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1. Introduction

Let (M,w) be a closed and connected symplectic surface. Consider the groups
Ham(M,w) C Homeo(M) of Hamiltonian diffeomorphisms of (M,w) and of
all homeomorphisms of M, respectively. The C° closure of Ham(M,w) inside
Homeo(M) is denoted by Ham (M, w), and it consists exactly of those orientation
and area preserving homeomorphisms of (M,w) that are homotopic to the iden-
tity and which belong to the kernel of the mass-flow homomorphism [4]. In the
genus 0 case, i.e. when M = S?, the condition of vanishing of the mass-flow is
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redundant, and so Ham(S?) consists of all orientation and area preserving home-
omorphisms. The group Ham (M, w) can also be defined for a general M, under
additional compact support requirements.

The question of Fathi [4] asks whether Ham(M, w) is a simple group, and it has
been one of the major inspirations for the development of C° symplectic geometry.
Fathi’s question served as an important motivation for the influential work [8]
of Oh and Miiller which in particular introduced the notion of a continuous
Hamiltonian flow on symplectic manifolds. In the 2-dimensional case, the group
Hameo(M,w) consisting of time-1 maps of these flows was conjectured [8] to be
an example of a proper normal subgroup of Ham(M,w).

Recently, a number of breakthrough works addressed the Fathi question,
where it was first solved in the case of a two-disc [1], then in the two-sphere
case [3,9], and finally for general surfaces of finite type and finite area [2]. More-
over, the works [3,9] have largely contributed to Hofer geometry, in particular
solving the Polterovich—Kapovich question. Powerful tools coming from Floer ho-
mology, embedded contact homology and periodic Floer homology theories, were
central in making that progress possible. The aim of the present article is to give
an additional insight on that picture. Our approach is based on application of
novel Floer-theoretic invariants from [9] (see also [6]), in combination with a soft
approach relying on an idea due to Sikorav [10].

Before discussing our results, we recall some of the relevant definitions. We
refer the reader to Section 1.3 for other definitions and notation that we use.
Let (M,w) be a symplectic manifold. We denote by Homeo(M) the group of all
compactly supported homeomorphisms of M. The C? convergence of a sequence
o € Homeo(M) to some ¢ € Homeo(M) always assumes that the supports of all
ér, lie in some compact subset of M, and is denoted by ¢ = (C) limy,_,s ¢p. For
a continuous compactly supported function H : M — R, its L norm is denoted
by ||H||. For a continuous compactly supported function H : M x [0,1] — R, its
L(1%°) norm is given by

1
1H 100y = /0 |1, dt.

where Hy(-) = H(-,t). All Hamiltonian functions are assumed to be compactly
supported.

On a closed symplectic manifold (M,w), for any ¢ € Ham(M,w), its Hofer
norm is given by

ol = inf | H (1,009,

where H is a smooth and normalized (a Hamiltonian function H : M x[0,1] - R
is called normalized if for every ¢ € [0, 1], the function Hi(z) = H(z,t) has zero
mean with respect to the Liouville volume form, i.e. [,, H;w" = 0). Hamiltonian
function such that ¢ = ¢1,. We denote by dy the Hofer distance on Ham (M, w),
that is, du(é,v) = ||¢~1||u. L

Now we recall the definitions of the groups Ham(M,w) (Hamiltonian home-
omorphisms), Hameo(M,w) (strong Hamiltonian homeomorphisms [8]), and
FHomeo(M,w) (finite energy Hamiltonian homeomorphisms [1-3]).
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Definition 1.1. A homeomorphism ¢ € Homeo(M) is a Hamiltonian home-
omorphism if it is a C? limit of a sequence of Hamiltonian diffeomorphisms of M.
The set of all Hamiltonian homeomorphisms of M is denoted by Ham(M, w).

Definition 1.2. A continuous path (¢'),cjo1) of homeomorphisms of M is a
continuous Hamiltonian flow, if there exists a continuous compactly supported
function H : M x [0,1] — R and a sequence Hy : M x [0,1] — R of smooth
Hamiltonian functions such that:

e The supports of Hy all belong to some compact subset of M.
o limy o0 [[Hp — Hl(1,00) = 0.
e We have the C° convergence ¢! = (C) limy_,o0 gbﬁqk, uniform in ¢ € [0, 1].

In that case the time-1 map ¢! is called a strong Hamiltonian homeomorphism of
M, and the set of all such homeomorphisms is denoted by Hameo(M,w) (in fact,
the original definition of Hameo(M,w) was through the notion of a topological
Hamiltonian path [8]; however, as it was shown in [7], the two definitions are
equivalent).

Definition 1.3. An element ¢ € Ham(M,w) is a finite energy homeomor-
phism if there exists a sequence of smooth Hamiltonians Hy : M x [0,1] — R
such that

¢=(C°) lim ¢y, and |Hyll1,00) < C
k—00

for some constant C' > 0 which is independent of k. The set of all finite energy
Hamiltonian homeomorphisms of M is denoted by FHomeo(M, w).

It is well known [2,8] that Hameo(M,w) C FHomeo(M,w) are normal sub-
groups of Ham(M,w). For symplectic surfaces (M,w) of finite type and area, it
was shown [1-3, 9] that FHomeo(M,w) is in fact a proper normal subgroup of
Ham(M,w). This answers Fathi’s question in the negative. This of course also
means that Hameo(M,w) is a proper normal subgroup of Ham(M,w), confirming
the prediction of Oh and Miiller. However, a natural question remained whether
Hameo(M,w) and FHomeo(M,w) are distinct groups. This question was commu-
nicated to us by V. Humiliere and S. Seyfaddini. Below we answer this question
in the case of S? (Corollary 1.5) by showing that these groups are indeed distinct.

Let (M,w) be a closed symplectic manifold. The group FHomeo(M,w) nat-
urally carries a Hofer-like norm and the associated metric, which we denote here
by || - |lx and dy, respectively [3, Section 5.4]. For any ¢ € FHomeo(M,w), its
norm ||¢||y is defined as the minimal possible liminfy_,~ ||¢r|/, where (¢) is a
sequence in Ham(M,w) that C° converges to ¢. The fact that || - [|% is a norm
and is not just a pseudo-norm readily follows from the energy-capacity inequality.
It can be easily verified that the norm || - || is invariant under conjugation by
elements of Ham(M,w). It is currently completely unknown whether the norm
|| - || coincides with || - ||z on Ham(M,w) (a question of Le Roux [5]).

Consider the symplectic two-sphere (52, w) of area 1. Our first result is:

Theorem 1.4. For every E > 0, there exists a continuous path (got)te[o,l] of
homeomorphisms of S? such that:
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(1)  The flow (pt) is the uniform limit of a sequence of smooth Hamiltonian flows
(¢%,), where Hy, € C>(52 x [0,1]) is normalized and |Hg|l(1,00) < E for
every k.

(2) For every sequence v, € Ham(S?) satisfying o' = (C°)limy_o0 ¥k, and for
every ¢ € Ham(S?) we have liminfy_, o du(r,v) > E.

Moreover, the flow (') can be chosen to be arbitrarily C°-close to any given
smooth Hamiltonian flow in Ham(S?) of Hofer length < E.

If (¢?) is a path of homeomorphisms of S? given by Theorem 1.4, then by item
(1) of the theorem, the time-1 map ¢ = ! is an element of FHomeo(S?). Both
(1) and (2) imply that on the one hand, we have |||l = E, but on the other
hand, the dy-distance of ¢ to any element of Ham(S?) is greater than or equal
to E. The latter property yields ¢ ¢ Hameo(S?). Indeed, assuming the contrary,
that is ¢ € Hameo(S?), we obtain a sequence Hj : S? x [0,1] — R of smooth
Hamiltonian functions converging in the L(1°) norm to a continuous function
H': S? x [0,1] — R such that in particular we have ¢ = (C°)limy_0 ¢11LI;2' But
then we come to a contradiction with the item (2) of Theorem 1.4 since we can
consider the sequence ¥y, := gbllq;'c and then take ¢ := gbllql, for [ large enough. Thus

we obtain:
Corollary 1.5. Hameo(S?) # FHomeo(S?).

This answers the question mentioned above. Note that Hameo(S?) is a nor-
mal subgroup of FHomeo(S?), and a next possible task is to check how large
the quotient group FHomeo(S?)/ Hameo(S?) is and to understand its algebraic
structure. Moreover, the norm || - ||3; naturally descends from FHomeo(S?) to the
pseudo-norm || - ||z on the quotient G = FHomeo(S5?)/ Hameo(S?). It might be
interesting to understand that picture better. These questions will be discussed
in Section 1.2 below.

In our proof of Theorem 1.4 we use as a tool the novel powerful versions
of Lagrangian spectral estimators developed in [9], which are certain functionals
defined on the space of time-dependent Hamiltonians (spectral estimators) and on
the group of Hamiltonian diffeomorphisms (group estimators). These functionals
and their relatives were used in [9] to show several remarkable applications in
Hofer’s geometry, Lagrangian packing, and C° symplectic geometry. Let us briefly
describe them and some of their basic properties.

As before, consider the symplectic sphere (S?,w), where w is normalized by
w(S?) = 1, and think of it as sitting inside R® as the sphere of radius % centered
at the origin, equipped with the standard area form divided by w. Denote by
x3 : S2 — R the z3-coordinate function, let & > 1 be an integer, and pick a
pair of positive rational numbers 0 < C' < B satisfying 2B + (k —1)C = 1. For
0 < j < k denote L%B = (23)"1(=1/2+4 B +jC). This gives us a finite collection
of “horizontal” circles on S2, which are of course Lagrangian submanifolds. Then
there exists a map ¢} 5 : C°(S? x [0,1]) — R with the following properties [9]
(some properties described in [9] are omitted since we will not use them in the
sequel):
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1. (Hofer—Lipschitz) For each G, H € C*(5% x [0,1]),

1
\cg,B(G) — cg?B(H)] < / max |Gy — Hy| dt.
0
2. (Monotonicity) If G, H € C°°(S? x [0,1]) satisfy G < H as functions, then

(@) < C%,B(H)‘
3. (Normalization) For each H € C*°(S? x [0,1]) and b € C*([0, 1]),

1
hp(H+b)=c) g(H)+ /0 b(t) dt.

4. (Lagrangian control) For any H € C°°(S? x [0, 1]) such that (Ht)|
for all 0 < j < k, we have

= ¢(t)

Z/CJ

0<]<k

5. (Independence of Hamiltonian) For a normalized Hamiltonian H € C>(S? x
[0,1]), the value

C%,B(H) = C%,B(ﬁbzl*{)
depends only on the time-1 map ¢}, € Ham(S?).
6. (Subadditivity) For all ¢, € Ham(S?),

Ck p(oY) < Ck B(9) + C%,B(¢)'
7. (C°-continuity) The map

Tk,k/,B,B/ : Ham(SQ) — R, Tk,k/,B,B/ = Cg,B - 62/,3/

is 2-Lipschitz in Hofer’s metric, it is C°-continuous, and it extends to
Ham(S?) by continuity.

Recall that the above Lagrangian control property of the functionals cg g is as-

sociated with the collection {L%jB}Og j<k of horizontal circles on S?. The work [9]
by Polterovich and Shelukhin has inspired a later work [2] by Cristofaro-Gardiner,
Humiliere, Mak, Seyfaddini, and Smith, which introduced new invariants sharing
properties similar to these of ck, - These invariants from [2] can be defined on
general closed symplectic surfaces (M,w), and moreover the corresponding La-
grangian control property for them holds for quite general collections of circles
on M. The invariants are denoted by cr, where L is a suitable given collection
of circles on M. In particular, one may choose a collection L so that most of the
circles in it (all except for a restricted number of them) are small circles bounding
discs of the same area which are “spread uniformly” over the surface and capture
almost all of its area. That particular property of L was crucial for deriving the
so-called “Calabi property” for the cz’s [2, p. 3, Theorem 1.1], which in turn
has remarkable applications such as the Fathi conjecture [2]. We wish to remark
that by using the invariants ¢y, from [2] instead of ck g from [9], one can extend
Theorem 1.4 to all closed symplectic surfaces.
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1.1. The Calabi property. The mentioned above Calabi property for the
invariants ¢, states the following [2]:

Theorem. Let L™ be a sequence of equidistributed Lagrangian links in a
closed symplectic surface (M,w). Then, for any H € C*°(M x [0,1]) we have

Jim ey () = (w(30) " | 1 |

Here a Lagrangian link means a collection of pairwise disjoint smoothly em-
bedded circles, and for the precise definition of a sequence of equidistributed
Lagrangian links we refer the reader to [2]. We claim, however, that in principle
one can relax the assumptions and still have the Calabi property, so that in par-
ticular, relying on the “equidistribution property” in unnecessary. In the next
proposition, Ham (M, w) stands for the universal cover of the Hamiltonian group
Ham(M, w).

Proposition 1.6. Let (M,w) be a closed and connected symplectic surface,
and let ¢, : C°(M x [0,1]) — R be a sequence of functionals, satisfying:

1. (Hofer—Lipschitz) For each G,H € C*°(M x [0,1]),
1
lem (G) — e (H)| < / max |Gy — Hy| dt.
0

2. (Monotonicity) If G,H € C*°(M x [0,1]) satisfy G < H as functions, then
em(G) < e (H).
3. (Normalization) For each H € C*(M x [0,1]) and b € C*([0,1]),

cm(H +b) =cn(H) + /01 b(t) dt.

Moreover, ¢, (0) =0 where 0 : M x [0,1] — R is the zero function.
4. (Independence of Hamiltonian) For a normalized Hamiltonian H € C*(S? x
[0,1]), the value
cm(H) = em(om)
depends only on the class ¢ = [(¢Yy)] € Ham (M, w).
5. (Subadditivity) For any ¢, € I/{;{r/n(M,w),

em () < em(9) + cm (V).

6. (Locality) For each m, there exists a smooth function hy, : M — [0,1] and
an open topological disc D,, C M such that:

a) supp(hm) C Dp,
b) The diameter of D, converges to 0 when m — co.
¢) limy oo (W(M)/w(Dy)) em(—hm) = —1.

Then for every H € C*°(M x [0,1]) we have

1
Jim_cpu(H) = (w(M))_l/o /M Huw dt. (1.1)
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1.1.1. Some remarks. Note that the Normalization, Independence of
Hamiltonian, and Subadditivity properties for c,, in Proposition 1.6 are stated
differently from the ones which were previously stated for the invariants cg B
Also, the Locality property combined with the normalization condition ¢,,(0) =0
in some sense replace the previously stated Lagrangian control property for cg B
The main reason to relax the Independence of Hamiltonian is that other than
) 5 relevant functionals introduced in [9] and [2] do not necessarily satisfy the
original version of the Independence of Hamiltonian property.

As a corollary of Proposition 1.6 we conclude that the functionals 027 p satisfy

the Calabi property:

Theorem 1.7. For a sequence By € (L, %) that converges to 0, for any

k+1
H € C™(5% x [0,1]) we have

1
klim cg’Bk(H) —/ Hywdt.
— 00 0 S2

Proof. For deriving the Calabi property from Proposition 1.6, it is enough
to verify the Locality property for the sequence 027 By of functionals. Choose a
sequence B; € (By, %) that converges to 0 and such that limy_, Bj,/Bj = 00.
Then for the sequence D, = 2z~ !([~1/2,—1/2 + B!))) of spherical discs, the
Lagrangian control property for ¢, := c?n’ B,, implies the locality property (as
in the statement of Proposition 1.6) for c,, with h,, being an approximation the
characteristic function of D,,. Indeed, the corresponding collection (Lg;J Bm)ogj<m
of circles divides the disc D,, into a collection of annuli of equal area C’m (except
for possibly one annulus of area less than C,,) and a disc of area B, which is
negligible with respect to B], = w(D,,). Therefore the number of circles that lie in
D, is asymptotically approximated by w(D,,,)/Cy, and hence by m w(Dy,)/w(M).
Because of that, the Lagrangian control property for ¢, and the function —h,,
(where h,, is an approximation the characteristic function of D,,) implies the
locality property for c,. O

1.2. The quotient FHomeo(S5?)/Hameo(S?). Recall that for any
¢ € FHomeo(S?), its norm ||¢||3 is defined as the minimal possible
lim infy_,o || Pk, where (¢) is a sequence in Ham(S?) that C° converges to ¢.
The quotient FHomeo(S?)/ Hameo(S?) is naturally endowed with the induced
pseudo-norm || - ||3.

Consider the normed Abelian additive group (I°°, || - ||so) that consists of infi-
nite bounded sequences s = (s, S2, . . .) of real numbers such that ||s||cc = sup |sk/,
where the group structure is standard. Moreover, consider the subgroup ¢y C [*®
that consists of all sequences that converge to 0. The norm ||+ ||oc on [*° naturally
descends to a norm on the quotient *°/cy. We denote that norm on I*°/¢q also
by || - ||so- Note that for every s € I°° and the corresponding element [s] € [*°/co,
we have

I[8]lloo = lim sup [sg].
k—o00



346 Lev Buhovsky

Using properties of the functionals cg’ p (in particular, the Calabi property
stated in Theorem 1.7), combined with a soft approach, we show (cf. [9, Theorem
Al):

Theorem 1.8. The normed group (I°°/cg, || - ||co) embeds isometrically into
the group G = FHomeo(S?)/Hameo(S?) endowed with the Hofer pseudo-norm

- Ml

Corollary 1.9. One can isometrically embed into G the mormed group
(1%, ] - llec) and also the normed group (C(X),| - |lcc) when X is a separable
topological space (e.g. when X =R).

The corollary readily follows from the theorem and from the fact that one
can isometrically embed the normed group (I°°,|| - ||oo) into the normed group
(I1°°/co, || - llo) and moreover isometrically embed (C(X), ||+ ||oo) into (1%, - |loc)
(for a separable topological space X). We also remark that Theorem 1.8 is
stronger than Corollary 1.9 in the sense that there is no isometric group embed-
ding of (I°°/co, ||  |loo) into (I°°,|| - ||so)- See Section 2.6.2 for more details.

It is known that the group G is abelian [2, Proposition 2.2]. Theorem 1.8
implies that the torsion-free rank of G is continuum (since the cardinality of G
is continuum itself). Our approach, however, does not seem to help understand-
ing the torsion part of G. Also, it is would be interesting to verify whether
the Hofer pseudo-norm on G is non-degenerate (that is, a genuine norm). In
addition, the following questions remain unanswered. For a smooth function
h:(=1/2,1/2) — R, consider the time-1 map ¢ of the Hamiltonian flow of the
autonomous function H(x1,x2,23) = h(zs) defined on the sphere without the
north and south poles, and extend ¢ to a homeomorphism of S2. For which h do
we have ¢ € FHomeo(S?)? In case when ¢ € FHomeo(S?), how to compute the
norm ||¢||% (if not precisely, then up to an “almost equivalence”, i.e. up to an
additive and multiplicative constant)? For which h do we have ¢ € Hameo(S?)?
Our proof of Theorem 1.8 shows only a very partial answer to these questions.

To conclude, we remark that the proofs of Theorems 1.4, 1.8 and Proposition
1.6 are quite close. Morally speaking, Theorem 1.8 is more general than Theorem
1.4. We still preferred to keep Theorem 1.4 for the convenience of the reader since
it serves a good motivation for the latter and since its proof is simpler than that
of Theorem 1.8 and does not rely on the Calabi property for the functionals 02, B

1.3. Notation and preliminary remarks. Let (M,w) be a symplectic
surface. For a subset A C M, its w-area is denoted by w(A). For a Hamiltonian
function H € C*(M x [0,1]), (¢%)sejo,1) denotes the Hamiltonian flow of H.
For given Hamiltonian functions H, K € C*°(M x [0, 1]), we denote H{K (z,t) =
H(z,t)+ K ((¢%)"(z)) (the Hamiltonian flow of this Hamiltonian function is the
composition of flows (¢4 o ¢4 )). Moreover by H(z,t) = —H (¢! (x),t) we denote
Hamiltonian function that generates the inverse flow ((¢%;)~!). The L° norm of
a Hamiltonian H € C*°(M x [0,1]) is denoted by ||H|| = max |H|. We say that
a Hamiltonian H € C*°(M x [0,1]) is normalized if [,, Hyw = 0 for all t € [0, 1].
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Now let (M,w) be a closed symplectic surface. The Hofer distance on
Ham(M,w) is denoted by du, and for every ¢ € Ham(M,w), ||¢|lm stands
for the Hofer norm of ¢. We also denote by dy and || - ||g the Hofer dis-
tance and norm on I/{;El(M ,w) (the universal cover of Ham(M,w)). In order
to speak about C° convergence, we equip M with an auxiliary Riemannian
metric which defines the distance function d : M x M — R. For homeo-
morphisms ¢,¢ : M — M, we define dco(¢,1) = max,enr d(op(x),(x)) and
deo (¢, 1) = max(deo(p, 1), deo (¢, ™). The reason for considering the met-
ric dco is related to the following important property: Homeo(M) is complete
with respect to dco, that is, if we have a Cauchy sequence in Homeo(M) with
respect to doo then it necessarily converges (with respect to dco) to a home-
omorphism of M. For a sequence of homeomorphisms of M, in order to con-
clude its uniform convergence to some homeomorphism, the Cauchy property
with respect to dco is generally not enough. Note however that if a sequence
in Homeo(M) is known to converge uniformly (i.e. with respect to dco) a
homeomorphism, then it in fact converges to that homeomorphism with re-
spect to dco. For ¢ € Homeo(M) and a sequence ¢, € Homeo(M), we will
write ¢ = (C0)limg_yo0 ¢p if limp oo do(p, o) = 0 (which is equivalent to
lim, o0 deo (b, 61) = 0).

Assume that we have a smooth manifold M, two open subsets U,V C M,
and a diffeomorphism ¢ : U — V. For a diffeomorphism f : M — M compactly
supported in V' by ¢*f, we denote the diffeomorphism ¢*f : M — M which is
given by ¢*f = ¢~ f¢ on U and for which ¢*f = 1 on M \ U. Similarly, for a
diffeomorphism A : M — M compactly supported in U by ¢.f, we denote the
diffeomorphism ¢, f : M — M which is given by ¢.f = ¢h¢~! on V and for
which ¢.f =1 on M\ V.

2. Proofs

The central lemma which is used in the proofs is essentially due to Sikorav [10,
Section 8.4]:

Lemma 2.1. Let (M,w) be a closed and connected symplectic surface. Let
e > 0, let m be a positive integer, and let Dy, ..., Dy, C M be topological open
discs of area € each such that for every 1 < j < m we are given a symplectic
diffeomorphism ¢; : Dy — Dj. Moreover, let fo, fi,..., fm € Ham(M,w) with
supp(f;) C Dj. Define ®,®" € Ham(M,w) by

= fofi-fm

and
' = foll/L, ¢ fj,
where ¢ f; is given by ¢3 f; = (¢;)"f;0; on Dy and ¢;f; =1 on M\ Dy. Then

dy(®, ') < 3e. (2.1)

Its proof will be given in Section 2.5 below.
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Remark 2.2. As it can be seen from the proof of Lemma 2.1, if one removes
from the statement of the lemma the assumption that M is closed, one still gets a
similar conclusion that ® '@’ is generated by a normalized Hamiltonian function
H of L(1*) norm less than 3e. Moreover, by a reparametrization we can have
|H| < 3e.

Proofs of Theorems 1.4 and 1.8 use the notation that we now introduce. For
each integer m > 3 make a choice of rational numbers #H < B, < B, < %
and denote Cy, = (1—2B,,)/(m—1) and C},, = (1—2BJ,)/(m —1). Then denote
Om 1= ng,Bm and o], := c?mB/ , and let 7, := 0y, — 0},

The main ingredient in the proof of Theorem 1.4 is the following lemma:

Lemma 2.3. Let H : S? x [0,1] — R be a smooth normalized Hamiltonian
function. Then for every E > ||H||, € > 0 and every smooth Hamiltonian function
F : 5% x[0,1] — R, one can find an integer m > 3 and a smooth normalized
Hamiltonian function H' : S* x [0,1] — R such that:

1. deo(dly, dty) < e for every t € [0,1].
2. ||H|<E.
3. |r(H'$F)| > 2E —¢.

Its proof relies on Lemma 2.1, see Section 2.2.

2.1. Proof of Theorem 1.4. Let £ > 0 and let H : S? x [0,1] — R be a
smooth normalized Hamiltonian function with [|H|[(1 ) < £. We need to show
that for every e > 0 we can find a continuous path (¢")e[,1] in Homeo(S?) such
that deo (¢, ¢ly) < e for all t € [0,1], and which satisfies the properties (1) and
(2) stated in the theorem. By choosing some ¢ € (0,1) which is very close to
1, and replacing H(z,t) by cH(x,ct) (defined on M x [0,1]), we may assume
that [|[H||(1,o0) < E. Now, by further time-reparametization (i.e. replacing H by
d(t)H(z,c(t)) for some smooth bijection ¢ : [0,1] — [0, 1] such that ¢/(t) > 0 for
all t € [0,1]), we may without loss of generality assume that |H| < E.

The space of smooth normalized functions 52 x [0,1] — R is separable when
endowed with the L(1:*) norm. Choose a corresponding dense sequence of nor-
malized Hamiltonian functions Fj : S?2 x[0,1] = R, (j =1,2,...), and then the
sequence of time-1 maps ®; := gzﬁ};j is dense in Ham(S?) with respect to the Hofer
metric. We now inductively construct a sequence Hy, Hi, ... of time dependent
normalized Hamiltonian functions on S?. Set Hy = H. For each k > 1, Lemma
2.3 provides us a smooth Hamiltonian function Hj, : S? x [0,1] — R such that
ECO(¢L}I;C,17¢§'IIQ) < g/2F for every t € [0,1], |Hy|| < E, and |7y, (HptFg)| > 2E —
1/k for some my, > 3. Moreover by the C-continuity of Tm; s as functionals on
Ham(S?), we may inductively assume that we also have |7, (HyfE)| > 2E —
1/j for every 1 < j < k (indeed, on the step k > 1 when we obtain Hy, we get
the bound |7y, (Hy—14F;)| > 2E — 1/j from the previous step, and then the in-
equality |7, (HpiF;)| > 2E —1/; follows from the C° continuity of 7,,; provided
that dCo(¢}1gk, qﬁ}{kil) is small enough. And by Lemma 2.3 we are indeed able to
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pick the Hamiltonian Hy such that (in addition to the conditions ||Hy|| < E and
Timy (Hi§Fr)| > 2E — 1/k) the C° distance max;ep 1] deo ((;Siqk—l’(bl}{k) between
Hamiltonian flows is arbitrarily small, in particular dco(qﬁ}{k, ¢11‘ka1) is arbitrar-
ily small.

To summarise, we now have a Hofer dense in Ham(S?) sequence ®1, ®o, ...,
where ®; = qﬁ};j, and we have a sequence of smooth normalized Hamiltonian
functions (Hy) and a sequence of indices (my) such that:

(a) HO =H.
(b) deo(dly, | dly,) <e/2" forall t € [0,1].
(c) [[Hl <E.

(d) |7, (HpllFy)| > 2E —1/j for 1 < j < k.

The property (b) implies that the sequence of flows (gbz}{k) uniformly converges to
a continuous flow ¢! of homeomorphisms of S2. Then by (c) we readily get the
property (1) from the statement of the theorem. Also note that (b) yields

aC’O (qtha Spt) = ECO ((]57}_[0, th) <eg te [07 1]
To see the property (2) we use the fact that 7,,; are Hofer-Lipschitz with
constant 2. As in (2), assume that we have a sequence 1, € Ham(S?) such that
o' = (C% limg_y00 Yg, and assume that ¢ € Ham(S?). Given any § > 0 there

exist infinitely many indices j for which dg (¢, ®;) < 6. Then for such j and for
every k have

2dg (Y1, V) = 2du(Yr, ©5) — 20 = |7in, (P 0 @51 — 26. (2.2)

Since Tp; is C° continuous on Ham(S?) and moreover extends by continuity to
Ham(S?), we get

Jim 7 (3 0 1) =T (0l 0 @) = Jim 7, (S, © ;7). (2.3)
But then by (2.2), (2.3) and the property (d) we get

. . -1 : 1 -1
211kn_1>1£de(1/Jk,¢) > kli}n;o T, (g 0 @57)| — 26 = klglolo |Tim; (D1, © @5 ) — 26

= lim |TmJ(ijjE)| —20 22FE —1/j — 26.
k—o0
We conclude that the inequality
lim inf dia (1, V) > B = 1/j = 6
—00

holds for every § > 0 and for infinitely many integer values of j. The property
(2) now follows.
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2.2. Proof of Lemma 2.3. Recall (see the beginning of Section 2, right
after the formulation of Lemma 2.1) that for each integer m > 3 we have chosen
rational numbers mﬁrl < B, <B],< %, and denoted Cy,, = (1 — 2B,,)/(m — 1)
and C!, = (1 —2BJ,)/(m —1). Also, we denoted o, = cg%Bm, o, = c?mB;n, and

Tm = Om — Oy

Let m > 6/¢ be large enough. One can cover S? by open topological discs
D; (0 < j < m) of equal area A, € (B),, L) such that the their diameters
are bounded from above by o(1) when m — oo (the discs can in fact be chosen
such that the diameters are bounded by m~=Y% up to a constant). We may
without loss of generality assume that Dy = (z3)"1([-1/2, —1/2+ A,,)). Denote
L= (x3)"Y(~1/2+ By,) and L' = (v3)"Y(~1/2+ B.,), where x3 : S — R is the
coordinate function as before. We have L, L' C Dy C S?. Choose area-preserving
diffeomorphisms ¢; : Dy — Dj, for 0 < j < m (where ¢¢ is taken to be the
identity map).

Define a;(t) = inf,ep; H(x,t) and bi(t) = supgep, H(x,t) for t € [0,1]. These
functions are continuous on [0, 1] and attain their values in (—E, E). Moreover, if
we chose m to be sufficiently large, we get 0 < b;(t) — a;(t) < e/2 for every j and
t. Then we can approximate é@;, b; by smooth functions a;,b; : [0,1] = (—F, E)
satisfying a; > a; and b; < bj on [0, 1] for which we still have b;(t) — a;(t) < /2.

Denoting § = {=(E — ||[H||) > 0, pick smooth functions h, k' : $* — [—4,1],
which are compactly supported in Dy, have disjoint supports, satisfy the relation

/hw:/ hw=0,
52 52

and the relations h|p = 1, h|pr =0, b'|, =0, /|, = 1. For each j, define smooth
functions hj,h; : §%2 — [-4,1], compactly supported in D;, as push-forwards
by = (65)<h and K, = (65). 1"

Now define normalized Hamiltonian functions K, K’ : §% x [0,1] — R by

m—1

K(w,t) = Y (B = bj(t)h;() + (—E — a;(t))hj(x),
7=0
m—1

K'(z,t) = ) (=E —a;(t)h;(x) + (B — b;(t))hj(x).
7=0

Clearly, K and K’ have commuting Hamiltonian flows, and are both com-
pactly supported in the disjoint union U}";OIDj. Define Hamiltonian functions
Hy,Hy:S%x[0,1] =R by Hl = KtH and Hy = K'{H. Let us show that we
can choose the desired Hamiltonian H’ to be either H; or Hs.

Introduce new Hamiltonian functions

—_

m—

Ko(z,t) = Y (E—bj()h(z) + (—E — a; () (x),

j=0
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m—1

Ki(x,t) = Y (=E —a;()h(@) + (E = b; (1)1 (x),

Jj=0

which are compactly supported in Dy. Lemma 2.1 ensures that
du (05 (05) ", Py (D) ™) < BAm < 3/m < /2. (2.4)

Recall our notation o, = cgnme and o], = c?mB, , and T, = op — o),
The inequality (2.4), and the Hofer Lipschitz and Independence of Hamiltonian
properties of oy, yield

om(0k 0 (B5) ™) < o (B © (D) ™) + dis(Skr (k) ™ Sk (D) ™)
om(0k, 0 (ko)) +2/2.

Now because Hy = KfH and Hy, = K'tH, we therefore get

om(HoftHy) = oK't HEHEK) = 0 (K'$K) = o (jer o (9) )
< om(P © ($k,) 1) + /2 = om (Kot Ko) + /2. (2.5)

The value o, (K{#Ko) can be computed explicitly. Indeed, notice that

KKy (z,t) = Kj(x,t) — Ko(z,t) = | —2mE + Z —a;(t)) | h(z)
m—1
+ [ 2mE+ ) (a;(t) = bi (1) | W (2).
7=0

Hence by our choice of the functions h and k', we see that for each t € [0, 1] we
have KKy (x,t) = —2mE+Y 7! (b;(t)—a;(t)) when z € L = 271 (=1/2+ Bp,).
Moreover we have K(iKo(z,t) = 0 when z € 271(=1/2 + B,, + iCy,) for
i=1,...,m — 1. To see the this, note that

By +Cp=Bn+(1—-2By)/(m—1)=((m—=3)By,+1)/(m—1) >1/m > A,

and so the circles 27'(=1/2 + B, 4+ iC,,) lie in the complement of the supports
of hand ' (i =1,...,m —1). Therefore by the Lagrangian control property we
get

_ 1 [
om(KiK) = m/o —2mE + Z —aj(t)) | dt < —2E+¢/2.  (2.6)

Combining this estimate with (2.5), we conclude

om(HotH1) < om(K(8Ko) +¢/2 < —2E + . (2.7)
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In an analogous way we obtain the upper bound
o, (HifHs) < —2F + €. (2.8)
Indeed, similarly as in (2.5) and (2.6), we have estimates
o (HitHs) < 07, (Kot Kp) + /2,

and
L 1 1 m—1
o (KofiKT]) = — / —omE+ S (b5(t) — as(t)) | dt < —2E + /2,
m Jo =0

and the inequality (2.8) follows.
By the Subadditivity property, (2.7) and (2.8) we have

T (HotF) = o (HaflF) — oy, (HafiF)
< (om(HafH) + o (H0EF)) + (=07, (H0EF) + 07, (H18H3))
= T (H18F) + o (HottHy) + o), (H1$Hy) < 7o (H18F) — 4 + 2e.

This means that we have either 7,,,(HifF') > 2E — ¢ or 7,,(HoF) < —2F + €.
In the first case we put H' = Hy, and in the second H' = Hy. Then H’ satisfies
the property (3) from the statement of the lemma. To see the property (2), it is
enough to check that ||H;|| < E and ||Hz|| < E. We have Hi(x,t) = K{H (z,t) =
K(z,t) + H((®%)"!(x),t). Therefore on each D;, since the Hamiltonian flow of
K preserves it, we have

Hi(z,t) < max(E —b;(t),2E0) +sup H(-,t) < E
Dj

and
—Hi(z,t) < max(E + a;(t),2E0) — %fH(~,t) <FE
j

(recall that a;(t),b;(t) € (—E,FE), a;(t) < a;(t) = infp, H(-,t), that b;(t) >
l;j (t) =supp, H(-,t),and § = L= (E—||H||)). Moreover, on the complement of the
union U;D; we have Hi(x,t) = H(x,t), and so we obtain |H;(z,t)| < E as well.
We conclude that ||Hy|| < E. The inequality ||Hz|| < E follows similarly. Finally,
the property (1) holds if m is sufficiently large. Indeed, the Hamiltonian flows of
K and K’ are compactly supported in the disjoint union U;D;, and the diameters
of all the D;’s are bounded by o(1) when m — co. Hence maxe 1) deo(1, ¢l )
and max;e(o,1] deo(1, ¢t/) become as small as we wish when m is large enough,

and consequently, for large enough m we get dgo ﬁq, qzﬁ'}lz) < ¢ for every t € [0, 1]
and 7 = 1,2, because gﬁh = ¢k o ¢t and ¢3L12 = ¢l o ¢ly for all ¢ € [0, 1].
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2.3. Proof of Proposition 1.6. Note that the Normalization and Indepen-
dence of Hamiltonian properties of ¢, imply that the Subadditivity property can
be reformulated into the statement that for G, H € C*°(M x [0,1]) we have

em(GEH) < cm(G) + cm(H). (2.9)

Then the Monotonicity and Normalization properties imply that for every smooth
h:M — (—o00,0] and t > 0 we have

em(th) < (t — Dem(h). (2.10)

Indeed, from the Monotonicity and Normalization properties we get
¢m(h) < ¢(0) =0, and then denoting n = [¢], from (2.9) and Monotonicity we
conclude ¢, (th) < ¢p(nh) < nep(h) < (t— 1)ep(h).

Denote N, = [w(M)/w(D,,)] — 2 and note that

lim N, = +oo,
m—0o0
lim Npycpm(—hp) = —1. (2.11)

m—ro0

We can without loss of generality assume that the open disc D,, has a smooth
boundary. Pack M by open topological discs D,, ; (0 < j < Np,) of equal areas
that have smooth boundaries and mutually disjoint closures such that D,, o = Dy,
and the diameters of Dy, 0,...,Dp N, are bounded from above by o(1) when
m — oo. Choose area-preserving diffeomorphisms ¢, ; : Do — Dy j, for 0 <
Jj < Ny, (where ¢, is taken to be the identity map). For each 0 < j < Ny,
define smooth functions Ay, ; : S% — [0,1], compactly supported in D, j, as
push-forwards hy, j = (dm,j)shim.

Now let H € C*°(M x [0,1]), and let € > 0 be arbitrary. Choose some
E > ||H||. Then, choose m to be large enough such that in particular we have
3w(Dp,) < € and w(Dy,)||H|| < . Define

a;(t) = inf H(-,t), b;(t)=sup H(-,t), tel0,1].

m,j Dm,j

These functions are continuous on [0, 1] and attain their values in (—FE, E)). More-
over if we choose m to be sufficiently large, we get 0 < Bj(t) — a;(t) < e for every
j and t. Then approximate &j,I;j by smooth functions a;,b; : [0,1] = (—E,E)
such that we have d; > a; and b; < b; on [0,1] and such that we still have b;(t) —

a;(t) < e. Denote 1
I:/ / H(z,t)wdt.
0o Jm

Then I is well-approximated by w(Dyy,) (Zjvz’% 01 b;(t) dt). Indeed, note that the

complement K := M \ ij:”})DmJ of the union of the discs, has a small area:

W(K) = w(M) = (Np + 1)w(Dp) < (D).
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Moreover,
1 New 1 1
I:/ / H(z,t)wdt = Z// H(z,t)wdt +/ /H(x,t)wdt.
0 JM =0/0 /D, 0 JK
We have .
/ / Hz, t)w dt‘ <w(E)H| < (D) H]| <.
0 JK
Also, by

a;(t) < inf H(-,t) < sup H(-,t) < bj(t)

m,j Dmyj
and by b;(t) — a;(t) < e, we have
|H(z,t) —bj(t)] <e

on D,, ;, and therefore

/01 /Dm,j H(x,t)wdt —w(Dy,) /01 bj(t) dt

for each j. We conclude

< ew(Dy)

Nm 01
I —w(Dy) (2/ bj(t)dt) < (14 w(M))e. (2.12)
j=0"0

Define smooth Hamiltonian functions K, K’, Ko, K, : S* x [0,1] — R by

Nm

K(x,t) =Y (B = bj(t))hm,; (@),
§=0
N,

K'(z,t) = > (=E — aj(t))hm,; (@)
§=0

and

J=0

Nm N,
Ko(a,t) = 3 (B = bj(t)) h(x) = ((Nm SEDY bj(t)) o),

N N,
K(,)(l',t) = Z(_E - aj(t))hm($) = ((Nm + 1)E - Zaj(t)) hm(x)

Jj=0

Similarly as in the proof of Lemma 2.3, applying the version of Lemma 2.1 for
the universal cover Ham(M,w) as described in Section 2.6.1, we conclude that

du ([(&5,)]; [(65)]) » du (D)), (D)) < 3w (D) <e.
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It is easy to see that we have

/01 /M.K'(a:,t)walt:/01 /MKo(x,t)wdt
/01 /MK'(J:,t)wdt:/Ol /MK()(a:,t)wdt.

Hence by the Hofer—Lipschitz and Independence of Hamiltonian properties of ¢,
we get

and

|em () = em(Ko)l, |em(K") = em (Kp)| <.

Also, by (2.10), and by the Normalization and Independence of Hamiltonian
properties we have

Nm 01
em(Ka) = em(—Ko) < (Nm+1)E—1—Z/ by (1) dt | cr(—hom),
i=0"0

New  n1
em(K) < | (N +1)E -1+ Z/ aj(t)dt | em(—hm).
j=0"0

Therefore we conclude

=: B,,.

Nm 01
em(K) < | (Npy+1)E—1— Z/ b;(t) dt) em(—hm) +€ =1 Ap,
j=0"0
Nm 01
em(KN) < | (N +1)E -1 —|—Z/ a;(t) dt) cm(—hm) +€
j=0"0

Note that

Np, 1
Apn+Bpn=|2(Np+1)E -2+ Z/ (a;(t) —bj(t))dt | em(—hm) + 2¢
j=0""

< (2NmE 4 2E = 2 — (N + 1)e)cm(—hm) + 2¢.

Therefore, if m is large enough then in view of (2.11), we get
Ap + By < —2F +4¢. Define Hamiltonian functions Hy, Ha : S? x [0,1] = R
by Hy = KfH and Hy = K'8H. Then, like in the proof of Lemma 2.3,
it is easy to see that we have |Hi|,|Hz2|| < E. In particular we get
—FE < c(Hy), em(Hs) < E. Moreover, we have ¢, (H) < cp(Hy) + cpn(K) <
em(Hr) + Ay, and e, (H2) < e (H) + en(K') < e (H) 4 By.

Let us summarize what we have:

o A, + B, < —2E +4e,
e —E< Cm(Hl)acm(HQ) < E,
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o cn(H) < cm(Hy) + Ap,
o ¢n(H2) < cm(H) + By,

This implies that ¢,,,(H) lies in the interval (—E — B,,, E + A,;,) whose length is
(E+ Ap) — (—FE — By,) =2E + Ay, + By, < 4e. In particular,

lem(H) — (E + Ap)| < 4e.

We have
Nm 1
E+Apn=E+ |(Np+1)E—-1 —Z/ bi(t)dt | cm(—hm) + ¢
j=0"0
= (Nmem(=hm) + DE + (E — 1)em(—hm)
Nm 1
| 1=0@ 3 [ b0t | (o) fwDn)
j=0"0

— (M) + em(—ham) /w (D)) + & + (w(M)) 1.
Hence by (2.11), (2.12) and the Locality property we have

B+ A — (w(M)) "] < 3+ (w(M))™H)e
provided that m is large enough. Therefore we get

|em(H) — (w(M))"H| < (T+ (w(M))™H)e

for large enough m. Since € > 0 is arbitrary, this shows (1.1).

2.4. Proof of Theorem 1.8. Denote the natural projection homomorphism
by 7 : FHomeo(S?) — FHomeo(S?)/ Hameo(S?). For proving the theorem it is
enough to find a group homomorphism ® : [° — FHomeo(S?) such that for each
s € I*° we have

|| o ®(s)|| = limsup |s| (2.13)

k—o0

and such that ®(cy) C Hameo(S?). Indeed, then 7 o ® naturally descends to an
isometric embedding 1°°/cy — FHomeo(S?)/ Hameo(S?). After constructing @,
the proof of the equality (2.13) will be divided into proving the inequalities “>”
and “<”. For the first inequality we will use properties of the functionals cg B
in particular the Calabi property stated in Theorem 1.7. For the opposite oﬁe,
we will apply a soft argument which uses Lemma 2.1.

Recall (see the beginning of Section 2, right after the formulation of Lemma
2.1) that for each integer m > 3 we have chosen rational numbers m%,rl < B, <
B], < X, and denoted Cy, = (1 —2By,)/(m — 1) and C}, = (1 —2B},)/(m — 1).

—_ .0 /I _ !

Also, we denoted o, = Cm,By> Om = Cm,B1 > and 7, = 0y, —0,,,. For each m > 3
et

m? m

Dy = (23) H([-1/2,-1/2 4+ Ap)).

choose some A,, € (B ) and consider the open disc
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52

Am 9 Dm \\ -

Fig. 2.1
The annulus A,,, the disc D,,, and the circles L,, and L.

Let
Am = (x3) 71 (=1/2+1/(m+1),-1/24+ A,)) C D, € S?

denote the spherical annulus, and let L,, := (23)~'(=1/2 + B,,) and L :=
(x3)7Y(=1/2 + BL,) be circles inside A,.

For each m > 3, pack M by open topological discs Dy, ; (0 < j < m —1)
of equal areas that have smooth boundaries and mutually disjoint closures such
that D,, 0 = D, and such that the diameters of Dy, , ..., Dp m—1 are bounded
from above by o(1) when m — oo. Choose area-preserving diffeomorphisms
®m.j : Dm0 = Dpj, for 0 < j < m — 1 (where ¢, is taken to be the identity
map).

In order to prepare for the construction, we inductively choose a sequence
of indices m; < mg < ... and also choose a sequence of smooth functions
hy : S? — R such that each hj, depends only on the z3-coordinate and is supported
in A,,,. Moreover, some auxiliary Hamiltonian functions Fy s € C*(S? x [0,1])
(for k € N and s € [~1,1]%) will be introduced, and later they will be useful
in estimating the Hofer norm. The following properties of the construction will
hold:

(1) For every k > 1 and 1 <i < k we have |[m;7y,, (hi)| < 27F.

(2) Foreachk >1and s € [—1,1]¥, the Hamiltonian function Fy s is normalized,
ie. for every t € [0,1] we have [¢» Fy s(,t)w = 0.

(3) For every k > 1 and s € [~1,1]* we have

[ E% sl < (1427 =27 )[si].

max
1<i<k
(4) For each k > 1 there exists a constant Cy, > 0 such that for each s € [~1,1]¥

and t € [0, 1], the function Fy ¢(-,t) : S? — R is (C max;<;<k |si|)-Lipschitz.

Now we pass to the construction itself. At the first step we choose m; > 3
arbitrarily and then choose smooth functions h,h] : S? — [0, 1] that depend
only on the coordinate x3 such that their disjoint supports are contained in the
annulus Ay, and for which hf|r,, =1, I"L’1|L4n1 =0, hlr,, =0, h’1’|L;n1 =1,
and [¢» hjw = [42 hw. Then define h; : S%? — R by hy := b} — kY, and for each
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s € [-1,1] define Fy s € C>(S? x [0,1]) as

mi1—1

Fis(x,t) = s1 Z (Amy.5)+h1(x).

=0

Functions hy and Fj ¢ clearly satisfy properties (1)—(4). This finishes the first
step.

Now we describe a step k when k& > 1. In the previous step we have con-
structed the family (Fj—15(",+))se[—1,1+-1 of functions in C> (5% x [0,1]). By the
previous step of the construction and property (4), there exists a constant Cy_q
such that for every t € [0,1] and s € [—1,1]%7L, the function Fy_1 4(-,t) : S - R
is (Cr—1 maxi<i<kg—1 |Si|)-Lipschitz. Also, by property (2) from the previous step,
for each s € [~1,1]*~! the Hamiltonian Fj,_1 s in normalized, that is

[ Firswtw=0 (2.14)
S2
for every t € [0, 1]. Moreover, by property (3) from the previous step, we have
< —E_27R)|sy). :
Pl < ma (1427 = 27H)s (215)

Hence we can choose my > 2my_q sufficiently large such that for every
s€[-1,1]*1 t € [0,1] and j we have

0SC Fk—l,s('v t) = sup Fk—l,s('a t) — inf Fk:—l,s('v t) < (2.16)
mp,J Dimny,,j Diny,,j
and also denoting by Z; the complement of the union U;Z“O_ lek,j, we have

sl
| e < 50 (217)
k

for every t € [0, 1]. Moreover, we may assume that my is sufficiently large so that
the property (1) holds, i.e. we have |m;7y,, (hi)| < 27% for every 1 < i < k—1
(since each constructed h; depends only on the z3-coordinate, for verifying that
condition it is enough to refer only to the Lagrangian control property).

For each s € [—1,1]F! and j, choose a smooth function ay ;(+;s) : [0,1] — R
such that

11
2k+6

. S
inf Fi ()~ 0 <y (1:5) < sup Fiya(8) +

mp,Jj Dmle

(2.18)

The dependence of ay, j(t; s) on s € [—1, 1]~ is not required to be smooth or even
continuous. An important property of aj ; is the boundedness which is uniform
in s, and it follows from (2.18). By (2.14) and (2.17) we have

mi—1

Is]]
Z /’Z; Fk_LS(CII,t)w < 2k+0507
=0

M sJ
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hence by (2.16) and (2.18), we get

mk—l

[Ell
w(my) | D ar(t:s)| < Sepy
j=0

for every t € [0, 1]. Therefore the average

mg—1

1
At — (4.
k(t78) me Z ak,j(ta S)
7=0
et sl s
s s
Ap(t;s)] < s < o, 2.19
| Ak (; 5)] k(D) 2843 (2.19)
Denoting ag, ;(t; s) := a;(t; s) — Ag(t; s), we have
mp—1
D ar(tis) =0 (2.20)
3=0

for every ¢t and s. Moreover, the functions ay ;(-;s) are bounded, uniformly in
0<j<myand s e [-1,1]F.

Choose smooth functions hj,hj : S% — [0,1] that depend only on the co-
ordinate x3 such that their disjoint supports are contained in the annulus A,,,
and for which A |r,, =1, h;c’L’mk =0, hlr,,, =0, h/é’Link =1, and [ hjw =
f h”w

g2 M-

Now let s = (s1,...,8;,) € [~1,1]*, and denote s’ = (s1,...,8,_1) €
[—1,1]*=1. If s, = 0 then we set F s == Fj_1,¢. Otherwise, define the Hamilto-
nian function

Gk’s(a},t)
mkfl

= (s — a3 (t5.5) (D ) ehie(2) + (= — Gk g (£ 8) (S )R (2))
§=0

and then set
Fk,s = Ghsﬁkal,s“

By (2.20) and by the choice of hj, and hj we get that G} s is normalized, and
hence Fj, 5 is normalized as well. This shows the property (2). Moreover, since
for every (x,t) € S% x [0, 1] we have

Fk,s(x’ t) = Gk,s(xv t) + Fk—l,s’((¢gk75)_1($)a t)a (2'21)

by the definition of G}, s and by the boundedness of the functions ay, ;(-, s) which
is uniform in 0 < j < my, and s € [—1,1]%, it follows that the property (4) holds:
there exists a constant Cj, > 0 such that for each s € [~1,1]* and t € [0, 1], the
function Fjs(+,t) : S? = R is (Cx maxi<i<k |si|)-Lipschitz.
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Consider the case when s, # 0. By (2.21), for « ¢ U;Dy, ; we have
Fis(x,t) = Fj—1¢(x,t). Otherwise, if x € Dy, ; for some j, then in the case
when z lies outside the supports of (¢, j)«h}, and (¢m, j)«hy, we get the same
conclusion Fj ¢(x,t) = Fj_1¢(x,t). It remains to treat separately the cases
of x € supp((¢m,,j)+h},) and = € supp((¢m,,j)«h}), where our aim is to esti-

mate Fy ¢(z,t). Assuming z € supp((¢m,,;)«hy.), we get & & supp((dmy,;)«i),
and hence for a given t € [0,1], denoting A\ = (¢, ;)«hi(z) € [0,1] and
y= tGkS)*l(x) € Dy, j, we have

Fios(z,t) = Xsg — akj(t;8") + Fy—1,5 (y, 1)
= Asp — arj(t;8") + Ap(t; ") + Fro1,0 (y, 1)
= (1 — )\)Fk_l,s/(y, t) + s + )‘(Fk—l,s’ (y, t) — akyj(t; S/> + Ak(t; S,)).

But by (2.18) and (2.19) we have

|Is]]
|Fr—1,s (4, 1) — arj(t; ") + Aw(t; s")] < 2k+o2o.

Hence by (2.15) we conclude
< —i o—ky|.. k=2
Pl 0] < uae (1427 =27 F)s] 4 275
< max (1427721427 —278)|5;] < max (1 +27F — 2757 1)|s;].
1<i<k 1<i<k
We obtained this estimate under the assumption of x € supp((¢m,,j)«h},). The
case of x € supp((¢m,,;j)«hy) is completely analogous, and the same conclusion
follows. Thus we get

1Pl < max (14277 =27 1)s]. (2.22)

max
1<i<k
Now if s, = 0, then (2.22) holds as well, by the inductive assumption. This shows
the property (3). Finally, define the function hy, € C*(S?) by hy := hj, — hj.
This finishes the step k.

Note that if we have s € [~1,1]® and s; = 0, then denoting & :=
(51,...,86-1) € [=1,1]*71, by the construction we have Fis = Fj—1,¢. Hence
for each s € I°° which has only a finite number of non-zero coordinates, we can
define Fy(z,t) := Fyq(z,t) where o = (s1,...,50) € [-1,1], and £ is such that
s =0 for k > /L.

For every s = (s1,52,...) € I° denote ¥s := (s1,59,...,58,0,0,...) € [®
to be the element of [°° whose first k coordinates coincide with those of s and
whose remaining coordinates are 0. Moreover, we define s* := s — (b=Dg =

(0,...,0,Sk,sk+1,...) €[,

For each s € [* which has only a finite number of non-zero coordinates,
define ®(s) € Ham(S?) to be the time-1 map of the autonomous Hamiltonian
> mysihg. Then, for every s € [*° define

®(s) := (C°) lim ®(*s) € Ham(S?).

k—o0
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We claim that for each s € [°° with ||s||sc < 1 we in fact have ®(s) € FHomeo(S?)
and moreover

()l < sup (142 Blsel 43 3 (2.23)
s, 70 k
For proving this, it is enough to show that for every s € I°°, ||s|locc < 1 such that

only a finite number of its coordinates are non-zero, we have

0] < 1427 3 — 2.24
12(s)llr < max (1 + ")kl + %:0 (2.24)
Sk

Indeed, having (2.24), for any s € [*°, ||s]|c < 1, we get
®(s) = (C°) lim ®(%s),
{—00

and
| (“s)|ln < sup (1+27%)[sp| +3 Z —
k skyﬁ(]

for each £ > 1, hence ®(s) € FHomeo(S?), and (2.23) follows just by the definition
of the norm || - ||y on FHomeo(S?).
To show (2.24), it is enough to prove that

du(®(s), ¢F,) < Zf (2:25)

s, 70
Indeed, then (2.24) will readily follow from (2.25) and (2.22). Now, let us prove
(2.25) by induction in ¢ := max ({0} U {k|sk # 0}). The case of £ = 0 is clear
since then both sides of (2.25) vanish. In the case of £ = 1 we have ®(s) = ¢}

misi1hy’
whereas
mi1—1

Fl,s(xat) = 81 Z (¢m17j)*h1(x)'

§=0
Hence a direct application of Lemma 2.1 yields

3
my

dH((b(S)? qb%‘_’s) = dH( mlslhl’ ¢F1 S)

showing (2.25). If £ > 1 then denoting o := (s1,...,s0) € [-1,1)%, o' :=
(51,...,80-1) € [-1,1] " and ' := Vs = (s1,...,51,0,0,...) € I, from
the induction hypothesis it follows that

du(®(s), 0k ) <3 S .

m
snt0 k<t K

In addition we have
@(S) = Qs;ngszhgq)(sl)
and

1 _ 1 _ 41 1 _ 41 1
PF, = PR, = 9G0, PF,_y 0 = PGo, PR,
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where

GZ,U(

x,t)
myp—1
= > ((s0 = i (t;0"))(Bmg.j)<hip(@) + (—s¢ — i (£ 0')) (Smg. )5l ()

J=0
as before. By the construction we always have

my—1

Z agj(t;0') =0,

§=0
hence a direct application of Lemma 2.1 yields

3
dH(gbée,a’gb}nzSzhe) <

my
Hence we conclude (2.25) by the triangle inequality.
We have proved (2.23). Now as a corollary we get that for every s € [* we
have ®(s) € FHomeo(S?) and

_ 1
12(5) 12 < sup(1+27%)sp| +3([Islloo + 1) > —. (2.26)
k aZ0 Mk

Indeed, if s € [*° then let N to be equal to the integer part of ||s||~, and denote
5 := s/(N +1). Then clearly ||3]lcc < 1, hence ®(5) € FHomeo(S?) and so
®(s) = (®(3))N*! € FHomeo(S?), and moreover by (2.23) we conclude

- k= 1
[2(s)llw < (N +DIRE)l2¢ < (N + 1) sup(L+ 2755 +3(N +1) D —
k o0 Mk
1
<sup(l+27F 3 1 —.
Sup(l +275) sk | + 3([lslloc + ). -~

sp#0

Recall that we denoted by 7 : FHomeo(S?) — G = FHomeo(S?)/ Hameo(S?)
the natural projection homomorphism. For every s € [ and every £ > 1 we have

I o @(s)ll2 = |7 0 ®(s) |1,
and by (2.26) we have

limsup |7 0 ®(s) || < limsup [|(s°) |3 < limsup |s].
L—00 f—o00 £—o00

Thus we get the estimate

I 0 ®(s) 3¢ < Tim sup |s| (2.27)

—00

for every s € [°°. In order to conclude (2.13) it remains to show the opposite
inequality, and for this we will apply properties of the functionals cg B
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0 0 :
m,Bm — Cm,B!, 18

that they are C%-continuous on Ham(S?) and that they extend by continuity to
Ham(S?). Consider any s € [ having a finite number of non-zero coordinates.
Then by the Lagrangian control property for c?n, B,, and c?n, B, We get

One important property of the functionals 7, = o, — 0, = ¢

Tmy, ((I)(S)) = Tmy, (Z mlSZhl) = Zmisﬂ'mk (hz)
% =1

k-1

= MpSkTm, (hi) + Z MiSiTm,, ().
i=1

Now, we have my7y,, (hi) = 2 and [m;Ty,, (hi)| < 27% for 1 < i < k — 1, hence we
get
Ting (B(5)) = 255, — 277 k||5]| oo

Now, if ¢ € Ham(M,w) is arbitrary, then
Tong (P()071) = 0 (D)) = 07, ((8)7 1)
> (0, ((5)) = 0y, (1)) = (07, (B(5)) + a7, (7))
= Ty (©(5)) = (O, () + 07, (7))
> 251, — 27 k|5]lo0 — (0my, (V) + 07, (7).

As a corollary, for any s € [°°, any £ > k > 1, and every ¢ € Ham(S?) we get
T (D)9 ™1) > 281 — 275k Is]|oc — (0, (¥) + 0, (7).
But then the C? continuity of 7,,, implies
T (P(8)07 1) > 285 — 277kl slo0 — (0, (¥) + 07, (7)) (2.28)

Now let ¢ € Hameo(S?), and choose a sequence of ¥; € Ham(S?) such that
¢ = (C°) lim;j_,00 ¢; and dp(t;,vj) < 1/i for j >4 > 1. Then by (2.28) and by
the Hofer Lipschitz and Independence of Hamiltonian properties of o,,, o’

ms We
get

Ty (R(8)80571) = 288 — 277kl co — (0 (i) + o7y, (477 1)) — 2/
for j >4 > 1. Taking j — oo, by the C° continuity of Tm, We get
Ty (R(8)9 1) = 285 — 27 k|slo0 — (0my () + 00, (771)) = 2/i. (2:29)
But by the Calabi property stated in Theorem 1.7, for each ¢ > 1 we have

i o () + 07, (1) = lim e p,, ($3) + g, (71 = 0.

m— m—00

Hence from (2.29), by taking k — oo, we get

lim sup 7y, (®(s) 1) > 2limsup s — 2/i

k—o0 k—o0
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for every 7 > 1, and therefore we finally conclude that the inequality

lim sup 7y, (®(s) 1) > 2limsup sy, (2.30)
k—o0 k—o0

holds for every s € I° and ¢ € Hameo(S?). Now, we claim that given such s and
i, we have

[®(s)p~" [l > lim sup sy (2.31)

k—o0
Indeed, assume that we have a sequence ¢; € Ham(S?) that C° converges to
®(s)p~t. Let § > 0 be arbitrary, and then by (2.30) we can find some £ such that

Ty (@(s) 1) > 2limsup s, — d.

k—o0

But then by the C° continuity and by the Hofer Lipschitz property of Tm, We get

2lim inf ||d;|[g = lm 7, (4:) = Ton, (P(8)p™ ') = 2limsup s, — 6,
1— 00 71— 00 k—o00
and since § > 0 is arbitrary, we conclude (2.31). It remains to notice that for
a given s € [® and ¢ € Hameo(S?), substituting —s and ¢! into (2.31), by
(B(=5)p) ' =971 D(s) = ™1 (D(s) ™" ) we get

12(s)¢™ I3 = 1 @(=s)ellp > limsup(—sy),

k—o0

and together with (2.31) this implies

|®(s)p ™" [|3 = limsup |s|
k—o0

for every s € [° and ¢ € Hameo(S?), which means that we have

| o ®(s)||y = limsup |s|
k—o0
for every s € [°°, and this finishes the proof of (2.13).

It remains to show that the image ®(cg) is contained in Hameo(S?). This
will be done for a special choice of the sequence my and of functions hj and
hi. On step k of the construction, we now additionaly choose a sufficiently thin
neigbourhood Wy, of Ly, U Ly, in Ay, Then, for each k and each n € (0,1]
denote by J(k,n) the collection consisting of all the indices j such that the
disc Dy, ; lies inside S? N {z3 < —1/2 + n} but does not intersect the union
Ul;:_ll U;-nzéa ! ®m,.j(Wi). We require that our consequent choices of my and Wj
are such that for every n € (0, 1] we have

T (k,m)| > myn/2 (2.32)

when £k is large enough. Recall that the area of the spherical cap
S2 N {x3 < —1/2 +n} equals 7, and that the area of a disc D,, behaves asymp-
totically like 1/m. Hence it is enough on each step k to choose the neigh-
borhood W}, to be so thin that the area of the intersection of the union
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ur_, U;-":‘ZJI ®m,,;(We) with the spherical cap S? N {z3 < —1/2 + n} remains to
be less than $w(S? N {z3 < —1/2 4+ n}) = n/2 for each n € (0,1]. Indeed, this al-
lows on further steps &’ to choose m; to be large enough so that the requirement
(2.32) is eventually met. Once my, and Wy, are chosen on a step k, we choose the
functions h) and hj as before but impose an additional requirement that their
supports lie in Wj. As before, we put hy, = hj, — hy.

Now assume that we have some s € ¢y, and let us show that
®(s) € Hameo(S?). We can find a sequence m), < my, of natural numbers such
that limy_,o m},/my = 0 and at the same time the sequence s}, := mysy/m), con-
verges to 0 when k — co. By (2.32), it is possible to choose a sequence 7y, € (0, 1]
and find an index kg such that limy_,o 7% = 0 and such that mj, < |7 (k, n)| for
k > ko. For every k > ko choose a subset 0 € J C J(k,n;) that has exactly mz
elements.

For each k > kg, consider the autonomous Hamiltonian function

Gk = 82 Z ((Z)mk,j)*hk'

JE€Jk

By Lemma 2.1, and Remark 2.2 applied to the surface S N {x3 < —1/2 + i},
one can find a normalized Hamiltonian function Hy € C*(S? x [0, 1]) compactly

) 1 _ a1 _ 4l (4l \—1
supported in 5° N {z3 < —1/2+n} such that ¢, ., = sy = o, (D5,
and such that

3
H — 2.
A (2:33)

Since the supports of the Gj’s are mutually disjoint and are “converging” to
the south pole of S2, and since limg_,o0 |G |loo = 0, it follows that

U= (CY) lim 65, 0 ég, _, 009G,

is an element of Hameo(S?) being the time-1 map of a continuous flow of home-
omorphisms generated by the continuous (autonomous) Hamiltonian Zz’;ko G-
Therefore it is enough to prove that ¥~!o®(s) € Hameo(S?), which is equivalent
to (®(s%))~! o U € Hameo(S?). We have

(®(sM)) Lo T = (C°) lim &, 'y,
k—oo
where
U = (;Sék o qﬁékil 0---0 d)éko
and
_ 1 1
(I)k - ¢mkskhk 0---0 (bmkoskohko

for k > ko. Denoting ®,_; := 1, for each k > ko we have

0 = (01 (Onysny) 06, Ph1) © o 0 (R (D sy Py, Pho—1)

= (!¢, Pr_1) o0+ 0 (‘I);;01,1¢}{,€0 Pry_1)- (2.34)
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Choose a smooth non-decreasing function c : [0,1] — [0, 1] such that c(t) =0

for t close to 0 and ¢(t) = 1 for ¢ close to 1, and for each j define ¢; : [3];1, ]i—l] - R
by ¢;(t) = c((j + 1)(jt — j + 1)). Now, for each k > ko, define the Hamiltonian

function Hy, € C°°(S? x [0,1]) by Hg(z,t) = 0 when t € [0, k‘}%l] U [k—_’f_l, 1], and

Hyy(x,t) = () Hj(®j-1(x), ¢;(¢))
=G+ DG+ 1)t =7+ 1)) Hj(®j-1(2),c(( + 1)(jt — 5 +1)))

for t € [=1, L] and kg < j < k. By (2.33) and by the rapid growth of the

1
sequence (mkg (we have chosen the sequence so that in particular my > 2my_4
for each k > 1), the sequence (Hy) converges in || - || to a continuous function

H : 5% x [0,1] — R. Since the sequence (H}) of Hamiltonian functions stabilizes
on S? x [0,1], for every t € [0,1), the function H is smooth on S? x [0, 1), hence
the time-t map gb% is well defined for ¢ € [0,1). We claim the convergence

(C%) lim ¢ = (®(s%)) 1 o @. (2.35)
t—1 H
To see this, first note that we have that convergence along the sequence t; = kiﬂ,

since by (2.34) and by the definition of H we have ¢%’; = 0,1y, for k > k.
Therefore (2.35) follows from the fact that for each k > kg, the flow
BT o (o) = a e ey,

(r € 1o, k(%m]) converges to the identity when k& — oo, uniformly in
7. The latter holds since the Hamiltonian H; is supported in the spheri-
cal cap S?N{x3 < —1/2+ n} which is invariant under ®;_;, and we have
limg 00 Mk = O (that is, that spherical cap “shrinks” into the south pole of S2
when k converges to infinity).

Because of (2.35), if we define ¢11L~I = (®(s%))1 o W, then (¢%{)te[0,1} is a
continuous path of homeomorphisms. But then (2.35) also implies that (‘btf{)te[o,l}

is the C° limit of the sequence (gb% )tefo,1] of smooth Hamiltonian flows (this can
k

be readily seen from the definition of H 1). Recall that we have also verified that
the sequence (H}) of Hamiltonians converges in the L* norm (in particular in
the L(1>°) norm) to H. This shows that (®(s%0))~1o W = d)}{( € Hameo(S?), and
hence finishes the proof.

2.5. Proof of Lemma 2.1. Our proof of the lemma is based on an idea of
Sikorav [10, Section 8.4]. Before passing to the proof, let us show the following
auxiliary statement:

Claim 1. Let D be a closed symplectic disc of area less than €, let W be an
open symplectic 2-disc, a let ¢, : D — W be a pair of symplectic embeddings
whose images do not intersect. Then there exists a Hamiltonian diffeomorphism
U € Ham (W) satisfying ¥ o ¢ = 1), whose generating Hamiltonian is normalized,
compactly supported in W, and has L120) norm less than g/2.



On Two Remarkable Groups of Area-Preserving Homeomorphisms 367

Proof. First, one can easily find an example of such discs (of the same areas
respectively) and symplectic embeddings as in the claim, for which statement
of the claim holds. Indeed, one can take W’ to be an open topological disc of
a rectangular shape on the standard symplectic 2-plane, sharing the same area
with W, and take ¢', 1/ to be symplectic embeddings of D into W’ whose disjoint
images have nearly rectangular shape such that 1)’ is a composition of ¢’ with a
horizontal translation. Then for a suitable such choice of W', ¢’ and v)’, a cutoff of
an appropriate linear planar Hamiltonian function will have L(1:°) norm less than
£/2 and will generate a Hamiltonian diffeomorphism ¥’ compactly supported in
W’ such that ¢/ = ¥’ o ¢'.

Now look at the symplectic embeddings ¢’ o ¢~ : ¢(D) — W and
Y o™t :9p(D) — W, and find a symplectomorphism © : W — W’ which ex-
tends them, meaning that © = ¢’ 0 ¢~ on ¢(D) and © = ' 0 p~1 on (D). Tt
remains to define ¥ € Ham(W) by ¥ =0~ 1o ¥ 0 0. O

3
b2

$1
Dy D, Dy Ds

Fig. 2.2
The discs Dj and maps ¢;.

Let us now pass to the proof of the lemma. Denote ¢ = L%J and ¢ = LWT_IJ
By slightly decreasing the disc Dy and re-defining D; := ¢;(Dy) for all j, we may
assume that they all are topological discs with smooth boundaries and with mu-
tually disjoint closures. We claim that there exists a Hamiltonian diffeomorphism

¥ € Ham (M, w) such that:

o Uo g = o for all 0 < i < ¢ (here ¢g : Dy — Dy stands for the identity
map).

1P| < e/2.
Ulp =drody’ Vlp, =¢30

Fig. 2.3
The map ¥ and the discs D;.

To see this, for each 0 < 7 < ¢, find a topological open disc 232 that compactly
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contains both Dy; and Ds;+1 and such that all the discs ZSZ are pairwise disioint.
By Claim 1 (stated at the beginning of the proof of the lemma), for each D; we
can find a Hamiltonian diffeomorphism ¥; € Ham(M,w) satisfying W; o ¢; =
®2i+1, whose generating Hamiltonian is normalized, compactly supported in D;,
and has L(1*) norm less than £/2. Now denote ¥ = W¥go---0 Wy,

V)p, =¢20¢r" Vip, =¢s0¢5"
D() Dl DQ D?, D4
Fig. 2.4

The map ¥’ and the discs D;.

Similarly, we can find a Hamiltonian diffeomorphism ¥’ € Ham(M,w) such
that:

[] \I’/Od)%—l = ¢2i for all 1 <1 < L.
o ||W|g<e/2.

gorojolo}

Passing from ® = fof1... fim
to @:90919/

0000
0G0

Fig. 2.5
Passage from the map @ to 3.

For convenience we now introduce go,g1,...,9¢ € Ham(M,w) as follows.
If m = 20+ 1 is odd, then define g; = fo; U foi 1V = foi(d2it105;)* fait1
for 0<i<l If m = 20 is even, then we put ¢ = fo, U 'fo; U =

f2¢(¢2i+1¢2_i1)*f2i+1 for 0 < i < £ — 1, and moreover gy = for = f,. Then
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supp(g;) C Da; for 0 < i < £. Denote ® := gog1 ...gs. Then we have (here and
below, the symbol ] stands for a composition of maps)

4 Vi
710 = [ (U foirn Wfily) = (Hml) v <H f2z‘+1> v
=0

-1

=0
and hence
dy(®, D) = || Py < 2||V||g < e (2.36)
h ‘ @ ‘ @
o tho = U h MY thy = U RN
Fig. 2.6
The maps &D ® and d~19.
Recall that for each 0 < i < ¥, the map g; is supported in Do;, and is given

by ¢; = f2z(¢21+1¢2i ) f2it1, unless m = 2¢ is even and i = ¢ in which case we
have gy = far = fm. Define j; := ¢;g; for 0 < i < ¢. Then put h; := [[;_; §; for
0 < i < ¢, and then define (see Section 1.3 for the definition of the pushforward
operation that we use here) hg; = (gﬁgi)*fli for 0 <i<fand hgj—1 = (d)gi_l)*izi_l

for 1 <i< /. Put (13 = hohi - hgy. Then
o ¢ ¢ -1
o 1p = (H hg,-1> pl (H hml) U
i=1 =1
and hence o A
da(®,®) = |21y < 2||¥|u < e. (2.37)

Finally, note that
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)10 = hy'd G NG

Q@@@Q

Fig. 2.7
The map (®')~1®.
therefore (recall that W' was chosen at the beginning of the proof)

-1

2 ¢ ¢
(@) e =hy'®=]]hi= (H hzu) v’ <H h?il) )™
i=1 i=1 =1

and so we get R
du(®, ) = [[(@) 'l < 2| V|| < e. (2.38)

Now, the inequalities (2.36), (2.37) and (2.38) imply (2.1), and this concludes
the proof.

2.6. Additional remarks

2.6.1. An adaptation of Lemma 2.1 to HE&(M,LU). Lemma 2.1 holds
also for the universal cover %(M ,w). More precisely, let (M,w), € > 0, discs
Dy, ..., Dy, € M and symplectic diffeomorphisms ¢; : Dy — D; be as in the
statement of Lemma 2.1. Furthermore, let ( f )telo,1] be Hamlltoman flows on M,

(0 < 7 < m) such that the flow (ft) is compactly supported in D; for every j.
Define the Hamiltonian flows (®;), (CDQ) by

= fofi frn @ = fOILL05 S}

Then for the representatives [(®;)], [(D})] € ﬁaﬁ/n(M,w) of the flows (®;), (®}) we
have

du([(20)], [(®1)]) < 3e. (2.39)

Our proof of Lemma 2.1 transfers almost verbatim to that case. As be-
fore, we pick a Hamiltonian diffeomorphisms ¥ and ¥’ with the same properties,
and define flows (g!) in an analogous way. Namely, if m = 2/ + 1 is odd then

= fLUtfL W for 0 < i < 4, and if m = 20 is even then gf = fL,0~1fL U
for 0 < ¢ < ¢ — 1 and moreover g = fI, = fI,. Then we define the flow
&, := ghgl - gL, and we get

-1

K/
)"l = (Hf21+1> v <Hf§i+1>‘1’
i=0
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At this point we wish to conclude that we have

drn([(20)], [(@0)]) = (@) @4)] 1 <e. (2.40)

Let us explain why we are able to do that. Denote

Z’
0, = ft .
t 2i+1
=0

and choose a Hamiltonian flow (¥;) of Hofer length less than ¢/2 such that
Uy = W. Then the Hofer length of the Hamiltonian flow (@l_l\llt_l@lllft)te[()ﬂ is
less than €. Hence in order to show the inequality

du([(20)], [(@0)]) = (207" = [[(O7 UL O]l < e

it would be enough to verify that
(0, 107e,W,)] = (6710, '0,¥,)] € Ham(M, w).

But that is a general fact which holds for universal covers of Lie groups, and it
follows from looking at the homotopy Fi; := ©, 1\I/g1@t\115, and from observing
that FS70 = F07t =1.

We have shown the inequality (2.40). Then, in a completely analogous
way, we define the flows (h!) and then define the flow (®,), showing that
da([(®)], ([(®2)]) < € and du([(®1)], ([(®})]) < &, and this implies (2.39), fin-
ishing the proof.

2.6.2. Some properties of [°°/cy. Let us explain how one can isometrically
embed the normed group (I°°,|| - ||oo) into the normed group (I°°/co, || - ||oo), and
moreover isometrically embed (C'(X),| - |loo) into (I, || - ||eo) (for a separable
topological space X). Decompose the set of indices k € N into a countable union
of countable sets: N = [ Uy U---. Then define the map «a : [ — [*° by
a((sg)) = (s}) where s, = s, when ¢ € I;. The composition of a with the natural
homomorphism [*° — [*° /¢y is an isometric embedding of [*° into [*°/cy. Now,
if X is a separable topological space and (z;);en is a dense sequence in X, then
the map C(X) — [°° which sends f € C(X) to the sequence (f(z;));en, is an
isometric embedding.

Now we explain why there is no isometric group embedding of (I°°/cq, || - ||0)
into (I°°, || ||so)- Assume on the contrary that such an embedding ¢ : [*°/cy — [*°
exists. Consider the set J consisting of all infinite sequences a = (ag, a1, . ..)
where «; € {1,2} for each i. For every a € J define a subset I, consisting of all
integers of the form Zf:() ;3" for all k > 0, and then define s* = [(s§)] € I°/co
where 3]0-‘ =1 for j € I, and sjo-‘ = 0 otherwise. For every distinct «, 8 € J, the
intersection I,MNIg is finite. Therefore for every ay,...,a,, € Jand ty,...,t, €R
we have

[t18™ + .o+ 8™ |0 = max |te].
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Now for each pair of integers i,k > 1 consider the subset J;;, C J that consists
of all @ € J for which the absolute value of the i-th coordinate of ¢(s“) € I*° is
greater than 1/k. Then J;;, is a finite set of cardinality |J; ;| < k. Indeed, other-
wise taking some distinct a1, ..., a; € J;, for a suitable choice of ¢; € {—1,1},
the i-th coordinate of Z§:1 €jL(s%) is greater than 1 and consequently

k
1e(Y €5%loo = 1) €5e(5™)lloo > 1,
j=1

j=1

which contradicts || Z?Zl €j5% ||ooc = 1. This shows that J;; is a finite set and
hence the union U; ;J; ) is countable. Since J is uncountable we therefore can
find some « € J that does not belong to any of J; ., which means that s* belongs
to the kernel of ¢, and so the kernel is non-trivial as stated. A similar argument
shows that every continuous group homomorphism between (I1°°/cq, || - ||oo) and
(1%, ]]*||so) has a non-trivial kernel (in fact, such a homomorphism is always linear
over R and the kernel must be an infinite dimensional linear subspace of {*°/cg).
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ITpo naBi Bu3HauHi rpynu romeomopdismis, 110
30epiraloTh MJIOILY

Lev Buhovsky

Mu moBommmo, 10 Ha CHUMILIEKTHUYHIN cdepi rpymna ramiJbTOHOBHX TO-
meomopdismiB B cerci Ora i MroJutepa € BJIacCHOIO HOPMAJIBHOIO HiAIPYIIOI0
raMiJIBTOHOBHX TOMeOMOpdi3MiB 3i cKiHUeHHOIO eHeprieo. Bimbmm Toro, Mm
3HAXOJIMMO CKIHYEHHOBUMIPHI TIJIaCKi MOJIyJIi, Ha/IiJIeH] IIPUPOJIHOIO TICEBJIO-
MeTpukoio ['odepa, y dpakToprpyti 1nmux rpyi.

Kirrodgosi ciioBa: ramisibToHOBI romeoMopdizmu, rinoresa Pari, meTpuka
T'odepa, cnekTpasnbHi iHBapianTi
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