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The scattering matrix for the full-line matrix Schrödinger equation is
analyzed when the corresponding matrix-valued potential is selfadjoint, in-
tegrable, and has a finite first moment. The matrix-valued potential is de-
composed into a finite number of fragments, and a factorization formula
is presented expressing the matrix-valued scattering coefficients in terms of
the matrix-valued scattering coefficients for the fragments. Using the fac-
torization formula, some explicit examples are provided illustrating that in
general the left and right matrix-valued transmission coefficients are un-
equal. A unitary transformation is established between the full-line matrix
Schrödinger operator and the half-line matrix Schrödinger operator with a
particular selfadjoint boundary condition and by relating the full-line and
half-line potentials appropriately. Using that unitary transformation, the
relations are established between the full-line and the half-line quantities
such as the Jost solutions, the physical solutions, and the scattering ma-
trices. Exploiting the connection between the corresponding full-line and
half-line scattering matrices, Levinson’s theorem on the full line is proved
and is related to Levinson’s theorem on the half line.
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1. Introduction

In this paper we consider certain aspects of the matrix-valued Schrödinger
equation on the full line

− ψ′′ + V (x)ψ = k2ψ, x ∈ R, (1.1)

where x represents the spacial coordinate, R := (−∞,+∞), the prime denotes
the x-derivative, the wave function ψ may be an n×n matrix or a column vector
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with n components. Here, n can be chosen as any fixed positive integer, including
the special value n = 1 which corresponds to the scalar case. The potential V is
assumed to be an n×n matrix-valued function of x satisfying the selfadjointness

V (x)† = V (x), x ∈ R, (1.2)

with the dagger denoting the matrix adjoint (matrix transpose and complex con-
jugation), and also belonging to the Faddeev class, i.e., satisfying the condition∫ ∞

−∞
dx (1 + |x|) |V (x)| < +∞, (1.3)

with |V (x)| denoting the operator norm of the matrix V (x). Since all matrix
norms are equivalent for n × n matrices, any other matrix norm can be used in
(1.3). We use the conventions and notations from [5] and refer the reader to that
reference for further details.

Let us decompose the potential V into two pieces V1 and V2 as

V (x) = V1(x) + V2(x), x ∈ R, (1.4)

where we have defined

V1(x) :=

{
V (x), x < 0,

0, x > 0,
V2(x) :=

{
0, x < 0,

V (x), x > 0.
(1.5)

We refer to V1 and V2 as the left and right fragments of V, respectively. We are
interested in relating the n×n matrix-valued scattering coefficients corresponding
to V to the n×n matrix-valued scattering coefficients corresponding to V1 and V2,
respectively. This is done in Theorem 3.3 by presenting a factorization formula
in terms of the transition matrix Λ(k) defined in (2.26) and an equivalent factor-
ization formula in terms of Σ(k) defined in (2.27). In fact, in Theorem 3.6 the
scattering coefficients themselves for V are expressed in terms of the scattering
coefficients for the fragments V1 and V2.

The factorization result of Theorem 3.3 corresponds to the case where the
potential V is fragmented into two pieces at the fragmentation point x = 0 as
in (1.5). In Theorem 3.4 the factorization result of Theorem 3.3 is generalized
by showing that the fragmentation point can be chosen arbitrarily. In Corol-
lary 3.5 the factorization formula is further generalized to the case where the
matrix potential is arbitrarily decomposed into any finite number of fragments
and by expressing the transition matrices Λ(k) and Σ(k) in terms of the respective
transition matrices corresponding to the fragments.

Since the potential fragments are either supported on a half line or compactly
supported, the corresponding reflection coefficients have meromorphic extensions
in k from the real axis to the upper-half or lower-half complex plane or to the
whole complex plane, respectively. Thus, it is more efficient to deal with the
scattering coefficients of the fragments than the scattering coefficients of the whole
potential. Furthermore, it is easier to determine the scattering coefficients when
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the corresponding potential is compactly supported or supported on a half line.
We refer the reader to [2] for a proof of the factorization formula for the full-line
scalar Schrödinger equation and to [4] for a generalization of that factorization
formula. A composition rule has been presented in [9] to express the factorization
of the scattering matrix of a quantum graph in terms of the scattering matrices
of its subgraphs.

The factorization formulas are useful in the analysis of direct and inverse
scattering problems because they help us to understand the scattering from the
whole potential in terms of the scattering from the fragments of that potential.
We recall that the direct scattering problem on the half line consists of the de-
termination of the scattering matrix and the bound-state information when the
potential and the boundary condition are known. The goal in the inverse scatter-
ing problem on the half line is to recover the potential and the boundary condition
when the scattering matrix and the bound-state information are available. The
direct and inverse scattering problems on the full line are similar to those on
the half line except for the absence of a boundary condition. For the direct and
inverse scattering theory for the half-line matrix Schrödinger equation, we refer
the reader to the seminal monograph [1] of Agranovich and Marchenko when the
Dirichlet boundary condition is used and to our recent monograph [6] when the
general selfadjoint boundary condition is used.

The factorization formulas yield an efficient method to determine the scatter-
ing coefficients for the whole potential by first determining the scattering coef-
ficients for the potential fragments. For example, in Section 4 we provide some
explicit examples to illustrate that the matrix-valued transmission coefficients
from the left and from the right are not necessarily equal even though the equal-
ity holds in the scalar case. In our examples, we determine the left and right
transmission coefficients explicitly with the help of the factorization result of
Theorem 3.6. Since the resulting explicit expressions for those transmission co-
efficients are extremely lengthy, we use the symbolic software Mathematica on
the first author’s personal computer in order to obtain those lengthy expressions.
Even though those transmission coefficients could be determined without using
the factorization result, it becomes difficult or impossible to determine them di-
rectly and demonstrate their unequivalence by using Mathematica on the same
personal computer.

In Section 2.4 of [6] we have presented a unitary transformation between the
half-line 2n × 2n matrix Schrödinger operator with a specific selfadjoint bound-
ary condition and the full-line n × n matrix Schrödinger operator with a point
interaction at x = 0. Using that unitary transformation and by introducing a
full-line physical solution with a point interaction, in [13] the relation between
the half-line and full-line physical solutions and the relation between the half-line
and full-line scattering matrices have been found. In our current paper, we elab-
orate on such relations in the absence of a point interaction on the full line, and
we show how the half-line physical solution and the standard full-line physical
solution are related to each other and also show how the half-line and full-line
scattering matrices are related to each other. We also show how some other
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relevant half-line and full-line quantities are related to each other. For exam-
ple, in Theorem 5.2 we establish the relationship between the determinant of the
half-line Jost matrix and the determinant of either full-line transmission coeffi-
cient, and in Theorem 5.3 we provide the relationship between the determinant
of the half-line scattering matrix and the determinant of a full-line transmission
coefficient. Those results help us establish in Section 6 Levinson’s theorem for
the full-line n × n matrix Schrödinger operator and compare it with Levinson’s
theorem for the corresponding half-line 2n× 2n matrix Schrödinger operator.

We have the following remark on the notation we use. There are many equa-
tions in our paper of the form

a(k) = b(k), k ∈ R \ {0}, (1.6)

where a(k) and b(k) are continuous in k ∈ R \ {0}, the quantity a(k) is also
continuous at k = 0, but b(k) is not necessarily well defined at k = 0. We write
(1.6) as

a(k) = b(k), k ∈ R, (1.7)

with the understanding that we interpret a(0) = b(0) in the sense that by the
continuity of a(k) at k = 0, the limit of b(k) at k = 0 exists and we have

a(0) = lim
k→0

b(k). (1.8)

Our paper is organized as follows. In Section 2 we provide the relevant results
related to the scattering problem for (1.1), and this is done by presenting the Jost
solutions, the physical solutions, the scattering coefficients, the scattering matrix
for (1.1), and the relevant properties of those quantities. In Section 3 we establish
our factorization formula by relating the scattering coefficients for the full-line
potential V to the scattering coefficients for the fragments of that potential. We
also provide an alternate version of the factorization formula. In Section 4 we
elaborate on the relation between the matrix-valued left and right transmission
coefficients, and we provide some explicit examples to illustrate that they are in
general not equal to each other. In Section 5, we elaborate on the unitary trans-
formation connecting the half-line and full-line matrix Schrödinger operators,
and we establish the connections between the half-line and full-line scattering
matrices, the half-line and full-line Jost solutions, the half-line and full-line phys-
ical solutions, the half-line Jost matrix and the full-line transmission coefficients,
and the half-line and full-line zero-energy solutions that are bounded. Finally, in
Section 6 we present Levinson’s theorem for the full-line matrix Schrödinger oper-
ator and compare it with Levinson’s theorem for the half-line matrix Schrödinger
operator with a selfadjoint boundary condition.

2. The full-line matrix Schrödinger equation

In this section we provide a summary of the results relevant to the scattering
problem for the full-line matrix Schrödinger equation (1.1). In particular, for
(1.1) we introduce the pair of Jost solutions fl(k, x) and fr(k, x); the pair of
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physical solutions Ψl(k, x) and Ψr(k, x); the four n× n matrix-valued scattering
coefficients Tl(k), Tr(k), L(k), and R(k); the 2n× 2n scattering matrix S(k); the
three relevant 2n × 2n matrices Fl(k, x), Fr(k, x), and G(k, x); and the pair of
2n× 2n transition matrices Λ(k) and Σ(k). For the preliminaries needed in this
section, we refer the reader to [5]. For some earlier results on the full-line matrix
Schrödinger equation, the reader can consult [10–12].

When the potential V in (1.1) satisfies (1.2) and (1.3), there are two particular
n×n matrix-valued solutions to (1.1), known as the left and right Jost solutions
and denoted by fl(k, x) and fr(k, x), respectively, satisfying the respective spacial
asymptotics

fl(k, x) = eikx [I + o(1)] , f ′l (k, x) = ik eikx [I + o(1)] , x→ +∞, (2.1)

fr(k, x) = e−ikx [I + o(1)] , f ′r(k, x) = −ik eikx [I + o(1)] , x→ −∞, (2.2)

where I is the n × n identity matrix. For each x ∈ R, the Jost solutions have
analytic extensions in k from the real axis R of the complex plane C to the upper-
half complex plane C+ and they are continuous in k ∈ C+, where we have defined
C+ := C+∪R. As listed in (2.1)–(2.3) of [5], we have the integral representations
for fl(k, x) and fr(k, x), which are respectively given by

e−ikxfl(k, x) = I +
1

2ik

∫ ∞
x

dy
[
e2ik(y−x) − 1

]
V (y) e−ikyfl(k, y), (2.3)

eikxfr(k, x) = I +
1

2ik

∫ x

−∞
dy
[
e2ik(x−y) − 1

]
V (y) eikyfr(k, y). (2.4)

For each fixed k ∈ R \ {0}, the combined 2n columns of fl(k, x) and fr(k, x)
form a fundamental set for (1.1), and any solution to (1.1) can be expressed as
a linear combination of those column-vector solutions. The n× n matrix-valued
scattering coefficients are defined [5] in terms of the spacial asymptotics of the
Jost solutions via

fl(k, x) = eikx Tl(k)−1 + e−ikxL(k)Tl(k)−1 + o(1), x→ −∞, (2.5)

fr(k, x) = e−ikx Tr(k)−1 + eikxR(k)Tr(k)−1 + o(1), x→ +∞, (2.6)

where Tl(k) is the left transmission coefficient, Tr(k) is the right transmission
coefficient, L(k) is the left reflection coefficient, and R(k) is the right reflection
coefficient. With the help of (2.3)–(2.6), it can be shown that

f ′l (k, x) = ik eikx Tl(k)−1 − ik e−ikxL(k)Tl(k)−1 + o(1), x→ −∞, (2.7)

f ′r(k, x) = −ik e−ikx Tr(k)−1 + ik eikxR(k)Tr(k)−1 + o(1), x→ +∞. (2.8)

As a result, the leading asymptotics in (2.7) and (2.8) are obtained by taking the
x-derivatives of the leading asymptotics in (2.5) and (2.6), respectively. From
(2.16) and (2.17) of [5] it follows that the matrices Tl(k) and Tr(k) are invertible
for k ∈ R \ {0}. We remark that (2.5) and (2.6) hold in the limit k → 0 as their
left-hand sides are continuous at k = 0 even though each of the four matrices
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Tl(k)−1, Tr(k)−1, L(k)Tl(k)−1, and R(k)Tr(k)−1 generically behaves as O(1/k)
when k → 0. The 2n× 2n scattering matrix for (1.1) is defined as

S(k) :=

[
Tl(k) R(k)
L(k) Tr(k)

]
, k ∈ R. (2.9)

As seen from Theorem 3.1 and Theorem 4.6 of [5], the scattering coefficients can
be defined first via (2.5) and (2.6) for k ∈ R \ {0} and then their domain can
be extended in a continuous way to include k = 0. When the potential V in
(1.1) satisfies (1.2) and (1.3), from [11,12] and the comments below (2.21) in [5]
it follows that the n× n matrix-valued transmission coefficients Tl(k) and Tr(k)
have meromorphic extensions in k from R to C+ where any possible poles are
simple and can only occur on the positive imaginary axis. On the other hand, the
domains of the n×n matrix-valued reflection coefficients L(k) and R(k) cannot be
extended from k ∈ R unless the potential V in (1.1) satisfies further restrictions
besides (1.2) and (1.3).

The left and right physical solutions to (1.1), denoted by Ψl(k, x) and Ψr(k, x),
are the two particular n× n matrix-valued solutions that are related to the Jost
solutions fl(k, x) and fr(k, x), respectively, as

Ψl(k, x) := fl(k, x)Tl(k), Ψr(k, x) := fr(k, x)Tr(k), (2.10)

and, as seen from (2.1), (2.2), (2.5), (2.6), and (2.10) they satisfy the spacial
asymptotics

Ψl(k, x) = eikxTl(k) + o(1), x→ +∞, (2.11)

Ψr(k, x) = e−ikxI + eikxR(k) + o(1), x→ +∞, (2.12)

Ψl(k, x) = eikxI + e−ikxL(k) + o(1), x→ −∞, (2.13)

Ψr(k, x) = e−ikxTr(k) + o(1), x→ −∞. (2.14)

Using (2.11)–(2.14), we can interpret Ψl(k, x) in terms of the matrix-valued plane
wave eikxI of unit amplitude sent from x = −∞, the matrix-valued reflected plane
wave e−ikxL(k) of amplitude L(k) at x = −∞, and the matrix-valued transmitted
plane wave eikx Tl(k) of amplitude Tl(k) at x = +∞. Similarly, the physical
solution Ψr(k, x) can be interpreted in terms of the matrix-valued plane wave
e−ikxI of unit amplitude sent from x = +∞, the matrix-valued reflected plane
wave eikxR(k) of amplitude R(k) at x = +∞, and the matrix-valued transmitted
plane wave e−ikx Tr(k) of amplitude Tr(k) at x = −∞.

The following proposition is a useful consequence of Theorem 7.3 on p. 28
of [7], where we use det and tr to denote the matrix determinant and the matrix
trace, respectively.

Proposition 2.1. Assume that the n× n matrix-valued potential V in (1.1)
satisfies (1.2) and (1.3). Then, for any pair of n × n matrix-valued solutions
ϕ(k, x) and ψ(k, x) to (1.1), the 2n× 2n matrix determinant given by

det

[
ϕ(k, x) ψ(k, x)
ϕ′(k, x) ψ′(k, x)

]
, (2.15)
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is independent of x and can only depend on k.

Proof. The second-order matrix-valued systems (1.1) for ϕ(k, x) and ψ(k, x)
can be expressed as a first-order 2n× 2n matrix-valued system as

d

dx

[
ϕ(k, x) ψ(k, x)
ϕ′(k, x) ψ′(k, x)

]
=

[
0 I

V (x)− k2 0

] [
ϕ(k, x) ψ(k, x)
ϕ′(k, x) ψ′(k, x)

]
. (2.16)

From Theorem 7.3 on p. 28 of [7] we know that (2.16) implies

d

dx

(
det

[
ϕ(k, x) ψ(k, x)
ϕ′(k, x) ψ′(k, x)

])
=

(
tr

[
0 I

V (x)− k2 0

])(
det

[
ϕ(k, x) ψ(k, x)
ϕ′(k, x) ψ′(k, x)

])
. (2.17)

Since the coefficient matrix in (2.16) has zero trace, the right-hand side of (2.17)
is zero, and hence the vanishment of the left-hand side of (2.17) shows that the
determinant in (2.15) cannot depend on x.

Since k appears as k2 in (1.1) and we already know that fl(k, x) and fr(k, x)
are solutions to (1.1), it follows that fl(−k, x) and fr(−k, x) are also solutions to
(1.1). From the known properties of the Jost solutions fl(k, x) and fr(k, x) we
conclude that, for each x ∈ R, the solutions fl(−k, x) and fr(−k, x) have analytic
extensions in k from the real axis R to the lower-half complex plane C− and they
are continuous in k ∈ C−, where we have defined C− := C− ∪ R. In terms of the
four solutions fl(k, x), fr(k, x), fl(−k, x), fr(−k, x) to (1.1), we introduce three
useful 2n× 2n matrices as

Fl(k, x) :=

[
fl(k, x) fl(−k, x)
f ′l (k, x) f ′l (−k, x)

]
, x ∈ R, (2.18)

Fr(k, x) :=

[
fr(−k, x) fr(k, x)
f ′r(−k, x) f ′r(k, x)

]
, x ∈ R, (2.19)

G(k, x) :=

[
fl(k, x) fr(k, x)
f ′l (k, x) f ′r(k, x)

]
, x ∈ R. (2.20)

Since the k-domains of those four solutions are known, from (2.18) and (2.19) we
see that Fl(k, x) and Fr(k, x) are defined when k ∈ R and from (2.20) we see that
G(k, x) is defined when k ∈ C+.

In the next proposition, with the help of Proposition 2.1 we show that the
determinant of each of the three matrices defined in (2.18), (2.19), and (2.20),
respectively, is independent of x, and in fact we determine the values of those
determinants explicitly. We also establish the equivalence of the determinants of
the left and right transmission coefficients.

Proposition 2.2. Assume that the n× n matrix-valued potential V in (1.1)
satisfies (1.2) and (1.3). We then have the following:
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(a) The determinants of the 2n × 2n matrices Fl(k, x), Fr(k, x), and G(k, x)
defined in (2.18), (2.19), and (2.20), respectively, are independent of x, and
we have

det [Fl(k, x)] = (−2ik)n, k ∈ R, (2.21)

det [Fr(k, x)] = (−2ik)n, k ∈ R, (2.22)

det [G(k, x)] =
(−2ik)n

det [Tr(k)]
, k ∈ C+. (2.23)

(b) The n × n matrix-valued left transmission coefficient Tl(k) and right trans-
mission coefficient Tr(k) have the same determinant, i.e., we have

det[Tl(k)] = det[Tr(k)], k ∈ C+. (2.24)

(c) We have
det[Λ(k)] = 1, det[Σ(k)] = 1, k ∈ R, (2.25)

where the 2n× 2n matrices Λ(k) and Σ(k) are defined in terms of the scat-
tering coefficients in (2.9) as

Λ(k) :=

[
Tl(k)−1 L(−k)Tl(−k)−1

L(k)Tl(k)−1 Tl(−k)−1

]
, k ∈ R \ {0}, (2.26)

Σ(k) :=

[
Tr(−k)−1 R(k)Tr(k)−1

R(−k)Tr(−k)−1 Tr(k)−1

]
, k ∈ R \ {0}. (2.27)

Proof. As already mentioned, the four quantities fl(k, x), fr(k, x), fl(−k, x),
fr(−k, x) are all solutions to (1.1), and hence from Proposition 2.1 it follows that
the determinants of Fl(k, x), Fr(k, x), and G(k, x) are independent of x. In their
respective k-domains, we can evaluate each of those determinants as x → +∞
and x → −∞, and we know that we have the equivalent values. Using (2.1) in
(2.18) we get

det [Fl(k, x)] = det

[
eikxI e−ikxI
ik eikxI −ik e−ikxI

]
+ o(1), x→ +∞. (2.28)

Using an elementary row block operation on the block matrix appearing on the
right-hand side of (2.28), i.e., by multiplying the first row block by ikI and
subtracting the resulting row block from the second row block, we obtain (2.21).
In a similar way, using (2.2) in (2.19), we have

det [Fr(k, x)] = det

[
eikxI e−ikxI
ik eikxI −ik e−ikxI

]
+ o(1), x→ −∞, (2.29)

and again using the aforementioned elementary row block operation on the matrix
appearing on the right-hand side of (2.29), we get (2.22). For k ∈ R \ {0} using
(2.1) and (2.6)–(2.8) in (2.20), we obtain

G(k, x) = Kr(k, x) + o(1), x→ +∞, (2.30)
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where we have defined

Kr(k, x) :=

[
eikxI e−ikx Tr(k)−1 + eikxR(k)Tr(k)−1

ik eikxI −ik e−ikx Tr(k)−1 + ik eikxR(k)Tr(k)−1

]
.

Using the aforementioned elementary row block operation on the matrix Kr(k, x),
we get

det [Kr(k, x)] = det

[
eikxI e−ikx Tr(k)−1 + eikxR(k)Tr(k)−1

0 −2ik e−ikx Tr(k)−1

]
, (2.31)

where 0 denotes the n × n zero matrix. From (2.30) and (2.31) we get (2.23).
Thus, the proof of (a) is complete. Let us now turn to the proof of (b). Using
(2.2), (2.5), and (2.7) in (2.20), we obtain

G(k, x) = Kl(k, x) + o(1), x→ −∞, (2.32)

where we have defined

Kl(k, x) :=

[
eikx Tl(k)−1 + e−ikxL(k)Tl(k)−1 e−ikxI

ik eikx Tl(k)−1 − ike−ikxL(k)Tl(k)−1 −ik e−ikxI

]
.

Using an elementary block row operation on the matrix Kl(k, x), i.e., by multi-
plying the first row block by ikI and adding the resulting row block to the second
row block, we get

det [Kl(k, x)] = det

[
eikx Tl(k)−1 + e−ikxL(k)Tl(k)−1 e−ikxI

2ik eikx Tl(k)−1 0

]
. (2.33)

Interchanging the first and second row blocks of the matrix appearing on the
right-hand side of (2.33), we have

det [Kl(k, x)] = (−1)n det

[
2ik eikx Tl(k)−1 0

eikx Tl(k)−1 + e−ikxL(k)Tl(k)−1 e−ikxI

]
. (2.34)

Then, from (2.32) and (2.34) we conclude that

det [G(k, x)] =
(−2ik)n

det [Tl(k)]
, k ∈ R \ {0}, (2.35)

and by comparing (2.23) and (2.35) we obtain (2.23) for k ∈ R \ {0}. However,
for each fixed x ∈ R the quantity G(k, x) is analytic in k ∈ C+ and continuous
in k ∈ C+. Thus, (2.23) holds for k ∈ C+ and the proof of (b) is also complete.
Using (2.5) and (2.7) in (2.18), and by exploiting the fact that det[Fl(k, x)] is
independent of x, we evaluate det[Fl(k, x)] as x→ −∞, and we get the equality

det [Fl(k, x)] = det

[
q1 q2
q3 q4

]
, (2.36)

where we have defined

q1 := eikxTl(k)−1 + e−ikxL(k)Tl(k)−1,



260 Tuncay Aktosun and Ricardo Weder

q2 := e−ikxTl(−k)−1 + eikxL(−k)Tl(−k)−1,

q3 := ik eikxTl(k)−1 − ik e−ikxL(k)Tl(k)−1,

q4 := −ik e−ikxTl(−k)−1 + ik eikxL(−k)Tl(−k)−1.

Using two consecutive elementary block row operations on the matrix on the
right-hand side of (2.36), i.e., by multiplying the first row block by ikI and
adding the resulting row block to the second row block and then by dividing the
resulting second row block by 2ik and subtracting the resulting row block from
the first row block, we can write (2.36) as

det [Fl(k, x)] = det

[
e−ikxL(k)Tl(k)−1 e−ikxTl(−k)−1

2ik eikxTl(k)−1 2ik eikxL(−k)Tl(−k)−1

]
. (2.37)

By interchanging the first and second block rows of the matrix appearing on the
right-hand side of (2.37) and simplifying the determinant of the resulting matrix,
from (2.37) we obtain

det [Fl(k, x)] = (−2ik)n det

[
Tl(k)−1 L(−k)Tl(−k)−1

L(k)Tl(k)−1 Tl(−k)−1

]
. (2.38)

Comparing (2.21), (2.26), and (2.38), we see that the first equality in (2.25) holds.
We remark that the matrix Λ(k) defined in (2.26) behaves as O(1/k) as k → 0.
On the other hand, we observe that the first equality of (2.25) holds at k = 0 by
the continuity argument based on (1.6)–(1.8). In a similar way, using (2.6) and
(2.8) in (2.19), and by exploiting the fact that det[Fr(k, x)] is independent of x,
we evaluate det[Fr(k, x)] as x→ +∞ and we get the equality

det [Fr(k, x)] = det

[
q5 q6
q7 q8

]
, (2.39)

where we have defined

q5 := eikx Tr(−k)−1 + e−ikxR(−k)Tr(−k)−1,

q6 := e−ikx Tr(k)−1 + eikxR(k)Tr(k)−1,

q7 := ik eikx Tr(−k)−1 − ik e−ikxR(−k)Tr(−k)−1,

q8 := −ik e−ikx Tr(k)−1 + ik eikxR(k)Tr(k)−1.

Using two elementary row block operations on the matrix on the right-hand side
of (2.39), i.e., by multiplying the first row block by ikI and adding the resulting
row block to the second row block and then by dividing the resulting second row
block by 2ik and subtracting the resulting row block from the first row block, we
can write (2.39) as

det [Fr(k, x)] = det

[
e−ikxR(−k)Tr(−k)−1 e−ikx Tr(k)−1

2ik eikx Tr(−k)−1 2ik eikxR(k)Tr(k)−1

]
. (2.40)
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By interchanging the first and second row blocks of the matrix appearing on the
right-hand side of (2.40) and simplifying the determinant of the resulting matrix,
from (2.40) we obtain

det [Fr(k, x)] = (−2ik)n det

[
Tr(−k)−1 R(k)Tr(k)−1

R(−k)Tr(−k)−1 Tr(k)−1

]
. (2.41)

Comparing (2.22), (2.27), and (2.41), we see that the second equality in (2.25)
holds. We remark that the matrix Σ(k) defined in (2.27) behaves as O(1/k)
as k → 0, but the second equality of (2.25) holds at k = 0 by the continuity
argument expressed in (1.6)–(1.8).

We note that, in the proof of Proposition 2.2, instead of using elementary
row block operations, we could alternatively make use of the matrix factorization
formula involving a Schur complement. Such a factorization formula is given by[

M1 M2

M3 M4

]
=

[
I 0

M3M
−1
1 I

] [
M1 0

0 M4 −M3M
−1
1 M2

] [
I M−11 M2

0 I

]
, (2.42)

which corresponds to (1.11) on p. 17 of [8]. In the alternative proof of Proposi-
tion 2.2, it is sufficient to use (2.42) in the special case where the block matrices
M1, M2, M3, M4 have the same size n× n and M1 is invertible.

Let us use [f(x); g(x)] to denote the Wronskian of two n × n matrix-valued
functions of x, where we have defined

[f(x); g(x)] := f(x) g′(x)− f ′(x) g(x).

Given any two n×n matrix-valued solutions ξ(k, x) and ψ(k, x) to (1.1), one can
directly verify that the Wronskian [ξ(±k∗, x)†;ψ(k, x)] is independent of x, where
we use an asterisk to denote complex conjugation. Evaluating the Wronskians
involving the Jost solutions to (1.1) as x→ +∞ and also as x→ −∞, respectively,
for k ∈ R we obtain

[fl(k, x)†; fl(k, x)] = 2ikI = 2ik [Tl(k)†]−1
[
I − L(k)†L(k)

]
Tl(k)−1, (2.43)

[fl(−k, x)†; fl(k, x)] = 0 = 2ik [Tl(−k)†]−1
[
L(−k)† − L(k)

]
Tl(k)−1, (2.44)

[fr(k, x)†; fr(k, x)] = −2ik [Tr(k)†]−1
[
I −R(k)†R(k)

]
Tr(k)−1 = −2ikI, (2.45)

[fr(−k, x)†; fr(k, x)] = 2ik [Tr(−k)†]−1
[
R(k)−R(−k)†

]
Tr(k)−1 = 0, (2.46)

[fl(k, x)†; fr(k, x)] = 2ik R(k)Tr(k)−1 = −2ik [Tl(k)†]−1L(k)†, (2.47)

and for k ∈ C+ we get

[fl(−k∗, x)†; fr(k, x)] = −2ik Tr(k)−1 = −2ik [Tl(−k∗)†]−1, (2.48)

[fr(−k∗, x)†; fl(k, x)] = 2ik [Tr(−k∗)†]−1 = 2ik Tl(k)−1. (2.49)
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With the help of (2.43), (2.45), and (2.47), we prove that

S(k)†S(k) =

[
I 0
0 I

]
, k ∈ R, (2.50)

where S(k) is the scattering matrix defined in (2.9). From (2.50) we conclude
that S(k) is unitary, and hence we also have

S(k)S(k)† =

[
I 0
0 I

]
, k ∈ R. (2.51)

From (2.44), (2.46), and (2.48) we obtain

L(−k) = L(k)†, R(−k) = R(k)†, Tl(−k) = Tr(k)†, k ∈ R, (2.52)

which can equivalently be expressed as

S(k)† = QS(−k)Q, k ∈ R,

where Q is the constant 2n× 2n matrix given by

Q :=

[
0 I
I 0

]
. (2.53)

We remark that the matrix Q is equal to its own inverse.
For easy referencing, for k ∈ R we write (2.50) and (2.51) explicitly as[
Tl(k)† Tl(k) + L(k)† L(k) Tl(k)†R(k) + L(k)† Tr(k)
R(k)† Tl(k) + Tr(k)† L(k) Tr(k)† Tr(k) +R(k)†R(k)

]
=

[
I 0
0 I

]
, (2.54)[

Tl(k)Tl(k)† +R(k)R(k)† Tl(k)L(k)† +R(k)Tr(k)†

L(k)Tl(k)† + Tr(k)R(k)† Tr(k)Tr(k)† + L(k)L(k)†

]
=

[
I 0
0 I

]
. (2.55)

In Proposition 2.2(a) we have evaluated the determinants of the matrices
Fl(k, x), Fr(k, x), and G(k, x) appearing in (2.18), (2.19), and (2.20), respectively.
In the next theorem we determine their matrix inverses explicitly in terms of the
Jost solutions fl(k, x) and fr(k, x).

Theorem 2.3. Assume that the n × n matrix-valued potential V in (1.1)
satisfies (1.2) and (1.3). We have the following:

(a) The 2n× 2n matrix Fl(k, x) defined in (2.18) is invertible when k ∈ R \ {0},
and we have

Fl(k, x)−1 =
1

2ik

[
−f ′l (k, x)† fl(k, x)†

f ′l (−k, x)† −fl(−k, x)†

]
, k ∈ R \ {0}. (2.56)

(b) The 2n×2n matrix Fr(k, x) defined in (2.19) is invertible when k ∈ R\{0},
and we have

Fr(k, x)−1 =
1

2ik

[
−f ′r(−k, x)† fr(−k, x)†

f ′r(k, x)† −fr(k, x)†

]
, k ∈ R \ {0}. (2.57)
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(c) The 2n × 2n matrix G(k, x) given in (2.20) is invertible for k ∈ C+ \ {0}
except at the poles of the determinant of the transmission coefficient Tl(k),
where such poles can only occur on the positive imaginary axis in the complex
k-plane, those k-values correspond to the bound states of (1.1), and the
number of such poles is finite. Furthermore, for k ∈ C+ \ {0} we have

G(k, x)−1 = − 1

2ik

[
Tl(k) 0

0 Tr(k)

] [
f ′r(−k∗, x)† −fr(−k∗, x)†

−f ′l (−k∗, x)† fl(−k∗, x)†

]
. (2.58)

Proof. From (2.21) we see that the determinant of Fl(k, x) vanishes only at
k = 0 on the real axis. We confirm (2.56) by direct verification. This is done
by first postmultiplying the right-hand side of (2.56) with the matrix Fl(k, x)
given in (2.18) and then by simplifying the block entries of the resulting matrix
product with the help of (2.43) and (2.44). Thus, the proof of (a) is complete.
We prove (b) in a similar manner. From (2.22) we observe that det[Fr(k, x)]
is nonzero when k ∈ R except at k = 0. Consequently, the matrix Fr(k, x) is
invertible when k ∈ R \ {0}. By postmultiplying the right-hand side of (2.57)
by the matrix Fr(k, x) given in (2.19), we simplify the resulting matrix product
with the help of (2.45) and (2.46) and verify that we obtain the 2n× 2n identity
matrix as the product. Thus, the proof of (b) is also complete. For the proof of
(c) we proceed as follows. From (2.23) we observe that det[G(k, x)] is nonzero
when k ∈ C+ except when k = 0 and when det[Tr(k)] has poles. From (2.24) we
know that the determinants of Tl(k) and Tr(k) coincide, and from [5] we know
that the poles of det[Tl(k)] correspond to the k-values at which the bound states
of (1.1) occur. It is also known [5] the bound-state k-values can only occur on
the positive imaginary axis in the complex k-plane and that the number of such
k-values is finite. We verify (2.58) directly. That is done by postmultiplying
both sides of (2.58) with the matrix G(k, x) defined in (2.20), by simplifying the
matrix product by using (2.44), (2.46), (2.48), and (2.49), and by showing that
the corresponding product is equal to the 2n× 2n identity matrix.

3. The factorization formulas

In this section, we provide a factorization formula for the full-line matrix
Schrödinger equation (1.1), by relating the matrix-valued scattering coefficients
corresponding to the potential V appearing in (1.1) to the matrix-valued scatter-
ing coefficients corresponding to the fragments of V. We also present an alternate
version of the factorization formula, which is equivalent to the original version.

We already know that fl(k, x) and fl(−k, x) are both n × n matrix-valued
solutions to (1.1), and from (2.1) we conclude that their combined 2n columns
form a fundamental set of column-vector solutions to (1.1) when k ∈ R \ {0}.
Hence, we can express fr(k, x) as a linear combination of those 2n columns, and
we get

fr(k, x) = fl(k, x)R(k)Tr(k)−1 + fl(−k, x)Tr(k)−1, k ∈ R, (3.1)

where the coefficient matrices are determined by letting x → +∞ in (3.1) and
using (2.1) and (2.6). Note that we have included k = 0 in (3.1) by using the
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continuity of fl(k, x) at k = 0 for each fixed x ∈ R. Similarly, fr(k, x) and
fr(−k, x) are both n × n matrix-valued solutions to (1.1), and from (2.2) we
conclude that their combined 2n columns form a fundamental set of column-
vector solutions to (1.1) when k ∈ R \ {0}. Thus, we have

fl(k, x) = fr(k, x)L(k)Tl(k)−1 + fr(−k, x)Tl(k)−1, k ∈ R, (3.2)

where we have determined the coefficient matrices by letting x → −∞ in (3.2)
and by using (2.2) and (2.5). Note that we can write (3.1) and (3.2), respectively,
as

fl(−k, x) = fr(k, x)Tr(k)− fl(k, x)R(k), k ∈ R, (3.3)

fr(−k, x) = fl(k, x)Tl(k)− fr(k, x)L(k), k ∈ R. (3.4)

Using (3.2) in (2.18) and comparing the result with (2.19), we see that the
matrices Fl(k, x) and Fr(k, x) defined in (2.18) and (2.19), respectively, are related
to each other as

Fl(k, x) = Fr(k, x) Λ(k), k ∈ R, (3.5)

where Λ(k) is the matrix defined in (2.26). We remark that, even though Λ(k)
has the behavior O(1/k) as k → 0, by the continuity the equality in (3.5) holds
also at k = 0. In a similar way, by using (3.1) in (2.19) and comparing the result
with (2.18), we obtain

Fr(k, x) = Fl(k, x) Σ(k), k ∈ R, (3.6)

where Σ(k) is the matrix defined in (2.27). By (2.21) and (2.22), we know that
the matrices Fl(k, x) and Fr(k, x) are invertible when k ∈ R \ {0}. Thus, from
(3.5) and (3.6) we conclude that Λ(k) and Σ(k) are inverses of each other for each
k ∈ R \ {0}, i.e., we have

Λ(k) Σ(k) = Σ(k) Λ(k) =

[
I 0
0 I

]
, k ∈ R, (3.7)

where the result in (3.7) holds by continuity also at k = 0. We already know
from (2.25) that the determinants of the matrices Λ(k) and Σ(k) are both equal
to 1. We remark that (3.7) yields a wealth of relations among the left and right
matrix-valued scattering coefficients, which are similar to those given in (2.52),
(2.54), and (2.55).

Using (3.3) and (3.4) in (2.20), we get

G(−k, x) = G(k, x)

[
−R(k) Tl(k)
Tr(k) −L(k)

]
, k ∈ R. (3.8)

We can write (3.8) in terms of the scattering matrix S(k) appearing in (2.9) as

G(−k, x) = G(k, x) J S(k) J Q, k ∈ R, (3.9)
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where Q is the 2n × 2n constant matrix defined in (2.53) and J is the 2n × 2n
involution matrix defined as

J :=

[
I 0
0 −I

]
. (3.10)

Note that J is equal to its own inverse. By taking the determinants of both sides
of (3.9) and using (2.23) and the fact that det[J ] = (−1)n and det[Q] = (−1)n,
we obtain the determinant of the scattering matrix as

det [S(k)] =
det [Tr(k)]

det [Tr(−k)]
, k ∈ R. (3.11)

Because of (2.24), we can write (3.11) also as

det [S(k)] =
det [Tl(k)]

det [Tl(−k)]
, k ∈ R.

From (2.24) and (2.52) we see that

det [Tl(−k)] = (det [Tl(k)])∗ , det [Tr(−k)] = (det [Tr(k)])∗ , k ∈ R, (3.12)

where we recall that an asterisk is used to denote complex conjugation. Hence,
(3.11) and (3.12) imply that

det [S(k)] =
det [Tl(k)]

(det [Tl(k)])∗
, k ∈ R. (3.13)

The next proposition indicates how the relevant quantities related to the full-
line Schrödinger equation (1.1) are affected when the potential is shifted by b
units to the right, i.e., when we replace V (x) in (1.1) by V (b)(x) defined as

V (b)(x) := V (x+ b), b ∈ R. (3.14)

We use the superscript (b) to denote the corresponding transformed quantities.
The result will be useful in showing that the factorization formulas (3.44) and
(3.45) remain unchanged if the potential is decomposed into two pieces at any
fragmentation point instead the fragmentation point x = 0 used in (1.4).

Proposition 3.1. Consider the full-line n × n matrix Schrödinger equation
(1.1) with the n × n matrix potential V satisfying (1.2) and (1.3). Under the
transformation V (x) 7→ V (b)(x) described in (3.14), the quantities relevant to
(1.1) are transformed as follows:

(a) The n×n Jost solutions fl(k, x) and fr(k, x) are transformed into f
(b)
l (k, x)

and f
(b)
r (k, x), respectively, where we have defined

f
(b)
l (k, x) := e−ikbfl(k, x+ b), f (b)r (k, x) := eikbfr(k, x+ b). (3.15)
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(b) The n×n matrix-valued left and right transmission coefficients appearing in
(2.5) and (2.6) remain unchanged, i.e., we have

T
(b)
l (k) = Tl(k), T (b)

r (k) = Tr(k). (3.16)

The n× n matrix-valued left and right reflection coefficients L(k) and R(k)
appearing in (2.5) and (2.6), respectively, are transformed into L(b)(k) and
R(b)(k), which are defined as

L(b)(k) := L(k) e−2ikb, R(b)(k) := R(k) e2ikb. (3.17)

(c) The 2n× 2n transition matrix Λ(k) appearing in (2.26) is transformed into
Λ(b)(k) given by

Λ(b)(k) :=

[
eikbI 0

0 e−ikbI

]
Λ(k)

[
e−ikbI 0

0 eikbI

]
. (3.18)

The 2n× 2n transition matrix Σ(k) appearing in (2.27) is transformed into
Σ(b)(k) given by

Σ(b)(k) :=

[
eikbI 0

0 e−ikbI

]
Σ(k)

[
e−ikbI 0

0 eikbI

]
. (3.19)

Proof. The matrix f
(b)
l (k, x) defined in the first equality of (3.15) is the

transformed left Jost solution because it satisfies the transformed matrix-valued
Schrödinger equation

− ψ′′(k, x) + V (x+ b)ψ(k, x) = k2 ψ(k, x), x ∈ R, (3.20)

and is asymptotic to eikx[I + o(1)] as x → +∞. Similarly, the matrix f
(b)
r (k, x)

defined in the second equality of (3.15) is the transformed right Jost solution
because it satisfies (3.20) and is asymptotic to e−ikx[I + o(1)] as x→ −∞. Thus,

the proof of (a) is complete. Using f
(b)
l (k, x) in the analog of (2.5), as x→ −∞

we have

f
(b)
l (k, x) = eikx [T

(b)
l (k)]−1 + e−ikxL(b)(k) [T

(b)
l (k)]−1 + o(1). (3.21)

Using the right-hand side of the first equality of (3.15) in (3.21) and comparing
the result with (2.5) we get the first equalities of (3.16) and (3.17), respectively.

Similarly, using f
(b)
r (k, x) in the analog of (2.6), as x→ +∞ we get

f (b)r (k, x) = e−ikx [T (b)
r (k)]−1 + eikxR(b)(k) [T (b)

r (k)]−1 + o(1). (3.22)

Using the right-hand side of the second equality of (3.15) in (3.22) and compar-
ing the result with (2.6) we obtain the second equalities of (3.16) and (3.17),
respectively. Hence, the proof of (b) is also complete. Using (3.16) and (3.17) in
the analogs of (2.26) and (2.27) corresponding to the shifted potential V (b), we
obtain (3.18) and (3.19).
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When the potential V in (1.1) satisfies (1.2) and (1.3), let us decompose it as
in (1.4). For the left fragment V1 and the right fragment V2 defined in (1.5), let
us use the subscripts 1 and 2, respectively, to denote the corresponding relevant
quantities. Thus, analogous to (2.9) we define the 2n × 2n scattering matrices
S1(k) and S2(k) corresponding to V1 and V2, respectively, as

S1(k) :=

[
Tl1(k) R1(k)
L1(k) Tr1(k)

]
, S2(k) :=

[
Tl2(k) R2(k)
L2(k) Tr2(k)

]
, k ∈ R, (3.23)

where Tl1(k) and Tl2(k) are the respective left transmission coefficients, Tr1(k) and
Tr2(k) are the respective right transmission coefficients, L1(k) and L2(k) are the
respective left reflection coefficients, and R1(k) and R2(k) are the respective right
reflection coefficients. In terms of the scattering coefficients for the respective
fragments, we use Λ1(k) and Λ2(k) as in (2.26) and use Σ1(k) and Σ2(k) as
in (2.27) to denote the transition matrices corresponding to the left and right
potential fragments V1 and V2. Thus, we have

Λ1(k) :=

[
Tl1(k)−1 L1(−k)Tl1(−k)−1

L1(k)Tl1(k)−1 Tl1(−k)−1

]
, k ∈ R \ {0}, (3.24)

Λ2(k) :=

[
Tl2(k)−1 L2(−k)Tl2(−k)−1

L2(k)Tl2(k)−1 Tl2(−k)−1

]
, k ∈ R \ {0}, (3.25)

Σ1(k) :=

[
Tr1(−k)−1 R1(k)Tr1(k)−1

R1(−k)Tr1(−k)−1 Tr1(k)−1

]
, k ∈ R \ {0}, (3.26)

Σ2(k) :=

[
Tr2(−k)−1 R2(k)Tr2(k)−1

R2(−k)Tr2(−k)−1 Tr2(k)−1

]
, k ∈ R \ {0}. (3.27)

In preparation for the proof of our factorization formula, in the next propo-
sition we express the value at x = 0 of the matrix Fl(k, x) defined in (2.18) in
terms of the left scattering coefficients for the right fragment V2, and similarly
we express the value at x = 0 of the matrix Fr(k, x) defined in (2.19) in terms of
the right scattering coefficients for the left fragment V1.

Proposition 3.2. Consider the full-line n × n matrix Schrödinger equation
(1.1), where the potential V satisfies (1.2) and (1.3) and is fragmented as in (1.4)
into the left fragment V1 and the right fragment V2 defined in (1.5). We then have
the following:

(a) For k ∈ R, the 2n× 2n matrix Fl(k, x) defined in (2.18) satisfies

Fl(k, 0) =

[
[I + L2(k)]Tl2(k)−1 [I + L2(−k)]Tl2(−k)−1

ik [I − L2(k)]Tl2(k)−1 −ik [I − L2(−k)]Tl2(−k)−1

]
, (3.28)

where Tl2(k) and L2(k) are the left transmission and left reflection coeffi-
cients, respectively, for the right fragment V2.

(b) For k ∈ R, the 2n× 2n matrix Fr(k, x) defined in (2.19) satisfies

Fr(k, 0) =

[
[I +R1(−k)]Tr1(−k)−1 [I +R1(k)]Tr1(k)−1

ik [I −R1(−k)]Tr1(−k)−1 ik [−I +R1(k)]Tr1(k)−1

]
, (3.29)
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where Tr1(k) and R1(k) are the right transmission and right reflection coef-
ficients, respectively, for the left fragment V1.

(c) The matrix Fl(k, 0) appearing in (3.28) can be expressed as a matrix product
as

Fl(k, 0) = q9 q10 q11, k ∈ R, (3.30)

where we have defined

q9 :=

[
I 0
0 ikI

] [
I −I
0 I

] [
2I 0
0 I

] [
I 0
0 −I

] [
I 0
−I I

]
, k ∈ R, (3.31)

q10 :=

[
I L2(−k)
0 I

] [
I − L2(−k)L2(k) 0

0 I

]
, k ∈ R, (3.32)

q11 :=

[
I 0

L2(k) I

] [
Tl2(k)−1 0

0 Tl2(−k)−1

]
, k ∈ R \ {0}. (3.33)

In fact, we have

q9 =

[
I I
ikI −ikI

]
, k ∈ R, (3.34)

q10 q11 = Λ2(k), k ∈ R \ {0}, (3.35)

where Λ2(k) is the transition matrix given in (3.25) corresponding to the
right potential fragment V2.

(d) The matrix Fr(k, 0) appearing in (3.29) can be expressed as a matrix product
as

Fr(k, 0) = q9 q12 q13, k ∈ R, (3.36)

where q9 is the matrix defined in (3.31) and we have let

q12 :=

[
I R1(k)
0 I

] [
I −R1(k)R1(−k) 0

0 I

]
, k ∈ R, (3.37)

q13 :=

[
I 0

R1(−k) I

] [
Tr1(−k)−1 0

0 Tr1(k)−1

]
, k ∈ R \ {0}. (3.38)

In fact, we have

q12 q13 = Σ1(k), k ∈ R \ {0}, (3.39)

where Σ1(k) is the transition matrix in (3.26) corresponding to the left po-
tential fragment V1.

Proof. We remark that, although the matrices q11 and q13 behave as O(1/k)
as k → 0, the equalities in (3.30) and (3.36) hold also at k = 0 by the continuity.
Let us use fl1(k, x) and fr1(k, x) to denote the left and right Jost solutions, respec-
tively, corresponding to the potential fragment V1. Similarly, let us use fl2(k, x)
and fr2(k, x) to denote the left and right Jost solutions, respectively, correspond-
ing to the potential fragment V2. Since fl(k, x) and fl2(k, x) both satisfy (1.1)
and the asymptotics (2.1), we have

fl2(k, x) = fl(k, x), f ′l2(k, x) = f ′l (k, x), x ∈ [0,+∞). (3.40)
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Similarly, since fr(k, x) and fr1(k, x) both satisfy (1.1) and the asymptotics (2.2),
we have

fr1(k, x) = fr(k, x), f ′r1(k, x) = f ′r(k, x), x ∈ (−∞, 0]. (3.41)

From (1.5), (2.5), (2.6), (3.40), and (3.41), we get

fl2(k, x) = eikx Tl2(k)−1 + e−ikxL2(k)T−1l2 (k), x ∈ (−∞, 0], (3.42)

fr1(k, x) = e−ikx Tr1(k)−1 + eikxR1(k)T−1r1 (k), x ∈ [0,+∞). (3.43)

Comparing (3.40) and (3.42) at x = 0 and using the result in (2.18), we establish
(3.28), which completes the proof of (a). Similarly, comparing (3.41) and (3.43)
at x = 0 and using the result in (2.19), we establish (3.29). Hence, the proof
of (b) is also complete. We can confirm (3.30) directly by evaluating the matrix
product on its right-hand side with the help of (3.31)–(3.33). Similarly, (3.34)
can directly be confirmed by evaluating the matrix products on the right-hand
sides of (3.31)–(3.33). Thus, the proof of (c) is complete. Let us now prove (d).
We can verify (3.36) directly by evaluating the matrix product on its right-hand
side with the help of (3.34), (3.37), and (3.38). In the same manner, (3.39) can
be directly confirmed by evaluating the matrix products on the right-hand sides
of (3.37) and (3.38) and by comparing the result with (3.26). Hence, the proof
of (d) is also complete.

In the next theorem we present our factorization formula corresponding to
the potential fragmentation given in (1.4).

Theorem 3.3. Consider the full-line n×n matrix Schrödinger equation (1.1)
with the potential V satisfying (1.2) and (1.3). Let V1 and V2 denote the left and
right fragments of V described in (1.4) and (1.5). Let Λ(k), Λ1(k), and Λ2(k) be
the 2n×2n transition matrices defined in (2.26), (3.24), and (3.25) corresponding
to V, V1, and V2, respectively. Similarly, let Σ(k), Σ1(k), and Σ2(k) denote the
2n×2n transition matrices defined in (2.27), (3.26), and (3.27) corresponding to
V, V1, and V2, respectively. Then, we have the following:

(a) The transition matrix Λ(k) is equal to the ordered matrix product
Λ1(k) Λ2(k), i.e., we have

Λ(k) = Λ1(k) Λ2(k), k ∈ R \ {0}. (3.44)

(b) The factorization formula (3.44) can also be expressed in terms of the tran-
sition matrices Σ(k), Σ1(k), and Σ2(k) as

Σ(k) = Σ2(k) Σ1(k), k ∈ R \ {0}. (3.45)

Proof. Evaluating (3.5) at x = 0, we get

Fl(k, 0) = Fr(k, 0) Λ(k), k ∈ R. (3.46)
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Using (3.30) and (3.36) on the left and right-hand sides of (3.46), respectively,
we obtain

q9 q10 q11 = q9 q12 q13 Λ(k), k ∈ R \ {0}. (3.47)

From (3.34) we see that q9 is invertible when k ∈ R \ {0}. Thus, using (3.35) and
(3.39) in (3.47), we get

Λ2(k) = Σ1(k) Λ(k), k ∈ R \ {0},

or equivalently

Σ1(k)−1 Λ2(k) = Λ(k), k ∈ R \ {0}. (3.48)

From (3.7) we already know that Σ1(k)−1 = Λ1(k), and hence (3.48) yields (3.44).
Thus, the proof of (a) is complete. Taking the matrix inverses of both sides of
(3.44) and then making use of (3.7), we obtain (3.45). Thus, the proof of (b) is
also complete.

The following theorem shows that the factorization formulas (3.44) and (3.45)
also hold if the potential V in (1.1) is decomposed into V1 and V2 by choosing
the fragmentation point anywhere on the real axis, not necessarily at x = 0.

Theorem 3.4. Consider the full-line n×n matrix Schrödinger equation (1.1)
with the potential V satisfying (1.2) and (1.3). Let V1 and V2 denote the left and
right fragments of V described as in (1.4), but (1.5) replaced with

V1(x) :=

{
V (x), x < b,

0, x > b,
V2(x) :=

{
0, x < b,

V (x), x > b,
(3.49)

where b is a fixed real constant. Let Λ(k), Λ1(k), and Λ2(k) appearing in (2.26),
(3.24), (3.25), respectively, be the transition matrices corresponding to V, V1, and
V2, respectively. Similarly, let Σ(k), Σ1(k), and Σ2(k) appearing in (2.27), (3.26),
(3.27) be the transition matrices corresponding to V, V1, and V2, respectively.
Then, we have the following:

(a) The transition matrix Λ(k) is equal to the ordered matrix product
Λ1(k) Λ2(k), i.e., we have

Λ(k) = Λ1(k) Λ2(k), k ∈ R \ {0}. (3.50)

(b) The factorization formula (3.50) can also be expressed in terms of the tran-
sition matrices Σ(k), Σ1(k), and Σ2(k) as

Σ(k) = Σ2(k) Σ1(k), k ∈ R \ {0}. (3.51)

Proof. Let us translate the potential V and its fragments V1 and V2 as in
(3.14). The shifted potentials satisfy

V (b)(x) = V
(b)
1 (x) + V

(b)
2 (x), x ∈ R,
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where we have defined

V (b)(x) := V (x+ b), V
(b)
1 (x) := V1(x+ b), V

(b)
2 (x) := V2(x+ b), x ∈ R.

Note that the shifted potential fragments V
(b)
1 and V

(b)
2 correspond to the pieces

of V (b) with the fragmentation point x = 0, i.e., we have

V
(b)
1 (x) =

{
V (b)(x), x < 0,

0, x > 0,
V

(b)
2 (x) =

{
0, x < 0,

V (b)(x), x > 0.

Since the shifted potential V (b) is fragmented at x = 0, we can apply Theo-

rem 3.3 to V (b). Let us use T
(b)
lj (k), T

(b)
rj (k), L

(b)
j (k), R

(b)
j (k), Λ

(b)
j (k), and Σ

(b)
j (k)

to denote the left and right transmission coefficients, the left and right reflections
coefficients, and the transition matrices, respectively, for the shifted potentials

V
(b)
j (x) with j = 1 and j = 2. In analogy with (3.24)–(3.27), for k ∈ R \ {0} we

have

Λ
(b)
j (k) :=

[
[T

(b)
lj (k)]−1 L

(b)
j (−k) [T

(b)
lj (−k)]−1

L
(b)
j (k) [T

(b)
lj (k)]−1 [T

(b)
lj (−k)]−1

]
, j = 1, 2,

Σ
(b)
j (k) :=

[
[T

(b)
rj (−k)]−1 R

(b)
j (k) [T

(b)
rj (k)]−1

R
(b)
j (−k) [T

(b)
rj (−k)]−1 [T

(b)
rj (k)]−1

]
, j = 1, 2.

From Theorem 3.3 we have

Λ(b)(k) = Λ
(b)
1 (k) Λ

(b)
2 (k), Σ(b)(k) = Σ

(b)
2 (k) Σ

(b)
1 (k), k ∈ R \ {0}. (3.52)

Using (3.18) and (3.19) in (3.52), after some minor simplification we get (3.50)
and (3.51).

The result of Theorem 3.4 can easily be extended from two fragments to
any finite number of fragments. This is because any existing fragment can be
decomposed into further subfragments by applying the factorization formulas
(3.50) and (3.51) to each fragment and to its subfragments. Since a proof can be
obtained by using an induction on the number of fragments, we state the result
as a corollary without a proof.

Corollary 3.5. Consider the full-line n×n matrix Schrödinger equation (1.1)
with the matrix-valued potential V satisfying (1.2) and (1.3). Let S(k), Λ(k),
and Σ(k) defined in (2.9), (2.26), and (2.27), respectively be the corresponding
scattering matrix and the transition matrices, with Tl(k), Tr(k), L(k), and R(k)
denoting the corresponding left and right transmission coefficients and the left
and right reflection coefficients, respectively. Assume that V is partitioned into
P + 1 fragments Vj at the fragmentation points bj with 1 ≤ j ≤ P as

V (x) =

P+1∑
j=1

Vj(x),
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where P is any fixed positive integer and

Vj(x) :=

{
V (x), x ∈ (bj−1, bj),

0, x /∈ (bj−1, bj),

with b0 := −∞, bP+1 := +∞, and bj < bj+1. Let Tlj(k), Trj(k), Lj(k), Rj(k) be
the corresponding left and right transmission coefficients and the left and right re-
flection coefficients, respectively, for the potential fragment Vj . Let Sj(k), Λj(k),
and Σj(k) denote the scattering matrix and the transition matrices for the corre-
sponding fragment Vj , which are defined as

Sj(k) :=

[
Tlj(k) Rj(k)
Lj(k) Trj(k)

]
, k ∈ R,

Λj(k) :=

[
Tlj(k)−1 Lj(−k)Tlj(−k)−1

Lj(k)Tlj(k)−1 Tlj(−k)−1

]
, k ∈ R \ {0},

Σj(k) :=

[
Trj(−k)−1 Rj(k)Trj(k)−1

Rj(−k)Trj(−k)−1 Trj(k)−1

]
, k ∈ R \ {0}.

Then, the transition matrices Λ(k) and Σ(k) for the whole potential V are ex-
pressed as ordered matrix products of the corresponding transition matrices for
the fragments as

Λ(k) = Λ1(k) Λ2(k) · · ·ΛP (k) ΛP+1(k), k ∈ R \ {0},
Σ(k) = ΣP+1(k) ΣP (k) · · ·Σ2(k) Σ1(k), k ∈ R \ {0}.

In Theorem 3.4 the transition matrix for a potential on the full line is ex-
pressed as a matrix product of the transition matrices for the left and right
potential fragments. In the next theorem, we express the scattering coefficients
of a potential on the full line in terms of the scattering coefficients of the two
potential fragments.

Theorem 3.6. Consider the full-line n×n matrix Schrödinger equation (1.1)
with the potential V satisfying (1.2) and (1.3). Assume that V is fragmented at
an arbitrary point x = b into the two pieces V1 and V2 as described in (1.4) and
(3.49). Let S(k) given in (2.9) be the scattering matrix for the potential V, and
let S1(k) and S2(k) given in (3.23) be the scattering matrices corresponding to
the potential fragments V1 and V2, respectively. Then, for k ∈ R the scattering
coefficients in S(k) are related to the right scattering coefficients in S1(k) and the
left scattering coefficients in S2(k) as

Tl(k) = Tl2(k) [I −R1(k)L2(k)]−1 Tr1(−k)†, (3.53)

L(k) = [Tr1(k)†]−1 [L2(k)−R1(−k)] [I −R1(k)L2(k)]−1 Tr1(−k)†, (3.54)

Tr(k) = Tr1(k) [I − L2(k)R1(k)]−1 Tl2(−k)†, (3.55)

R(k) = Tl2(k) [I −R1(k)L2(k)]−1 [R1(k)− L2(−k)]Tl2(−k)−1, (3.56)

where we recall that I is the n × n identity matrix and the dagger denotes the
matrix adjoint.
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Proof. From the (1, 1) entry in (3.50), for k ∈ R \ {0} we have

Tl(k)−1 = Tl1(k)−1 Tl2(k)−1 + L1(−k)Tl1(−k)−1 L2(k)Tl2(k)−1. (3.57)

From the (2, 1) entry of (2.54) we know that

R1(k)† Tl1(k) + Tr1(k)† L1(k) = 0, k ∈ R. (3.58)

Multiplying both sides of (3.58) by [T †r1(k)]−1 from the left and by Tl1(k)−1 from
the right, we get

[Tr1(k)†]−1R1(k)† + L1(k)Tl1(k)−1 = 0, k ∈ R \ {0}. (3.59)

In (3.59), after replacing k by −k we obtain

L1(−k)Tl1(−k)−1 = −[Tr1(−k)†]−1R1(−k)†, k ∈ R \ {0}. (3.60)

Next, using (3.60) and the second equality of (2.52) in (3.57), for k ∈ R \ {0} we
get

Tl(k)−1 = Tl1(k)−1 Tl2(k)−1 − [Tr1(−k)†]−1R1(k)L2(k)Tl2(k)−1. (3.61)

Using the third equality of (2.52) in the first term on the right-hand side of (3.61),
for k ∈ R \ {0} we have

Tl(k)−1 = [Tr1(−k)†]−1Tl2(k)−1 − [Tr1(−k)†]−1R1(k)L2(k)Tl2(k)−1. (3.62)

Factoring the right-hand side of (3.62) and then taking the inverses of both sides
of the resulting equation, we obtain (3.53). Let us next prove (3.54). From the
(2, 1) entry of (3.50), for k ∈ R \ {0} we have

L(k)Tl(k)−1 = L1(k)Tl1(k)−1 Tl2(k)−1 + Tl1(−k)−1 L2(k)Tl2(k)−1. (3.63)

In (3.60) by replacing k by −k and using the resulting equality in (3.63), when
k ∈ R \ {0} we get

L(k)Tl(k)−1 = −[Tr1(k)†]−1R1(k)† Tl2(k)−1 + Tl1(−k)−1 L2(k)Tl2(k)−1. (3.64)

Next, using the third equality of (2.52) in the second term on the right-hand side
of (3.64), for k ∈ R \ {0} we obtain

L(k)Tl(k)−1 = −[Tr1(k)†]−1R1(k)† Tl2(k)−1 + [Tr1(k)†]−1L2(k)Tl2(k)−1,

which is equivalent to

L(k)Tl(k)−1 = [Tr1(k)†]−1
[
L2(k)−R1(k)†

]
Tl2(k)−1, k ∈ R \ {0}. (3.65)

Using the second equality of (2.52) in (3.65), we have

L(k)Tl(k)−1 = [Tr1(k)†]−1 [L2(k)−R1(−k)]Tl2(k)−1, k ∈ R \ {0}. (3.66)
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Finally, multiplying (3.66) from the right by the respective sides of (3.53), we
obtain (3.54). Let us now prove (3.55). From the third equality of (2.52) we have
Tr(k) = Tl(−k)†. Thus, by taking the matrix adjoint of both sides of (3.53), then
replacing k by −k in the resulting equality, and then using the first two equalities
of (2.52), we get (3.55). Let us finally prove (3.56). From the (1, 2) entry of
(2.55), we have

R(k) = −Tl(k)L(k)† [Tr(k)†]−1, k ∈ R. (3.67)

Using the first and third equalities of (2.52) in (3.67), we get

R(k) = −Tl(k)L(−k)Tl(−k)−1, k ∈ R. (3.68)

Then, on the right-hand side of (3.68), we replace Tl(k) by the right-hand side
of (3.53) and we also replace L(−k) [Tl(−k)]−1 by the right-hand side of (3.66)
after the substitution k 7→ −k. After simplifying the resulting modified version
of (3.68), we obtain (3.56).

4. The matrix-valued scattering coefficients

The choice n = 1 in (1.1) corresponds to the scalar case. In the scalar case,
the potential V satisfying (1.2) and (1.3) is real valued and the corresponding
left and right transmission coefficients are equal to each other. However, when
n ≥ 2 the matrix-valued transmission coefficients are in general not equal to each
other. In the matrix case, as seen from (2.48) we have

Tl(−k∗)† = Tr(k), k ∈ C+. (4.1)

On the other hand, from (2.24) we know that the determinants of the left and right
transmission coefficients are always equal to each other for n ≥ 1. In this section,
we first provide some relevant properties of the scattering coefficients for (1.1),
and then we present some explicit examples demonstrating the unequivalence of
the matrix-valued left and right transmission coefficients.

The following theorem summarizes the large k-asymptotics of the scattering
coefficients for the full-line matrix Schrödinger equation.

Theorem 4.1. Consider the full-line matrix Schrödinger equation (1.1) with
the n× n matrix potential V satisfying (1.2) and (1.3). The large k-asymptotics
of the corresponding n× n matrix-valued scattering coefficients are given by

Tl(k) = I +
1

2ik

∫ ∞
−∞

dxV (x) +O

(
1

k2

)
, k →∞ in C+, (4.2)

Tr(k) = I +
1

2ik

∫ ∞
−∞

dxV (x) +O

(
1

k2

)
, k →∞ in C+, (4.3)

L(k) =
1

2ik

∫ ∞
−∞

dxV (x) e2ikx +O

(
1

k2

)
, k → ±∞ in R, (4.4)

R(k) =
1

2ik

∫ ∞
−∞

dxV (x) e−2ikx +O

(
1

k2

)
, k → ±∞ in R. (4.5)
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Proof. By solving (2.3) and (2.4) via the method of successive approximation,
for each fixed x ∈ R we obtain the large k-asymptotics of the Jost solutions as

e−ikx fl(k, x) = I +O

(
1

k

)
, k →∞ in C+, (4.6)

eikxfr(k, x) = I +O

(
1

k

)
, k →∞ in C+. (4.7)

The integral representations involving the scattering coefficients are obtained
from (2.3) and (2.4) with the help of (2.5) and (2.6). As listed in (2.10)–(2.13)
of [5], we have

Tl(k)−1 = I − 1

2ik

∫ ∞
−∞

dxV (x) e−ikxfl(k, x), (4.8)

Tr(k)−1 = I − 1

2ik

∫ ∞
−∞

dxV (x) eikxfr(k, x), (4.9)

L(k)Tl(k)−1 =
1

2ik

∫ ∞
−∞

dxV (x) eikxfl(k, x), (4.10)

R(k)Tr(k)−1 =
1

2ik

∫ ∞
−∞

dxV (x) e−ikxfr(k, x). (4.11)

With the help of (4.6) and (4.7), from (4.8)–(4.11) we obtain (4.2)–(4.5) in their
appropriate domains.

We observe that it is impossible to tell the unequivalence of Tl(k) and Tr(k)
from the large k-limits given in (4.2) and (4.3). However, as the next exam-
ple shows, the small k-asymptotics of Tl(k) and Tr(k) may be used to see their
unequivalence in the matrix case with n ≥ 2.

Example 4.2. Consider the full-line Schrödinger equation (1.1) when the po-
tential V is a 2 × 2 matrix and fragmented as in (1.4) and (1.5), where the
fragments V1 and V2 are compactly supported and given by

V1(x) =

[
3 −2 + i

−2− i −5

]
, −2 < x < 0,

V2(x) =

[
2 1 + i

1− i −2

]
, 0 < x < 1,

(4.12)

with the understanding that V1 vanishes when x 6∈ (−2, 0) and that V2 vanishes
when x 6∈ (0, 1). Thus, the support of the potential V is confined to the interval
(−2, 1). Since V2 vanishes when x > 1, as seen from (2.1) the corresponding Jost
solution fl2(k, x) is equal to eikxI there. The evaluation of the corresponding scat-
tering coefficients for the potential specified in (4.12) is not trivial. A relatively
efficient way for that evaluation is accomplished as follows. For 0 < x < 1 we
construct the Jost solution fl2(k, x) corresponding to the constant 2 × 2 matrix
V2 by diagonalizing V2, obtaining the corresponding eigenvalues and eigenvec-
tors of V2, and then constructing the general solution to (1.1) with the help of
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those eigenvalues and eigenvectors. Next, by using the continuity of fl2(k, x) and
f ′l2(k, x) at the point x = 1, we construct fl2(k, x) explicitly when 0 < x < 1.
Then, by using (3.42) and its derivative at x = 0 we get the corresponding 2× 2
matrix-valued scattering coefficients Tl2(k) and L2(k). By using a similar proce-
dure, we construct the right Jost solution fr1(k, x) corresponding to the potential
V1 as well as the corresponding 2× 2 matrix-valued scattering coefficients Tr1(k)
and R1(k). Next, we construct the transmission coefficients Tl(k) and Tr(k) cor-
responding to the whole potential V by using (3.53) and (3.55), respectively. In
fact, with the help of the symbolic software Mathematica, we evaluate Tl(k) and
Tr(k) explicitly in a closed form. However, the corresponding explicit expressions
are extremely lengthy, and hence it is not feasible to display them here. Instead,
we present the small k-limits of Tl(k) and Tr(k), which shows that Tl(k) 6≡ Tr(k).
We have

Tl(k)−1 =

[
al(k) bl(k)
cl(k) dl(k)

]
+O(k3), k → 0 in C+, (4.13)

Tr(k)−1 =

[
ar(k) br(k)
cr(k) dr(k)

]
+O(k3), k → 0 in C+, (4.14)

where we have defined

al(k) := −7.05652− 74.1352 i

k
−
(
133.844 + 14.3522 i

)
+
(
19.0756− 170.827 i

)
k +

(
160.955 + 18.1729 i

)
k2, (4.15)

bl(k) := −19.9839− 22.4176 i

k
−
(
50.5188 + 39.0893 i

)
+
(
51.289− 68.6615 i

)
k +

(
65.0516 + 48.4089 i

)
k2, (4.16)

cl(k) :=
10.5752− 15.2172 i

k
+
(
26.0265 + 19.9529 i

)
−
(
25.8548− 33.0752 i

)
k −

(
31.8705 + 24.1783 i

)
k2, (4.17)

dl(k) :=
7.05652− 2.55528 i

k
+
(
7.27335 + 14.3522 i

)
−
(
19.0756− 11.1659 i

)
k −

(
10.4903 + 18.1729 i

)
k2, (4.18)

ar(k) :=
7.05652 + 74.1352 i

k
−
(
133.844− 14.3522 i

)
−
(
19.0756 + 170.827 i

)
k +

(
160.955− 18.1729 i

)
k2, (4.19)

br(k) := −10.5752 + 15.2172 i

k
+
(
26.0265− 19.9529 i

)
+
(
25.8548 + 33.0752 i

)
k −

(
31.8705− 24.1783 i

)
k2, (4.20)

cr(k) :=
19.9839 + 22.4176 i

k
−
(
50.5188− 39.0893 i

)
−
(
51.289 + 68.6615 i

)
k +

(
65.0516− 48.4089 i

)
k2, (4.21)

dr(k) := −7.05652 + 2.55528 i

k
+
(
7.27335− 14.3522 i

)
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+
(
19.0756 + 11.1659 i

)
k −

(
10.4903− 18.1729 i

)
k2. (4.22)

Note that we use an overbar on a digit to denote a roundoff on that digit. From
(4.13)–(4.22) we see that Tl(k) 6≡ Tr(k), and in fact we confirm (4.1) up to O(k3)
as k → 0.

In Example 4.2, we have illustrated that the matrix-valued left and right
transmission coefficients are not equal to each other in general, and that has
been done when the potential is selfadjoint but not real. In order to demonstrate
that the unequivalence of Tl(k) and Tr(k) is not caused because the potential
is complex valued, we would like to demonstrate that, in general, when n ≥ 2
we have Tl(k) 6≡ Tr(k) even when the matrix potential V in (1.1) is real valued.
Suppose that, in addition to (1.2) and (1.3), the potential V is real valued, i.e.,
we have

V (x)∗ = V (x), k ∈ R,
where we recall that we use an asterisk to denote complex conjugation. Then,
from (1.1) we see that if ψ(k, x) is a solution to (1.1) then ψ(±k∗, x)∗ is also a
solution. In particular, using (2.1) and (2.2) we observe that, when the potential
is real valued, we have

fl(−k∗, x)∗ = fl(k, x), fr(−k∗, x)∗ = fr(k, x), k ∈ C+. (4.23)

Then, using (4.23), from (2.5) and (2.9) we obtain

Tl(−k∗)∗ = Tl(k), Tr(−k∗)∗ = Tr(k), k ∈ C+, (4.24)

R(−k)∗ = R(k), L(−k)∗ = L(k), k ∈ R. (4.25)

Comparing (4.1) and (4.24), we have

Tl(k)t = Tr(k), k ∈ C+, (4.26)

and similarly, by comparing the first two equalities in (2.52) with (4.25) we get

R(k)t = R(k), L(k)t = L(k), k ∈ R,

where we use the superscript t to denote the matrix transpose. We remark that,
in the scalar case, since the potential V in (1.1) is real valued, the equality of the
left and right transmission coefficients directly follow from (4.26). Let us mention
that, if the matrix potential is real valued, then (3.53)–(3.56) of Theorem 3.6 yield

Tl(k) = Tl2(k) [I −R1(k)L2(k)]−1 Tr1(k)t, k ∈ R, (4.27)

L(k) = [Tr1(k)†]−1 [L2(k)−R1(k)∗] [I −R1(k)L2(k)]−1 Tr1(k)t, k ∈ R,
Tr(k) = Tr1(k) [I − L2(k)R1(k)]−1 Tl2(k)t, k ∈ R, (4.28)

R(k) = Tl2(k) [I −R1(k)L2(k)]−1 [R1(k)− L2(k)∗]Tl2(−k)−1, k ∈ R.

In the next example, we illustrate the unequivalence of the left and right
transmission coefficients when the matrix potential V in (1.1) is real valued. As
in the previous example, we construct Tl(k) and Tr(k) in terms of the scattering
coefficients corresponding to the fragments V1 and V2 specified in (1.4) and (1.5),
and then we check the unequivalence of the resulting expressions.
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Example 4.3. Consider the full-line Schrödinger equation (1.1) with the ma-
trix potential V consisting of the fragments V1 and V2 as in (1.4) and (1.5), where
those fragments are real valued and given by

V1(x) =

[
3 2
2 c

]
, −2 < x < 0, (4.29)

V2(x) =

[
2 1
1 1

]
, 0 < x < 1. (4.30)

The parameter c appearing in (4.29) is a real constant, and it is understood that
the support of V1 is the interval x ∈ (−2, 0) and the support of V2 is x ∈ (0, 1).
The procedure to evaluate the corresponding scattering coefficients is not trivial.
As described in Example 4.2, we evaluate the scattering coefficients corresponding
to V1 and V2 by diagonalizing each of the constant 2×2 matrices V1 and V2 and by
constructing the corresponding Jost solutions fr1(k, x) and fl2(k, x). We then use
(4.27) and (4.28) to obtain Tl(k) and Tr(k). As in Example 4.2 we have prepared
a Mathematica notebook to evaluate Tl(k) and Tr(k) explicitly in a closed form.
The resulting expressions are extremely lengthy, and hence it is not practical
to display them in our paper. Because the potential V is real valued in this
example, in order to check if Tl(k) 6≡ Tr(k), as seen from (4.26) it is sufficient to
check whether the 2×2 matrix Tl(k) is symmetric or not. We remark that it is also
possible to evaluate Tl(k) directly by constructing the Jost solution fl(k, x) when
x < 0 and then by using (2.5). However, the evaluations in that case are much
more involved, and Mathematica is not capable of carrying out the computations
properly unless a more powerful computer is used. This indicates the usefulness
of the factorization formula in evaluating the matrix-valued scattering coefficients
for the full-line matrix Schrödinger equation. For various values of the parameter
c, by evaluating the difference Tl(k)−Tl(k)t at any k-value we confirm that Tl(k)
is not a symmetric matrix. At any particular k-value, we have Tl(k) = Tl(k)t if
and only if the matrix norm of Tl(k)−Tl(k)t is zero. Using Mathematica, we are
able to plot that matrix norm as a function of k in the interval k ∈ [0, b] for any
positive b. We then observe that that norm is strictly positive, and hence we are
able to confirm that in general we have Tl(k) 6≡ Tr(k) when n ≥ 2. One other
reason for us to use the parameter c in (4.29) is the following. The value of c
affects the number of eigenvalues for the full-line Schrödinger operator with the
specified potential V, and hence by using various different values of c as input
we can check the unequivalence of Tl(k) and Tr(k) as the number of eigenvalues
changes. The eigenvalues occur at the k-values on the positive imaginary axis in
the complex plane where the determinant of Tl(k) has poles. Thus, we are able to
identify the eigenvalues by locating the zeros of det[Tl(iκ)−1] when κ > 0. Let us
recall that we use an overbar on a digit to indicate a roundoff. We find that the
numerically approximate value c = 1.13725 corresponds to an exceptional case,
where the number of eigenvalues changes by 1. For example, when c > 1.13725
we observe that there are no eigenvalues and that there is exactly one eigenvalue
when 0 < c < 1.13725. When c = 0 we have an eigenvalue at k = 0.551i, the
eigenvalue shifts to k = 0.0695i when c = 1. When c = 1.3 we do not have any
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eigenvalues and the zero of det[Tl(k)−1] occurs on the negative imaginary axis
at k = −0.794i. We repeat our examination of the unequivalence of Tl(k) and
Tr(k) by also changing other entries of the matrices V1(x) and V2(x) appearing
in (4.29) and (4.30), respectively. For example, by letting

V1(x) =

[
3 −2
−2 −5

]
, −2 < x < 0, (4.31)

V2(x) =

[
2 1
1 −2

]
, 0 < x < 1, (4.32)

we evaluate Tl(k) using (4.27). In this case we observe that there are three
eigenvalues occurring when

k = 0.005635 i, k = 1.2737 i, k = 2.08802 i,

and we still observe that Tl(k) 6≡ Tr(k) in this case. In fact, using V1 and V2
appearing in (4.31) and (4.32), respectively, as input, we observe that the corre-
sponding transmission coefficients satisfy

2ik Tl(k)−1 =

[
−130.267 28.3984
−43.555 9.46508

]
+O(k), k → 0,

2ik Tr(k)−1 =

[
−130.267 −43.555
28.3984 9.46508

]
+O(k), k → 0,

confirming that we cannot have Tl(k) ≡ Tr(k). In Figure 4.1 we present the plot
of the matrix norm of Tl(k) − Tr(k) as a function of k, which also shows that
Tl(k) 6≡ Tr(k).
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Fig. 4.1: The matrix norm |Tl(k) − Tr(k)| vs k in Example 4.3 for the poten-
tial fragmented as in (1.4) and (1.5) with V1 and V2 given in (4.31) and (4.32),
respectively.
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5. The connection to the half-line Schrödinger operator

In this section we explore an important connection between the full-line n×n
matrix Schrödinger equation (1.1) and the half-line 2n × 2n matrix Schrödinger
equation

− φ′′ + V(x)φ = k2φ, x ∈ R+, (5.1)

where R+ := (0,+∞) and the potential V is a 2n × 2n matrix-valued function
of x. The connection will be made by choosing the potential V in terms of the
fragments V1 and V2 appearing in (1.4) and (1.5) for the full-line potential V in an
appropriate way and also by supplementing (5.1) with an appropriate boundary
condition. To make a distinction between the quantities relevant to the full-line
Schrödinger equation (1.1) and the quantities relevant to the half-line Schrödinger
equation (5.1), we use boldface to denote some of quantities related to (5.1).

Before making the connection between the half-line and full-line Schrödinger
operators, we first provide a summary of some basic relevant facts related to
(5.1). Since our interest in the half-line Schrödinger operator is restricted to
its connection to the full-line Schrödinger operator, we consider (5.1) when the
matrix potential has size 2n × 2n, where n is the positive integer related to the
matrix size n × n of the potential V in (1.1). We refer the reader to [6] for the
analysis of (5.1) when the size of the matrix potential V is n × n, where n can
be chosen as any positive integer.

We now present some basic relevant facts related to (5.1) by assuming that
the half-line 2n× 2n matrix potential V in (5.1) satisfies

V(x)† = V(x), x ∈ R+, (5.2)∫ ∞
0

dx (1 + x) |V(x)| < +∞. (5.3)

To construct the half-line matrix Schrödinger operator related to (5.1), we sup-
plement (5.1) with the general selfadjoint boundary condition

−B†φ(0) +A†φ′(0) = 0, (5.4)

where A and B are two constant 2n× 2n matrices satisfying

A†A+B†B > 0, B†A = A†B. (5.5)

We recall that a matrix is positive (also called positive definite) when all its
eigenvalues are positive.

It is possible to express the 2n boundary conditions listed in (5.4) in an un-
coupled form. We refer the reader to Section 3.4 of [6] for the explicit steps
to transform from any pair (A,B) of boundary matrices appearing in the gen-
eral selfadjoint boundary condition described in (5.4) and (5.5) to the diagonal
boundary matrix pair (Ã, B̃) given by{

Ã = −diag {sin θ1, sin θ2, · · · , sin θ2n} ,
B̃ = diag {cos θ1, cos θ2, · · · , cos θ2n} ,

(5.6)
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for some appropriate real parameters θj ∈ (0, π]. It can directly be verified that
the matrix pair (Ã, B̃) satisfies the two equalities in (5.5) and that (5.4) is equiv-
alent to the 2n uncoupled system given by

(cos θj)φj(0) + (sin θj)φ
′
j(0) = 0, 1 ≤ j ≤ 2n. (5.7)

We remark that the case θj = π corresponds to the Dirichlet boundary condition
and the case θj = π/2 corresponds to the Neumann boundary condition. Let
us use nD and nN to denote the number of Dirichlet and Neumann boundary
conditions in (5.7), and let us use nM to denote the number of mixed boundary
conditions in (5.7), where a mixed boundary condition occurs when θ ∈ (0, π/2)
or θ ∈ (π/2, π). It is clear that we have

nD + nN + nM = 2n.

In Sections 3.3 and 3.5 of [6] we have constructed a selfadjoint realization of
the matrix Schrödinger operator −d2/dx2 + V(x) with the boundary condition
described in (5.4) and (5.5), and we have used HA,B,V to denote it. In Section 3.6
of [6] we have shown that that selfadjoint realization with the boundary matrices
(A,B) and the selfadjoint realization with the boundary matrices (Ã, B̃) are
related to each other as

HA,B,V = MHÃ,B̃,M†VMM
†. (5.8)

for some 2n× 2n unitary matrix M.
In Section 2.4 of [6] we have established a unitary transformation between

the half-line 2n× 2n matrix Schrödinger operator and the full-line n× n matrix
Schrödinger operator by choosing the boundary matrices A and B in (5.4) ap-
propriately so that the full-line potential V at x = 0 includes a point interaction.
Using that unitary transformation, in [13] the half-line physical solution to (5.1)
and the full-line physical solutions to (1.1) are related to each other, and also
the corresponding half-line scattering matrix and full-line scattering matrix are
related to each other. In this section of our current paper, in the absence of a
point interaction, via a unitary transformation we are interested in analyzing the
connection between various half-line quantities and the corresponding full-line
quantities.

By proceeding as in Section 2.4 of [6], we establish our unitary operator
U from L2(R+;C2n) onto L2(R;Cn) as follows. We decompose any complex-
valued, square-integrable column vector φ(x) with 2n components into two pieces
of column vectors φ+(x) and φ−(x), each with n components, as

φ(x) =:

[
φ+(x)
φ−(x)

]
, x ∈ R+.

Then, our unitary transformation U maps φ(x) onto the complex-valued, square-
integrable column vector ψ(x) with n components in such a way that

ψ(x) =

{
φ+(x), x > 0,

φ−(−x), x < 0.
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We use the decomposition of the full-line n × n matrix potential V into the
potential fragments V1 and V2 as described in (1.4) and (1.5). We choose the
half-line 2n× 2n matrix potential V in terms of V1 and V2 by letting

V(x) =

[
V2(x) 0

0 V1(−x)

]
, x ∈ R+. (5.9)

The inverse transformation U−1, which is equivalent to U†, maps ψ(x) onto φ(x)
via

φ(x) =

[
ψ(x)
ψ(−x)

]
, x ∈ R+.

Under the action of the unitary transformation U, the half-line Hamiltonian
HA,B,V appearing on the left-hand side of (5.8) is unitarily transformed onto the
full-line Hamiltonian HV , where HV is related to HA,B,V as

HV = UHA,B,VU†, (5.10)

and its domain D[HV ] is given by

D[HV ] =
{
ψ ∈ L2(R;Cn) : U†ψ ∈ D[HA,B,V]

}
,

where D[HA,B,V] denotes the domain of HA,B,V. The operator HV specified in
(5.10) is a selfadjoint realization in L2(R;Cn) of the formal differential operator
−d2/dx2+V (x), where V is the full-line potential appearing in (1.4) and satisfying
(1.2) and (1.3).

The boundary condition (5.4) at x = 0 of R+ satisfied by the functions in
D[HA,B,V] implies that the functions in D[HV ] themselves satisfy a transmission
condition at x = 0 of the full line R. In order to determine that transmission
condition, we express the boundary matrices A and B appearing in (5.4) in terms
of n× 2n block matrices A1, A2, B1, and B2 as

A =:

[
A1

A2

]
, B =:

[
B1

B2

]
. (5.11)

Using (5.11) in (5.4) we see that any function ψ(x) in D[HV ] satisfies the trans-
mission condition at x = 0 given by

−B†1 ψ(0+)−B†2 ψ(0−) +A†1 ψ
′(0+)−A†2 ψ(0−) = 0. (5.12)

For example, let us choose the boundary matrices A and B as

A =

[
0 I
0 I

]
, B =

[
−I 0
I 0

]
, (5.13)

where we recall that I is the n× n identity matrix and 0 denotes the n× n zero
matrix. It can directly be verified that the matrices A and B appearing in (5.13)
satisfy the two matrix equalities in (5.5). Then, the transmission condition at
x = 0 of R given in (5.12) is equivalent to the two conditions

ψ(0+) = ψ(0−), ψ′(0+) = ψ′(0−),
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which indicate that the functions ψ and ψ′ are continuous at x = 0. In this case,
HV is the standard matrix Schrödinger operator on the full line without a point
interaction. In the special case when the boundary matrices A and B are chosen
as in (5.13), as shown in Proposition 5.9 of [13], the corresponding transformed
boundary matrices Ã and B̃ in (5.6) yield precisely n Dirichlet and n Neumann
boundary conditions.

We now introduce some relevant quantities for the half-line Schrödinger equa-
tion (5.1) with the boundary condition (5.4). We assume that the half-line po-
tential V is chosen as in (5.9), where the full-line potential V satisfies (1.2) and
(1.3). Hence, V satisfies (5.2) and (5.3). As already mentioned, we use boldface
to denote some of the half-line quantities in order to make a contrast with the
corresponding full-line quantities. For example, V is the half-line 2n× 2n matrix
potential whereas V is the full-line n × n matrix potential, S(k) is the half-line
2n × 2n scattering matrix while S(k) is the full-line 2n × 2n scattering matrix,
f(k, x) is the half-line 2n × 2n matrix-valued Jost solution whereas fl(k, x) and
fr(k, x) are the full-line n×n matrix-valued Jost solutions, Φ(k, x) is the half-line
2n×2n matrix-valued regular solution, Ψ(k, x) denotes the 2n×2n matrix-valued
half-line physical solution whereas Ψl(k, x) and Ψr(k, x) are the full-line n × n
matrix-valued physical solutions. We use I for the n× n identity matrix and use
I for the 2n× 2n identity matrix. We recall that J denotes the 2n× 2n constant
matrix defined in (3.10) and it should not be confused with the half-line 2n× 2n
Jost matrix J(k).

The Jost solution f(k, x) is the solution to (5.1) satisfying the spacial asymp-
totics

f(k, x) = eikx [I + o(1)] , f ′(k, x) = ik eikx [I + o(1)] , x→ +∞. (5.14)

In terms of the 2n× 2n boundary matrices A and B appearing in (5.4) and the
Jost solution f(k, x), the 2n× 2n Jost matrix J(k) is defined as

J(k) := f(−k∗, 0)†B − f ′(−k∗, 0)†A, k ∈ C+, (5.15)

where −k∗ is used because J(k) has [6] an analytic extension in k from R to C+

and J(k) is continuous in C+. The half-line 2n × 2n scattering matrix S(k) is
defined in terms of the Jost matrix J(k) as

S(k) := −J(−k) J(k)−1, k ∈ R. (5.16)

When the potential V satisfies (5.2) and (5.3), in the so-called exceptional case
the matrix J(k)−1 has a singularity at k = 0 even though the limit of the right-
hand side of (5.16) exists when k → 0. Thus, S(k) is continuous in k ∈ R including
k = 0. It is known [6] that S(k) satisfies

S(k)−1 = S(k)† = S(−k), k ∈ R.

We refer the reader to Theorem 3.8.15 of [6] regarding the small k-behavior of
J(k)−1 and S(k).



284 Tuncay Aktosun and Ricardo Weder

The 2n × 2n matrix-valued physical solution Ψ(k, x) to (5.1) is defined in
terms of the Jost solution f(k, x) and the scattering matrix S(k) as

Ψ(k, x) := f(−k, x) + f(k, x) S(k). (5.17)

It is known [6] that Ψ(k, x) has a meromorphic extension from k ∈ R to k ∈ C+

and it also satisfies the boundary condition (5.4), i.e., we have

−B†Ψ(k, 0) +A†Ψ′(k, 0) = 0. (5.18)

There is also a particular 2n×2n matrix-valued solution Φ(k, x) to (5.1) satisfying
the initial conditions

Φ(k, 0) = A, Φ′(k, 0) = B.

Because Φ(k, x) is entire in k for each fixed x ∈ R+, it is usually called the
regular solution. The physical solution Ψ(k, x) and the regular solution Φ(k, x)
are related to each other via the Jost matrix J(k) as

Ψ(k, x) = −2ikΦ(k, x) J(k)−1.

In the next theorem, we consider the special case where the half-line
Schrödinger operator HA,B,V and the full-line Schrödinger operator HV are re-
lated to each other as in (5.10), with the potentials V and V being related as in
(1.4) and (5.9) and with the boundary matrices A and B chosen as in (5.13). We
show how the corresponding half-line Jost solution, half-line physical solution,
half-line scattering matrix, and half-line Jost matrix are related to the appro-
priate full-line quantities. We remark that the results in (5.21) and (5.22) have
already been proved in [13] by using a different method.

Theorem 5.1. Consider the full-line matrix Schrödinger equation (1.1) with
the n × n matrix potential V satisfying (1.2) and (1.3). Assume that the cor-
responding full-line Hamiltonian HV and the half-line Hamiltonian HA,B,V are
unitarily connected as in (5.10) by relating the half-line 2n× 2n matrix potential
V to V as in (1.4) and (5.9) and by choosing the boundary matrices A and B as
in (5.13). Then, we have the following:

(a) The half-line 2n× 2n matrix-valued Jost solution f(k, x) to (5.1) appearing
in (5.14) is related to the full-line n×n matrix-valued Jost solutions fl(k, x)
and fr(k, x) appearing in (2.1) and (2.2), respectively, as

f(k, x) =

[
fl(k, x) 0

0 fr(k,−x)

]
, x ∈ R+, k ∈ C+. (5.19)

(b) The half-line 2n × 2n scattering matrix S(k) defined in (5.16) is related to
the full-line 2n× 2n scattering matrix S(k) defined in (2.9) as

S(k) = S(k)Q, k ∈ R, (5.20)

where Q is the 2n × 2n constant matrix defined in (2.53). Hence, the half-
line scattering matrix S(k) is related to the full-line n × n matrix-valued
scattering coefficients as

S(k) =

[
R(k) Tl(k)
Tr(k) L(k)

]
, k ∈ R. (5.21)
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(c) The half-line 2n × 2n physical solution Ψ(k, x) defined in (5.17) is related
to the full-line n × n matrix-valued physical solutions Ψl(k, x) and Ψr(k, x)
appearing in (2.10) as

Ψ(k, x) =

[
Ψr(k, x) Ψl(k, x)

Ψr(k,−x) Ψl(k,−x)

]
, x ∈ R+, k ∈ C+. (5.22)

(d) The half-line 2n × 2n Jost matrix J(k) defined in (5.15) and its inverse
J(k)−1 are related to the full-line n×n matrix-valued Jost solutions fl(k, x)
and fr(k, x) appearing in (2.1) and (2.2) and the n×n matrix-valued trans-
mission coefficients Tl(k) and Tr(k) appearing in (2.5) and (2.6) as

J(k) =

[
−fl(−k∗, 0)† −f ′l (−k∗, 0)†

fr(−k∗, 0)† f ′r(−k∗, 0)†

]
, k ∈ C+, (5.23)

J(k)−1 =
1

2ik

[
f ′r(k, 0) f ′l (k, 0)
−fr(k, 0) −fl(k, 0)

] [
Tr(k) 0

0 Tl(k)

]
, k ∈ C+ \ {0}. (5.24)

Proof. The Jost solutions fl(k, x) and fr(k, x) satisfy (1.1). Since k appears as
k2 in (1.1), the quantities fl(−k, x), and fr(−k, x) also satisfy (1.1). Furthermore,
fl(k, x) and fr(k, x) satisfy the respective spacial asymptotics in (2.1) and (2.2).
Then, with the help of (1.5) and (5.9) we see that the half-line Jost solution
f(k, x) given in (5.19) satisfies the half-line Schrödinger equation (5.1) and the
spacial asymptotics (5.14). Thus, the proof of (a) is complete. Let us now prove
(b). We evaluate (5.17) and its x-derivative at the point x = 0, and then we use
the result in (5.18), where A and B are the matrices in (5.13). This yields[

fl(−k, 0) −fr(−k, 0)
f ′l (−k, 0) −f ′r(−k, 0)

]
+

[
fl(k, 0) −fr(k, 0)
f ′l (k, 0) −f ′r(k, 0)

]
S(k) = 0. (5.25)

Using the matrices G(k, x) and J defined in (2.20) and (3.10), respectively, we
write (5.25) as

G(−k, 0) J +G(k, 0) J S(k) = 0, k ∈ R,

which yields

S(k) = −J G(k, 0)−1G(−k, 0) J, k ∈ R. (5.26)

We remark that the invertibility of G(k, 0) for k ∈ R \ {0} is assured by Theo-
rem 2.3(c) and that (5.26) holds also at k = 0 as a consequence of the continuity
of S(k) in k ∈ R. From (3.9) we have

G(k, 0)−1G(−k, 0) = J S(k) J Q, k ∈ R, (5.27)

where we recall that S(k) is the full-line scattering matrix in (2.9) and Q is the
constant matrix in (2.53). Using (5.27) in (5.26) we get

S(k) = −J [J S(k) J Q] J, k ∈ R. (5.28)
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Using J2 = I and JQ = −QJ in (5.28), we obtain (5.20). Then, we get (5.21) by
using (2.9) in (5.20). Thus, the proof of (b) is complete. Let us now prove (c).
Using (5.19) and (5.21) in (5.17), we obtain

Ψ(k, x) =

[
fl(−k, x) + fl(k, x)R(k) fl(k, x)Tl(k)

fr(k,−x)Tr(k) fr(−k,−x) + fr(k,−x)L(k)

]
. (5.29)

The use of (3.3) and (3.4) in (5.29) yields

Ψ(k, x) =

[
fr(k, x)Tr(k) fl(k, x)Tl(k)
fr(k,−x)Tr(k) fl(k,−x)Tl(k)

]
. (5.30)

Then, using (2.10) on the right-hand side of (5.30), we obtain (5.22), which
completes the proof of (c). We now turn to the proof of (d). In (5.15) we use
(5.13), (5.19), and the x-derivative of (5.19). This gives us (5.23). Finally, by
postmultiplying both sides of (5.24) with the respective sides of (5.23), one can
verify that J(k) J(k)−1 = I. In the simplification of the left-hand side of the last
equality, one uses (2.44), (2.46), (2.48), and (2.49). Thus, the proof of (d) is
complete.

We recall that, as (5.10) indicates, the full-line and half-line Hamiltonians
HV and HA,B,V, respectively, are unitarily equivalent. However, as seen from
(5.20), the corresponding full-line and half-line scattering matrices S(k) and S(k),
respectively, are not unitarily equivalent. For an elaboration on this issue, we refer
the reader to [13].

Let us also mention that it is possible to establish (5.24) without the direct
verification used in the proof of Theorem 5.1. This can be accomplished as follows.
Comparing (2.20) and (5.23), we see that

J(k) = −J G(−k∗, 0)†, k ∈ C+. (5.31)

By taking the matrix inverse of both sides of (5.31), we obtain

J(k)−1 = −
[
G(−k∗, 0)−1

]†
J, k ∈ C+ \ {0}. (5.32)

With the help of (2.20), (2.53), and (3.10), we can write (2.58) as

G(k, x)−1 = − 1

2ik

[
Tl(k) 0

0 Tr(k)

]
J QG(−k∗, x)†QJ, k ∈ C+ \ {0}. (5.33)

From (5.33), for k ∈ C+ \ {0} we get

[
G(−k∗, x)−1

]†
= − 1

2ik
J QG(k, x)QJ

[
Tl(−k∗)† 0

0 Tr(−k∗)†
]
. (5.34)

Using (4.1) in the last matrix factor on the right-hand side of (5.34), we can write
(5.34) as

[
G(−k∗, x)−1

]†
= − 1

2ik
J QG(k, x)QJ

[
Tr(k) 0

0 Tl(k)

]
, k ∈ C+ \ {0}. (5.35)
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Finally, using (5.35) on the right-hand side of (5.32), we obtain

J(k)−1 =
1

2ik
J QG(k, 0)Q

[
Tr(k) 0

0 Tl(k)

]
, k ∈ C+ \ {0}, (5.36)

which is equivalent to (5.24).
In the next theorem, we relate the determinant of the half-line 2n × 2n Jost

matrix J(k) to the determinant of the full-line n× n matrix-valued transmission
coefficient Tl(k).

Theorem 5.2. Consider the full-line matrix Schrödinger equation (1.1) with
the n × n matrix potential V satisfying (1.2) and (1.3). Assume that the corre-
sponding full-line Hamiltonian HV is unitarily connected to the half-line Hamil-
tonian HA,B,V as in (5.10) by relating the half-line 2n × 2n matrix potential V
to V as in (1.4) and (5.9) and by choosing the boundary matrices A and B as
in (5.13). Then, the determinant of the half-line 2n × 2n Jost matrix J(k) de-
fined in (5.15) is related to the determinant of the corresponding full-line n × n
matrix-valued transmission coefficient Tl(k) appearing in (2.5) as

det[J(k)] =
(2ik)n

det[Tl(k)]
, k ∈ C+. (5.37)

Proof. By taking the determinants of both sides of (5.36), we obtain

1

det[J(k)]
=

(−1)n

(2ik)2n
det[G(k, 0)] det[Tl(k)] det[Tr(k)], k ∈ C+ \ {0}, (5.38)

where we have used Q2 = I and det[J ] = (−1)n, which follow from (2.53) and
(3.10), respectively. Using (2.23) in (5.38), we see that (5.37) holds.

When the potential V satisfies (5.2) and (5.3), from Theorems 3.11.1 and
3.11.6 of [6] we know that the zeros of det[J(k)] in C+ \{0} can only occur on the
positive imaginary axis and the number of such zeros is finite. Assume that the
full-line Hamiltonian HV and the half-line Hamiltonian HA,B,V are connected to
each other through the unitary transformation U as described in (5.10), where
V and V are related as in (1.4) and (5.9) and the boundary matrices are chosen
as in (5.13). We then have the following important consequence. The number
of eigenvalues of HV coincides with the number of eigenvalues of HA,B,V, and
the multiplicities of the corresponding eigenvalues also coincide. The eigenvalues
of HA,B,V occur at the k-values on the positive imaginary axis in the complex
k-plane where det[J(k)] vanishes, and the multiplicity of each of those eigenvalues
is equal to the order of the corresponding zero of det[J(k)]. Thus, as seen from
(5.37) the eigenvalues of HV occur on the positive imaginary axis in the complex
k-plane where det[Tl(k)] has poles, and the multiplicity each of those eigenvalues
is equal to the order of the corresponding pole of det[Tl(k)]. Let us use N to
denote the number of such poles without counting their multiplicities, and let us
assume that those poles occur at k = iκj for 1 ≤ j ≤ N. We use mj to denote
the multiplicity of the pole at k = iκj . The nonnegative integer N corresponds to
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the number of distinct eigenvalues −κ2j of the corresponding full-line Schrödinger
operator HV associated with (1.1). If N = 0, then there are no eigenvalues. Let
us use N to denote the number of eigenvalues including the multiplicities. Hence,
N is related to N as

N :=

N∑
j=1

mj . (5.39)

From (5.37) it is seen that the zeros of the determinant of the corresponding Jost
matrix J(k) occur at k = iκj with multiplicity mj for 1 ≤ j ≤ N. It is known [6]
that J(k) is analytic in C+ and continuous in C+. Thus, from (5.37) we also see
that det[Tl(k)] cannot vanish in C+ \ {0}.

The unitary equivalence given in (5.10) between the half-line matrix
Schrödinger operator HA,B,V and the full-line matrix Schrödinger operator HV

has other important consequences. Let us comment on the connection between
the half-line and full-line cases when k = 0. From Corollary 3.8.16 of [6] it follows
that

det[J(k)] = c1 k
µ [1 + o(1)] , k → 0 in C+, (5.40)

where µ is the geometric multiplicity of the zero eigenvalue of J(0) and c1 is
a nonzero constant. Further, from Proposition 3.8.18 of [6] we know that µ
coincides with the geometric and algebraic multiplicity of the eigenvalue +1 of
S(0). In fact, the nonnegative integer µ is related to (5.1) when k = 0, i.e., related
to the zero-energy Schrödinger equation given by

− φ′′ + V(x)φ = 0, x ∈ R+. (5.41)

When the 2n × 2n matrix potential V satisfies (5.2) and (5.3), from (3.2.157)
and Proposition 3.2.6 of [6] it follows that, among any fundamental set of 4n
linearly independent column-vector solutions to (5.41), exactly 2n of them are
bounded and 2n are unbounded. In fact, the 2n columns of the zero-energy
Jost solution f(0, x) make up the 2n linearly independent bounded solutions to
(5.41). Certainly, not all of those 2n column-vector solutions necessarily satisfy
the selfadjoint boundary condition (5.4) where the 2n× 2n boundary matrices A
and B are as in (5.5). From Remark 3.8.10 of [6] it is known that µ coincides
with the number of linearly independent bounded solutions to (5.41) satisfying
the boundary condition (5.4) and that we have

0 ≤ µ ≤ 2n. (5.42)

From (5.37) and (5.40) we obtain

det[Tl(k)] =
1

c1
(2i)n kn−µ [1 + o(1)] , k → 0 in C+. (5.43)

We have the following additional remarks. Let us consider (1.1) when k = 0, i.e.,
let us consider the full-line zero-energy Schrödinger equation

− ψ′′ + V (x)ψ = 0, x ∈ R, (5.44)
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where V is the n×n matrix potential appearing in (1.1) and satisfying (1.2) and
(1.3). We recall [4] that, for the full-line Schrödinger equation in the scalar case,
i.e., when n = 1, the generic case occurs when there are no bounded solutions to
(5.44) and that the exceptional case occurs when there exists a bounded solution
to (5.44). In the n × n matrix case, let us assume that (5.44) has ν linearly
independent bounded solutions. It is known [5] that

0 ≤ ν ≤ n. (5.45)

We can call ν the degree of exceptionality. From the unitary connection (5.10)
it follows that the number of linearly independent bounded solutions to (5.44) is
equal to the number of linearly independent bounded solutions to (5.41). Thus,
we have

µ = ν. (5.46)

As a result, we can write (5.43) also as

det[Tl(k)] =
1

c1
(2i)n kn−ν [1 + o(1)] , k → 0 in C+. (5.47)

From (5.42), (5.45), and (5.46) we conclude that

0 ≤ µ ≤ n. (5.48)

The restriction from (5.42) to (5.48), when we have the unitary equivalence
(5.10) between the half-line matrix Schrödinger operator HA,B,V and the full-line
matrix Schrödinger operator HV , can be made plausible as follows. As seen from
(5.9), the 2n × 2n matrix potential V(x) is a block diagonal matrix consisting
of the two n × n square matrices V2(x) and V1(−x) for x ∈ R+. Thus, we can
decompose any column-vector solution φ(x) to (5.41) with 2n components into
two column vectors each having n components as

φ(x) =

[
φ2(x)
φ1(x)

]
, x ∈ R+. (5.49)

Consequently, we can decompose the 2n× 2n matrix system (5.41) into the two
n× n matrix subsystems{

−φ′′2 + V2(x)φ2 = 0, x ∈ R+,

−φ′′1 + V1(−x)φ1 = 0, x ∈ R+,
(5.50)

in such a way that the two n× n subsystems given in the first and second lines,
respectively, in (5.50) are uncoupled from each other. We now look for n × n
matrix solutions to each of the two n× n subsystems in (5.50). Let us first solve
the first subsystem in (5.50). From (3.2.157) and Proposition 3.2.6 of [6], we know
that there are n linearly independent bounded solutions to the first subsystem in
(5.50). With the help of (5.49) and the boundary matrices A and B in (5.13),
we see that the boundary condition (5.4) is expressed as two n× n systems as

φ1(0) = φ2(0), φ′1(0) = −φ′2(0). (5.51)
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Thus, once we have φ2(x) at hand, the initial values for φ1(0) and φ′1(0) are
uniquely determined from (5.51). Then, we solve the second subsystem in (5.50)
with the already determined initial conditions given in (5.51). Since the first
subsystem in (5.50) can have at most n linearly independent bounded solutions
φ2(x) and we have φ1(x) uniquely determined using φ2(x), from the decomposi-
tion (5.49) we conclude that we can have at most n linearly independent bounded
column-vector solutions φ(x) to the 2n× 2n system (5.41).

In (3.13) we have expressed the determinant of the scattering matrix S(k) for
the full-line Schrödinger equation (1.1) in terms of the determinant of the left
transmission coefficient Tl(k). When the full-line Hamiltonian HV and the half-
line Hamiltonian HA,B,V are related to each other unitarily as in (5.10), in the
next theorem we relate the determinant of the corresponding half-line scattering
matrix S(k) to det[S(k)].

Theorem 5.3. Consider the full-line matrix Schrödinger equation (1.1) with
the n × n matrix potential V satisfying (1.2) and (1.3). Assume that the cor-
responding full-line Hamiltonian HV and the half-line Hamiltonian HA,B,V are
unitarily connected as in (5.10) by relating the half-line 2n× 2n matrix potential
V to V as in (1.4) and (5.9) and by choosing the boundary matrices A and B as
in (5.13). Then, the determinant of the half-line scattering matrix S(k) defined in
(5.16) is related to the determinant of the full-line scattering matrix S(k) defined
in (2.9) as

det [S(k)] = (−1)n det [S(k)] , k ∈ R, (5.52)

and hence we have

det [S(k)] = (−1)n
det[Tl(k)]

(det[Tl(k)])∗
, k ∈ R, (5.53)

where we recall that Tl(k) is the n× n matrix-valued left transmission coefficient
appearing in (2.5).

Proof. The scattering matrices S(k) and S(k) are related to each other as in
(5.20), where Q is the 2n×2n constant matrix defined in (2.53). By interchanging
the first and second row blocks in Q we get the 2n×2n identity matrix, and hence
we have det[Q] = (−1)n. Thus, by taking the determinant of both sides of (5.20),
we obtain (5.52). Then, using (3.13) on the right-hand side of (5.52), we get
(5.53).

6. Levinson’s theorem

The main goal in this section is to prove Levinson’s theorem for the full-line
matrix Schrödinger equation (1.1). In the scalar case, we recall that Levinson’s
theorem connects the continuous spectrum and the discrete spectrum to each
other, and it relates the number of discrete eigenvalues including the multiplicities
to the change in the phase of the scattering matrix when the independent variable
k changes from k = 0 to k = +∞. In the matrix case, in Levinson’s theorem one
needs to use the phase of the determinant of the scattering matrix. In order to



Factorization for the Matrix Schrödinger Equation 291

prove Levinson’s theorem for (1.1), we exploit the unitary transformation given
in (5.10) relating the half-line and full-line matrix Schrödinger operators and
we use Levinson’s theorem presented in Theorem 3.12.3 of [6] for the half-line
matrix Schrödinger operator. We also provide an independent proof with the
help of the argument principle applied to the determinant of the matrix-valued
left transmission coefficient appearing in (2.5).

In preparation for the proof of Levinson’s theorem for (1.1), in the next the-
orem we relate the large k-asymptotics of the half-line scattering matrix S(k) to
the full-line matrix potential V in (1.1). Recall that the half-line potential V is
related to the full-line potential V as in (5.9), where V1 and V2 are the fragments
of V appearing in (1.4) and (1.5). We also recall that the boundary matrices
A and B appearing in (5.13) are used in the boundary condition (5.4) in the
formation of the half-line scattering matrix S(k).

Theorem 6.1. Consider the full-line matrix Schrödinger equation (1.1) with
the n × n matrix potential V satisfying (1.2) and (1.3). Assume that the cor-
responding full-line Hamiltonian HV and the half-line Hamiltonian HA,B,V are
unitarily connected by relating the half-line 2n × 2n matrix potential V to V
as in (1.4) and (5.9) and by choosing the 2n × 2n boundary matrices A and B
as in (5.13). Then, the half-line scattering matrix S(k) in (5.16) has the large
k-asymptotics given by

S(k) = S∞ +
G1

ik
+ o

(
1

k

)
, k → ±∞ in R, (6.1)

where we have

S∞ = Q, G1 =
1

2

 0

∫ ∞
−∞

dxV (x)∫ ∞
−∞

dxV (x) 0

 , (6.2)

with Q being the constant 2n× 2n matrix defined in (2.53).

Proof. We already know that the half-line scattering matrix S(k) is related
to the full-line scattering coefficients as in (5.21). With the help of (4.2)–(4.5)
expressing the large k-asymptotics of the scattering coefficients, from (5.21) we
obtain (6.1).

Remark 6.2. We have the following comments related to the first equality
in (6.2). One can directly evaluate the eigenvalues of the matrix Q defined in
(2.53) and confirm that it has the eigenvalue −1 with multiplicity n and has the
eigenvalue +1 with multiplicity n. By Theorem 3.10.6 of [6] we know that the
number of Dirichlet boundary conditions associated with the boundary matrices
Ã and B̃ in (5.13) is equal to the (algebraic and geometric) multiplicity of the
eigenvalue −1 of the matrix S∞, and that the number of non-Dirichlet boundary
conditions is equal to the (algebraic and geometric) multiplicity of the eigenvalue
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+1 of the matrix S∞. Hence, the first equality in (6.2) implies that the bound-
ary matrices Ã and B̃ in (5.13) correspond to n Dirichlet and n non-Dirichlet
boundary conditions. In fact, it is already proved in Proposition 5.9 of [13] with
a different method that the number of Dirichlet boundary conditions is equal to
n, and that the aforementioned n non-Dirichlet boundary conditions are actually
all Neumann boundary conditions.

Next, we provide a review of some relevant facts on the small k-asymptotics
related to the full-line matrix Schrödinger equation (1.1) with the n × n matrix
potential V satisfying (1.2) and (1.3). We refer the reader to [5] for an elaborate
analysis including the proofs and further details.

Let us consider the full-line n×n matrix-valued zero-energy Schrödinger equa-
tion given in (5.44) when the n × n matrix potential V satisfies (1.2) and (1.3).
There are two n× n matrix-valued solutions to (5.44) whose 2n columns form a
fundamental set. We use φl(x) to denote one of those two n × n matrix-valued
solutions, where φl(x) satisfies the asymptotic conditions

φl(x) = x [I + o(1)] , φ′l(x) = I + o(1), x→ +∞.

Thus, all the n columns of φl(x) correspond to unbounded solutions to (5.44). The
other n× n matrix-valued solution to (5.44) is given by fl(0, x), where fl(k, x) is
the left Jost solution to (1.1) appearing in (2.1). As seen from (2.1), the function
fl(0, x) satisfies the asymptotics

fl(0, x) = I + o(1), f ′l (0, x) = o(1), x→ +∞,

and hence fl(0, x) remains bounded as x→ +∞. On the other hand, some or all
the n columns of fl(0, x) may be unbounded as x→ −∞. In fact, we have [5]

fl(0, x) = x [∆l + o(1)] , f ′l (0, x) = ∆l + o(1), x→ −∞,

where ∆l is the n× n constant matrix defined as

∆l := lim
k→0

2ik Tl(k)−1, (6.3)

with the limit taken from within C+.
From Section 5, we recall that the degree of exceptionality, denoted by ν, is

defined as the number of linearly independent bounded column-vector solutions
to (5.44), and we know that ν satisfies (5.45). From (5.45) we see that we have
the purely generic case for (1.1) when ν = 0 and we have the purely exceptional
case when ν = n. Hence, n− ν corresponds to the degree of genericity for (1.1).
Since the value of ν is uniquely determined by only the potential V in (1.1), we
can also say that the n× n matrix potential V is exceptional with degree ν.

We can characterize the value of ν in various different ways. For example, ν
corresponds to the geometric multiplicity of the zero eigenvalue of the n×n matrix
∆l defined in (6.3). The value of ν is equal to the nullity of the matrix ∆l. It is
also equal to the number of linearly independent bounded columns of the zero-
energy left Jost solution fl(0, x). Thus, the remaining n−ν columns of fl(0, x) are
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all unbounded solutions to (5.44). Hence, (5.44) has 2n− ν linearly independent
unbounded column-vector solutions and it has ν linearly independent bounded
column-vector solutions.

The degree of exceptionality ν can also be related to the zero-energy right Jost
solution fr(0, x) to (5.44). As we see from (2.2), the function fr(0, x) satisfies the
asymptotics

fr(0, x) = I + o(1), f ′r(0, x) = o(1), x→ −∞, (6.4)

and hence fr(0, x) remains bounded as x→ −∞. On the other hand, we have

fr(0, x) = −x [∆r + o(1)] , f ′r(0, x) = −∆r + o(1), x→ +∞, (6.5)

where ∆r is the constant n× n matrix defined as

∆r := lim
k→0

2ik Tr(k)−1, (6.6)

with the limit taken from within C+. From (4.1) it follows that the n×n matrices
∆l and ∆r satisfy

∆r = ∆†l . (6.7)

With the help of (6.4)–(6.7) we observe that the degree of exceptionality ν is
equal to the geometric multiplicity of the zero eigenvalue of the n × n matrix
∆r, to the nullity of ∆r, and also to the number of linearly independent bounded
columns of fr(0, x).

One may ask whether the degree of exceptionality for the full-line potential
V can be determined from the degrees of exceptionality for its fragments. The
answer is no unless all the fragments are purely exceptional, in which case the
full-line potential must also be exceptional. This answer can be obtained by
first considering the scalar case and then by generalizing it to the matrix case
by arguing with a diagonal matrix potential. We refer the reader to [3] for an
explicit example in the scalar case, where it is demonstrated that the potential
V may be generic or exceptional if at least one of the fragments is generic. In
the next example, we also illustrate this fact by a different example.

Example 6.3. We recall that, in the full-line scalar case, if the potential V in
(1.1) is real valued and satisfies (1.3) then generically the transmission coefficient
T (k) vanishes linearly as k → 0 and we have T (0) 6= 0 in the exceptional case.
In the generic case we have L(0) = R(0) = −1 and in the exceptional case we
have |L(0)| = |R(0)| < 1, where we use L(k) and R(k) for the left and right
reflection coefficients. Hence, from (3.51) we observe that, in the scalar case, if
the two fragments of a full-line potential are both exceptional then the potential
itself must be exceptional. By using induction, the result can be proved to hold
also in the case where the number of fragments is arbitrary. In this example, we
demonstrate that if at least one of the fragments is generic, then the potential
itself can be exceptional or generic. In the full-line scalar case, let us consider
the square-well potential of width a and depth b, where a is a positive parameter
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and b is a nonnegative parameter. Without any loss of generality, because the
transmission coefficient is not affected by shifting the potential, we can assume
that the potential V is given by

V (x) =

{
−b, −a

2
< x <

a

2
,

0, elsewhere.
(6.8)

The transmission coefficient corresponding to the scalar potential V in (6.8) is
given by

T (k) =
4k
√
b+ k2 e−ika

q6 + q7 + q8
, (6.9)

where we have defined

q6 := −b− k2 + k
√
b+ k2,

q7 :=
[
−k2 + k

√
b+ k2

]
exp

(
ia
√
b+ k2

)
,

q8 :=
[
b+ 2k2 + 2k

√
b+ k2

]
exp

(
−ia

√
b+ k2

)
.

From (6.9) we obtain

1

T (k)
=

√
b

4k

(
e−ia

√
b − 1

)
+O(1), k → 0. (6.10)

Hence, (6.10) implies that the exceptional case occurs if and only if a
√
b is an

integer multiple of 2π, in which case T (k) does not vanish at k = 0. Thus, the
potential V in (6.8) is exceptional if and only if we have the depth b of the
square-well potential is related to the width a as

b =
4p2π2

a2
, (6.11)

for some nonnegative integer p. For simplicity, let us use a = 2 and choose our
potential fragments V1 and V2 as

V1(x) =

{
−b, −1 < x < c,

0, elsewhere,
V2(x) =

{
−b, c < x < 1,

0, elsewhere,

where c is a parameter in [−1, 1] so that the potential V in (6.8) is given by

V (x) =

{
−b, −1 < x < 1,

0, elsewhere.
(6.12)

We remark that the zero potential is exceptional. With the help of (6.11), we
conclude that V1 is exceptional if and only if there exists a nonnegative integer
p1 satisfying √

b

2π
=

p1
1 + c

, (6.13)
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that V2 is exceptional if and only if there exists a nonnegative integer p2 satisfying

√
b

2π
=

p2
1− c

, (6.14)

and that V is exceptional if and only if there exists a nonnegative integer p
satisfying √

b

2π
=
p

2
. (6.15)

In fact, (6.15) happens if and only if p = p1 + p2. From (6.13)–(6.15) we have the
following conclusions:

(a) If V1 and V2 are both exceptional, then V is also exceptional. This follows
from the restriction p = p1 + p2 that if p1 and p2 are both nonnegative
integers then p must also be a nonnegative integer. As argued earlier, if V1
and V2 are both exceptional then V cannot ever be generic.

(b) If the nonnegative integer p1 satisfying (6.13) exists but the nonnegative
integer p2 satisfying (6.14) does not exist then the nonnegative integer p
satisfying (6.15) cannot exist because of the restriction p = p1+p2. Thus, we
can conclude that if V1 is exceptional then V2 and V are either simultaneously
exceptional or simultaneously generic. Similarly, we can conclude that if
V2 is exceptional then V1 and V are either simultaneously exceptional or
simultaneously generic.

(c) If both V1 are V2 are generic, then V can be generic or exceptional. This can
be seen easily by arguing that in the equation p = p1 + p2, it may happen
that p1+p2 is a nonnegative integer or not a nonnegative integer even though
neither p1 nor p2 are nonnegative integers.

Finally in this section, we consider Levinson’s theorem for (1.1). We refer the
reader to Theorem 3.12.3 of [6] for Levinson’s theorem for the half-line matrix
Schrödinger operator with the selfadjoint boundary condition. With the help of
that theorem, we have the following result for the half-line matrix Schrödinger
operator associated with (5.1) and (5.4). As mentioned in Remark 6.2, the result
given in (6.17) in the next theorem has been proved in [13] by using a different
method.

Theorem 6.4. Consider the half-line matrix Schrödinger operator corre-
sponding to (5.1) with the 2n× 2n matrix potential V satisfying (5.2) and (5.3),
and with the selfadjoint boundary condition (5.4) where the boundary matrices
A and B satisfy (5.5). Let Nh denote the number of eigenvalues including the
multiplicities, S(k) be the corresponding scattering matrix defined as in (5.16),
and S∞ be the constant matrix appearing in (6.1) and (6.2). Then, we have the
following:

(a) The nonnegative integer Nh is related to the argument of the determinant of
S(k) as

arg[det[S(0+)]]− arg[det[S∞]] = π [2Nh + µ− 2n+ nD] , (6.16)
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where arg is any single-valued branch of the argument function, the nonneg-
ative integer µ is the algebraic and geometric multiplicity of the eigenvalue
+1 of S(0), and the nonnegative integer nD is the algebraic and geometric
multiplicity of the eigenvalue −1 of S∞.

(b) Assume further that the boundary matrices A and B appearing in (5.4) are
chosen as in (5.13). Then, we have

nD = n, (6.17)

and hence in that special case, (6.16) yields

arg[det[S(0+)]]− arg[det[S∞]] = π [2Nh + µ− n] . (6.18)

Proof. We remark that (6.16) directly follows from (3.12.15) of [6] by using
the fact that the matrix potential V has size 2n× 2n. Hence, the proof of (a) is
complete. In order to prove (b), it is sufficient to prove (6.17). We can explicitly
evaluate the large k-asymptotics of S(k) when A and B are chosen as in (5.13).
From (3.10.37) of [6] we know that S∞ is unchanged if the potential V is zero,
which is not surprising because the potential cannot affect the leading term in
the large k-asymptotics of the scattering matrix. Thus, S∞ and its eigenvalues
are solely determined by the boundary matrices A and B. When the potential is
zero, as seen from (3.7.2) of [6] we have

S(k) = −(B + ikA)(B − ikA)−1. (6.19)

When we use A and B given in (5.13), we get

B − ikA =

[
−I −ikI
I −ikI

]
. (6.20)

Using (6.20) in (6.19) we evaluate the large k-asymptotics of S(k) given in (6.19)
as

S(k) = −
[
−I ikI
I ikI

](
−1

2

[
I −I
I

ik

I

ik

])
,

which yields the exact result

S(k) = Q, (6.21)

where we recall that Q is the 2n × 2n constant matrix defined in (2.53). Thus,
we have S∞ = Q. As indicated in Remark 6.2, the matrix Q has eigenvalue −1
with multiplicity n. Hence, (6.17) holds, and the proof of (b) is complete.

We remark that (6.21) also follows from the first equality in (6.2) of The-
orem 6.1 by using the unitary transformation (5.10) between the half-line and
full-line Schrödinger operators. However, we have established Theorem 6.4(b)
without using that unitary transformation and without making any connection
to the full-line Schrödinger equation (1.1).



Factorization for the Matrix Schrödinger Equation 297

Using (4.2)–(4.5) in (2.9), we see that the full-line scattering matrix S(k)
satisfies

S∞ = I,

where we have defined
S∞ := lim

k→±∞
S(k).

In the next theorem we state and prove Levinson’s theorem for the full-line
matrix-valued Schrödinger equation (1.1). As in Theorem 6.4, we again use arg
to denote any single-valued branch of the argument function.

Theorem 6.5. Consider the full-line matrix Schrödinger operator corre-
sponding to (1.1) with the n × n matrix potential V satisfying (1.2) and (1.3).
Let S(k) be the corresponding 2n× 2n scattering matrix defined in (2.9). Then,
the corresponding number N of eigenvalues including the multiplicities, which
appears in (5.39), is related to the argument of the determinant of S(k) as

arg[det[S(0+)]]− arg[det[S∞]] = π [2N − n+ ν] , (6.22)

where we recall that the nonnegative integer ν is the degree of exceptionality ap-
pearing in (5.45) and denoting the number of linearly independent bounded solu-
tions to (5.44).

Proof. Even though we can prove (6.22) independently without using any
connection to the half-line 2n × 2n matrix Schrödinger equation (5.1), it is il-
luminating to prove it by exploiting the unitary connection (5.10) between the
full-line Hamiltonian HV and the half-line Hamiltonian HA,B,V, where the half-
line 2n× 2n matrix potential V is related to V as in (1.4) and (5.9) and the
boundary matrices A and B are chosen as in (5.13). Then, from (5.52) it follows
that the left-hand side of (6.22) is equal to the left-hand side of (6.18), i.e., we
have

arg[det[S(0+)]]− arg[det[S∞]] = arg[det[S(0+)]]− arg[det[S∞]], (6.23)

where S(k) is the 2n × 2n scattering matrix corresponding to HA,B,V. Further-
more, because of (5.10) we know that both the number of eigenvalues and their
multiplicities for HV and HA,B,V coincide, and hence we have

Nh = N , (6.24)

where we recall that Nh is the number of eigenvalues of HA,B,V including the
multiplicities. We also know that (5.46) holds, where µ is the geometric and
algebraic multiplicity of the eigenvalue +1 of S(0). Thus, using (5.46) and (6.24)
on the right-hand side of (6.18), with the help of (6.23) we obtain (6.22). Hence,
the proof is complete.

An independent proof of (6.22) without using the unitary connection (5.10)
can be given by applying the argument principle to the determinant of Tl(k). For
this, we can proceed as follows. As indicated in Section 5, the Hamiltonian HV
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has N distinct eigenvalues −κ2j , each with multiplicity mj for 1 ≤ j ≤ N. In
case N = 0, there are no eigenvalues. The quantity det[Tl(k)] has a meromorphic
extension from k ∈ R to C+ such that the only poles there occur at k = iκj with
multiplicity mj for 1 ≤ j ≤ N. Furthermore, except for those poles, det[Tl(k)]
is continuous in C+ and nonzero in C+ \ {0}, and it has a zero at k = 0 with
order n − ν, as indicated in (5.47). We note that det[Tl(k)] is nonzero at k = 0
when ν = n. To apply the argument principle, we choose our contour Cε,r as the
positively oriented closed curve given by

Cε,r := (−r,−ε) ∪ Cε ∪ (ε, r) ∪ Cr. (6.25)

Note that the first piece (−r,−ε) on the right-hand side of (6.25) is the directed
line segment on the real axis oriented from −r to −ε for some small positive ε
and some large positive r. The second piece Cε is the upper semicircle centered
at the origin with radius ε and oriented from −ε to ε. The third piece is the real
line segment (ε, r) oriented from ε to r. Finally the fourth piece Cr is the upper
semicircle centered at zero and with radius r and oriented from r to −r. From
(4.2) we see that the argument of det[Tl(k)] does not change along the piece Cr
when r → +∞. In the limit ε→ 0+ and r → +∞, the application of the argument
principle to det[Tl(k)] along the contour Cε,r yields

arg[det[Tl(+∞)]]− arg[det[Tl(0
+)]] + arg[det[Tl(0

−)]]

− arg[det[Tl(−∞)]] = 2π

[
n− ν

2
−N

]
, (6.26)

where the factor 1/2 in the brackets on the right-hand side is due to the fact
that we integrate along the semicircle Cε. From the first equality in (3.12), we
conclude that

arg[det[Tl(0
−)]]−arg[det[Tl(−∞)]] = arg[det[Tl(+∞)]]−arg[det[Tl(0

+)]]. (6.27)

Using (6.27) in (6.26), we obtain

arg[det[Tl(+∞)]]− arg[det[Tl(0
+)]] = π

[
n− ν

2
−N

]
. (6.28)

Finally, using (3.13) in (6.28) we get

arg[det[S∞]]− arg[det[S(0+)]] = 2π

[
n− ν

2
−N

]
,

which is equivalent to (6.22).
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Факторизацiя матричного рiвняння Шредiнгера на
прямiй i унiтарне перетворення до розсiювання на

пiвпрямiй
Tuncay Aktosun and Ricardo Weder

Проаналiзовано матрицю розсiювання для матричного рiвняння
Шредiнгера на прямiй, коли вiдповiдний матричнозначний потенцiал
є самоспряженим, iнтегровним i має скiнченний першiй момент. Матри-
чнозначний потенцiал розкрадено на скiнченну кiлькiсть фрагментiв i
надано факторизацiйну формулу, яка зображує матричнозначнi коефi-
цiєнти розсiювання в термiнах матричнозначних коефiцiєнтiв для фра-
гментiв. Використовуючи цю факторизацiйну формулу, наведено деякi
явнi приклади, якi iлюструють те, що, взагалi, лiвий i правий матри-
чнозначнi коефiцiєнти проходження є нерiвними. Пов’язуючи вiдповiд-
ним чином потенцiали на прямiй i пiвпрямiй, встановлено унiтарне пе-
ретворення мiж матричним оператором Шредiнгера на прямiй i матри-
чним оператором Шредiнгера на пiвпрямiй з певною самоспряженою
крайовою умовою. Використовуючи це унiтарне перетворення, встанов-
лено спiввiдношення мiж об’єктами на прямiй i пiвпрямiй такими як
розв’язки Йоста, фiзичнi розв’язки i матрицi розсiювання. Застосовую-
чи зв’язок мiж вiдповiдними матрицями розсiювання на прямiй i пiв-
прямiй, доведено терему Левiнсона на прямiй i пов’язано її з теоремою
Левiнсона на пiвпрямiй.

Ключовi слова: матричнозначне рiвняння Шредiнгера на прямiй, фа-
кторизацiя даних розсiювання, матричнозначнi коефiцiєнти розсiюван-
ня, теорема Левiнсона, унiтарне перетворення до розсiювання на пiвпря-
мiй
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