<k§n is the basis of A,,.
(iii) There exists an infinite-dimensional probability space Qo on which all Oy,
n > 1, are simultaneously defined.

Item (i) follows from the invariance of the Haar measure of SO(n) with respect
to the left O — €540 and the right O — Oe** group shifts with ¢ — 0, see [15],
Section 8.1. Item (ii) is a version of the Poincaré inequality for SO(n), see [15],
Section 8.1 and item (iii) is a structure property of SO(n), see [10], Section 2.10
and [15], Section 8.1.

Next is an important bound for the fluctuations of various functions of the
Haar distributed orthogonal matrices.

Lemma 3.2. Consider the functions f, and h, given by (2.23) and (2.36)
and the non-negative measures Uy, and fi, , which provide the Stieltjes represen-
tations (2.23) and (cf. (2.42))

_ 7 (dA
Torn(2) :/0 “;"_(Z) 2€C\R;. (3.4)

Then we have under condition (2.1):

(i)  the uniform in n tail estimates
7at, (1.0)) < ba/T, Tir ([T, 00]) < b)%/T, (3.5)

where by is defined in (2.1);
(ii) the bounds

2fn(2) + 1] < bo/d(2),  |Term(2) + Brn| < 1Y% /d(2); (3.6)

where d(z) are defined in (2.16);
(iii) the limit

e = Jim B = [ wm (@) >0, (3.7)
n—oo 0
where -
Brm =n 'TrB,, = / Mg, (dN), (3.8)
0

and vp,, and vp_ is given by (2.2).

Proof. (i) It follows from the definition (1.2) of vy, that
/ Mo, (dN) = E{n~'TrM, }. (3.9)
0

By using the orthogonality relations for SO(n)

E{Ojlkl Oj2k2} = n715j1j25j2k2 (3'10)
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and Schwarz inequality for traces, we obtain in view of (2.3) and (2.1)
E{n'TrM,} = E{n"'TtB,O"B_,0 "}
=n'TrB, n 'TrB_,,, < bs. (3.11)

Now a standard argument implies the first estimate in (3.5).
Likewise, we have from (2.42)

/ N (dX) = E{n~'TrB; M, }. (3.12)
0

By using again (3.10) and (2.3), implying
E{n 'TrB,M,} = E{n 'TtB20"B_,0™ "}
= n ' TrB2n ' TrB_,,, < bY/?, (3.13)

we obtain the second estimates in (3.5) in view of (2.1) and Schwarz inequality
for traces.
(ii) It follows from (2.23) that

= far (2) + 1] = ‘/ g, ( ‘gd_l(z)/ooo)\uMn(d/\).

By using (3.9) and (3.13) in the right-hand side, we obtain the first bound in
(3.6).
To get the second bound in (3.6), we use (2.42), (3.4), and (3.8) to write

A, (dX)
/ Lz ( ‘ / Nty (AN).
0 )\—Z

By using (3.12) and (3.13), we obtain the second bound in (3.6).
(iii) If vp, , is the NCM of B, (see (2.2)), then we have for any 7' > 0:

‘ZET,n(Z) + ﬁr,n| =

T o]
/ M (AN) < Brn = / Mg, (AN
0 0
T

_ / g, (dN) + / s (A, (3.14)
0

T
Writing (2.1) as
/ Nvp, ,(d)) < bs,
0

we can bound the second term in the right-hand side of (3.14) by ba/T. Now,
using (2.2) to pass first to the limit n — oo in (3.14) and then passing to the
limit 7" — oo, we obtain (3.7) with the strictly positive right-hand side, because
vp. is not concentrated at zero according to the condition of the theorem. O

Next is an important bound for the fluctuations of various functions of the
Haar distributed orthogonal matrices.
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Lemma 3.3. Assume that positive definite matrices B, ,, T = %1, in (2.3)
satisfies (2.13) and let By, be a real symmetric n x n matriz such that

sup || Bon|l < by < o0. (3.15)
n

Set
@rn =n""Tr By,Gu,, (2), (3.16)

where Gy, ,, is defined by (2.3) and (2.16).
Then we have for sufficiently large n:

Var{p,} < 8Cbab* /n’d*(2). (3.17)

Proof. We will use an analog of the Poincaré inequality for orthogonal ma-
trices given by (3.2)—(3.3), see, e.g., [8] for other approaches to estimate the
fluctuations. To this end we choose the right-hand side of (3.16) as the map ¢ in
(3.2). By using(2.25) and (2.29) (2.30)—(2.31), we obtain (cf. (2.30))

§M, = 7BY?[A, B_.(0,)|B}/?
hence,

6r0r =0 'Tr Byd,Gyr, = n ' Tr C A,
C, = [B_.(0"), H,], H, = BY?G ;. ByG 1. BY?, (3.18)

implying for the derivative ¢;;, of (3.3)
(rn)je = (Cr)jk — (Cr)k; = 2(Cr)ji, 1<j<k<n. (3.19)

since C7 is antisymmetric. The right-hand side of the above formula is well defined
for all 1 < j,k < n and is antisymmetric in (j, k). This and a standard linear
algebra argument, that takes into account that B;, 7 = 0,+1, are symmetric,
yield

n

2

> E{l(ern)inl’} = 2 > E{(Coul*}
1<j<k<n j.k=1
<4n~*Tr B® _(O")(H,H! + H H,). (3.20)

We will use now (2.48), (2.16), (2.13), and (3.15) implying that ||C|| < 2b%/d?(2).
Combining this with (3.2), we obtain (3.17) for sufficiently large n. O

Next is the unique solvability of functional equations (2.7)—(2.8).
Lemma 3.4. Consider the system (2.7)—(2.8) with the condition

/ Mup (d\) < oo, T=+1, (3.21)
0

for the triple (f,h_11,h_1) of functions that belong to the class Ny (see assertion
(iii) of Theorem 2.1).
We have:
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(i)  there exists at most one triple satisfying (2.7)—(2.8) for all sufficiently large
d(z) :=dist(z,R4);

(ii) if {l/gj}r is a sequence of non-negative measures satisfying (3.21) and con-
verging to a limit vg,_ also satisfying (3.21) and {(f(’"),hgz),h(f))}r is the
sequence of the corresponding solutions of (2.7)—(2.8), then the sequence

converges as v — oo to a triple (f,hy,h_) which is a unique of solution
(2.7)—(2.8) with limiting vp, .

Proof. (i) A function s of class admits the Stieltjes representation

s(z) = /000 i(i)\z)’ z € C\ Ry, (3.22)

with a non-negative and bounded measure o, see [1], Section III.4.
Denote by 7 and [, the measures corresponding to f and h, of the lemma
and write

ho(z) :=zf(z) = —1 —l—/ooo )f(_d/:), z € C\ Ry,
h(z) = /000 MzT_(dZ)\), z € C\Ry. (3.23)

The system (2.7)—(2.8) written via h = (hg, h41,h_1) is

ho(l + ho) —zhy1h_1 =0, (3.24)
*©vp__(dX)
——— =1, 7 ==1. 3.25
[ 5 (3:25)
Assume that there exists two solutions h(®) = (h(()a),h@rl,h(f1), a = 1,2 of

(3.24)—(3.25) and denote
5h=hY —h® = {6h }—0.41.
It follows then from (2.7)—(2.8) that dh satisfies the linear system

(B + b8 + 1)6ho — 2hWhy — zn{Psh_ =,
I+(Sh0 - J+(5h+ == 0,
I_6ho — J_6h_ =0,

where

I(2) / ) o (1)
\#) = )
o (AR — B (ARE) — D)

o0 Avp_(d))
Jr(2) = / - . (3.26)
o (AR = hENYARE — p)y
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Hence, the solution of (2.7)—(2.8) is unique if the determinant A(z) of the above
linear system is not zero. We have

A=0"+nP + 1) 70— 2rJ Y — 21 g

)

Functions hi“ ,a=12 7 =0,%1 are analytic in C \ R4, hence, it suffices to

prove that
WD(=€) = P (=), T=0,%1, £ =&,
where ¢y is large enough (cf. (2.15)).
Let (%) and ﬁS“) be the measures in the Stieltjes representations of f(*) and
hY Tt follows from the representations with z = —¢ (cf. (3.23))

oo ,(a) 00 (a)
g = [TAD) g = [TREED

A+¢ A+¢€
that
he? (=€) = —m{" +m{Pet +o(e7),
WO (—€) = mie T (1 +o(1)), € — o0, (3.27)
where

m@—A AW (dN), #ﬂﬂ,m@—é A (dN).
It follows then from (2.7)—(2.8) with & — oo that

mi =1, m® =88, m® =8, =+l

hence, (3.27) becomes

O (—€) = —14 B4 €1 +o(6™Y),
WO (=€) = B¢ (1+0(1), &—o0, 7= (3.28)

This and (3.26) lead to the asymptotic formulas
IT(_E) = 1+0(1)7 J‘r(_g) :677'4'0(1)7 §— 00

and we obtain
A(=§) = B+B-1+0(1) >0, £ — o0
(ii) Every triple ( ), h(J:), h(f)) consists of functions analytic and uniformly
in 7 bounded in C\ R4, hence, the sequence {( f (r), hS:), h(r))} contains a sub-

sequence converging uniformly in any compact of C\ R..
It is clear that the limiting triple satisfies (2.7) if d(z) is large enough. Let us

show that it satisfies (2.8) for the same d(2). Indeed, use (2.8) for (£, hg:), h(f))
to write

(b)
sy _ < ve () p (d))
7 D-(z) _%; DY (2) A D-(z)
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(b)
_ e (AN A hmo [ Avs.(dA)
= [T e - | pREYare
() — hO ey [ VB (dA)
(hal2) =1 (2)) | ERETTE (3.29)

where D; = A\h.—hy, D) = ") —h(()r). It follows from (3.23) and (3.27)—(3.28)
for d(z) — oo

b (2) = -1+ 0 1(2), h(z) = —BY)/2(1+0(d(2)) (3.30)

and analogous formulas for the r — oo limits of these functions. Thus, we have

DI ()] = R (2)] 1A = b (2)/1) (=)
(r)

=|
> [0 (2)] [Sh{ (2)/h0(2)] = |21 /|2](1 + 0(1),  d(2) = oo,

and in passing to the last equality we used (3.30). This allows us to show that
the right-hand side of (3.29) vanishes as r — oo and Sz # 0. If, however, 3z =
0, then we have even a better bound D@(—g) =14+0(£71), € = oo, that follows
from (3.28). O
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3aKOH MHO>KE€HHSI BEeJIMKUX BUIIAIKOBUX MATPUIIb:
me pas

Leonid Pastur

V cTarTi po3rIsagaEThCsA PO3MOILJ BJIACHUX 3HAYEHD JTOOYTKY JIBOX 1 X 1
JIONATHO BU3HAYEHUX MaTpullb B., 7 = £1, gxi “moBeprarorbcs’ ofHa Bij-
HOCHO OJTHOI BHUIA/IKOBOIO OPTOTOHAJIBLHOIO MATPHUIICIO, IO Mae Mipy Xaapa
OPTOTOHAJIBHOI TPYIHX K 11 PO3MOILI iMOBipHOCTI. 3amada po3rIsaaIacs B
KLTBbKOX po00Tax 3 BUKOPUCTAHHSAM PI3HUX METOIIB. MU MPOMOHYEMO CIIPO-
MEeHUH MiJIXi/1, OCHOBAHMII HA TEXHIIll Teopil BUNA/KOBUX MATPUIh 1 IEeBHIii
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cuMeTpii 3a1adi. Mu 10BOIMMO, 1110 HOPMOBaHA, Mipa PO3MOJILTY BJIACHUX 3HA-
9eHb JT00YTKY MPsIMY€ JI0 HEBUIIAKOBOI TPAHUYIHOI MipH KOJIU TOPSIIOK Ma-
TPUIT MPSAMYE 10 HECKIHIEHHOCT, 0/IepKyEMO (DYHKITIOHATbHI PIBHSIHHS, IO
OJIHO3HAYHO BU3HAYAIOTH IeperBopenHst CTijiTbeca IpaHUYHOI MipH, depe3
IPaHUYHI MipU MHOXKHUKIB B, 7 = 41, Ta pO3IIA a€MO IHKABUN TPUKIIA/T.

Kirro4oBi c0Ba: BUNIQIKOBI MATPUII, OPTONOHAJBHI MAaTPHIL, PO3MOILIT
BJIACHUX 3HAYEHD
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