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On the CLT for Linear Eigenvalue Statistics
of a Tensor Model of Sample Covariance
Matrices

Alicja Dembczak-Kotodziejeczyk and Anna Lytova

In [18], there was proved the CLT for linear eigenvalue statistics Tr (M, )

of sample covariance matrices of the form M, = > | v @ y@ (y((ll) ®

y,(f))T7 where (y&l), y,(f))a are iid copies of y € R" satisfying Eyy” = n~'1,,
Eyy? = (146;d)n =2 +a(1+6;;d1)n~*+0(n"*) for some a,d, d; € R. It was
shown that given a smooth enough test function ¢, Var Tr p(M,,) = O(n)
as m,n — oo, m/n? — ¢ > 0, and (Trp(M,,) — ETr ¢(M,))/+/n converges
in distribution to a Gaussian mean zero random variable with variance V[¢]
proportional to a + d. It was noticed that if y is uniformly distributed on
the unit sphere then a +d = 0 and V[p] vanishes. In this note we show
that in this case Var Tr(M,, — zI,)~! = O(1), so that the CLT should be
valid for linear eigenvalue statistics themselves without a normalising factor

in front (in contrast to the Gaussian case.)
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1. Introduction: model and main results

Consider the following model. Let y = (y1,...,yn) € R™ be a random vector
having an unconditional distribution (which means that (y;); and (ty;); have the
same distribution for any choice of signs) and satisfying the following moment
conditions as n — oo:

Eyi =0, Eyy;=n'6; i,j<n,

ao = Eyizy?- =n"24+an3+ O(n_4), Vi # 4,

Eyj — 3ass =bn"> 4+ 0(n™?) (1.1)
for some a,b € R. Note that a vector y ~ U(S™!) uniformly distributed on the
unit sphere satisfies these conditions (with a = —2, b = 0) as well as a normalised
standard Gaussian vector y ~ N(0,n7'I,) (with a = b = 0). Given m =
m(n) € N, let (y((yl), yg?))g:l be independent copies of y and let {Y7,...,Y;,} be
a multivariate sample of tensor products of pairs {y&l), yg)}:

Ya=yPoy® =yl eR”, a=1,...m. (1.2)
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Consider an n? x n? sample covariance matrix of the form
m
M, => Y, Y. (1.3)
a=1

In [18], there was studied the asymptotic behaviour of linear eigenvalue statistics
Tr (M) as m,n — oo, m/n? — ¢ > 0. In particular, it was shown that for a
smooth enough test function ¢, the variance of Trp(M,,) grows to infinity not
faster than n,

Var Tr p(M,,) = O(n), (1.4)

and (Tr o(M,,)—E Tr ¢(M,,))/+/n converges in distribution to a Gaussian random
variable with zero mean and variance

2
Vg = W </ (1) T ‘i;)czz = a)dﬂ) , (15

ar = (1£v0)? am=(ar+a)/2=1+c

(see Theorem 1.9 and Remark 1.10 of [18] for the details.)

If a4+b+2 = 0 then V[p] vanishes and the limit of (Try(M,) —
ETrp(M,))/+/n is trivial. This is precisely the situation we have when vec-
tors (y&l), yg?))a in the definition of M, are uniformly distributed on the unit
sphere. In this case in order to describe fluctuations of linear eigenvalue statistics
of corresponding matrix M,,, we need to refine (1.4) finding the correct order of
Var Tr p(M,,) and then after proper normalization find the corresponding lim-
iting variance. This is the most important step while proving the CLT for the
linear eigenvalue statistics and this is the main aim of the present note.

The question of the validity of CLT for linear eigenvalue statistics of random
matrices, in particular sample covariance matrices, has been a subject of extensive
research with numerous significant findings. It dates back to the investigation of
fluctuations of the traces of matrix powers [2,15] and matrix resolvents [11]. The
first CLT's for the traces of arbitrary smooth enough test functions Tr ¢(M,,) were
obtained in [9,13, 14] for the case of Gaussian matrix entries and in [1,4,19] for
more general models. Further study of fluctuations of linear spectral statistics
has been caring out mostly in three main directions: relaxing regularity con-
ditions for the test functions, relaxing moment conditions, and exploring more
complex matrix structures (sparsification, considering different types of depen-
dence of matrix elements etc.) We refer the Reader to [6, 12, 16-18, 21, 23-26]
and the references therein. Based on our knowledge it is expected that, up to
certain moment and regularity conditions, the asymptotic behavior of eigenvalue
statistics of random matrices depends mostly on the structure of the matrix be-
ing considered and not on the precise distribution of matrix elements. Thus, in
the case of basic models for Wigner and sample covariance random matrices, the
CLTs for linear eigenvalue statistics depend only on the first four moments of the
corresponding matrix and sample entries, provided that the test functions are

where
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smooth enough. We also expect that the standard Gaussian vectors and vectors
uniformly distributed on the unit sphere result in similar asymptotic behavior of
samples dependent on these vectors, and this is precisely what we have in the case
of CLTs for linear eigenvalue statistics for matrices of the form Y7 | TayayZ,
where up to a constant the limiting variance is the same for (ya,)a ~iiq U(S" 1)
and (ya)a ~iia V(0,n711,). What makes our model (1.2)-(1.3) special and in-
teresting for us is that not only the limiting expression of the variance but the
order of the variance of linear eigenvalue statistic depends on the distributions of
(y&l), yg))a in the definition of M,, (compare (1.5) and (1.8) below.)

Before stating our result, we present some of the results proven in [12]. Con-
sider the sample covariance matrix of the form MT(LI) =y, YoYL, where (Yo)a
are independent and identically distributed copies of a vector y with an uncondi-
tional distribution satisfying Eyy! = n~'I, and such that for any deterministic
n x n matrix A, with ||A,|lop = 1, Var(A,y,y) = o(1), as n — co. The almost
sure convergence of the empirical spectral distribution of these matrices to the
Marchenko—Pastur law [20] was proved in [22] (see also [5].) In [12] it was shown
that if additionally y satisfies (1.1) and E|(4,y,y) — E(4.y,y)|* = O(n~?),
then given a test function ¢ € Hais5, 6 > 0, the centered linear eigenvalue statis-
tic Trgp(M,(Ll)) — ETrcp(M,(Ll)) converges in distribution to a Gaussian random
variable with zero mean and variance

CTRENE B G e AN (4¢ — (A1 = am)(A2 — am))dA1dAs
B CE /a /a <AA> V0 =) —a)y/(ay —A)(A2 —a-)

2
a+b /‘“r = Gm
+ (1) dp | (1.6)
ton? < o i)
where Ap/AX = @(A1) —@(A2) /(A —A2) (see Theorem 1.8 of [12] for the details.)
The proofs of (1.5) and (1.6) follow the method of Stieltjes transform used by
many authors before (see [4,11,20,25] and references therein.) One of the main

steps of these proofs is to find the order of fluctuations of the traces ’y,(Ll)(z) =

Tr G(z) of the resolvent G(z) = (MT(LI) — zI,)7, 3z # 0, and to find the limit of
the properly normalized covariance of the resolvent traces, which allows then to
get the limiting variance of the linear eigenvalue statistics. Thus, in [12] in order

to get (1.6) it was shown that Var 'yq(q,l)(z) < O|S$2]75, 32 # 0, and

CO(z1,20) : = lim Cov {70 (z1), 7 () }

n—oo

0P (2 b Af N c(a+1b) )
02102\ S Az (1 + flz0))(A+ f(z2) )
where f is the Stieltjes transform of the Marchenko—Pastur law.

In our work we focus mainly on this step and study the fluctuations of the
resolvent traces. Our main result is the following theorem.

Theorem 1.1. Given n,m € N, let M,, = > ", y&l) ® y,(f) (y&l) ® y&Q))T,

where (y(()})7 y((f))a are independent and identically distributed vectors uniformly
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distributed on the unit sphere. Suppose that m = m(n) — oo and m/n* — ¢ >
0 as n — oo. Let G(2) = (M, — 2I,)7%, y(2) == TrG(z), Sz # 0. Then
Var y,(z) = O(1), Sz # 0, and there exists ng € (0,00) such that

C(z1,29) : = nh_)Irolo Cov{vn(z1),n(22)}

_ cf*(z) \ [ cef* =) \
‘C(l)(“’@)‘aw:z+3<<1+f<zl>>2> <(1+f<22))2)  (L7)

where z1,z9 € {z € C : Sz > no} and f is the Stieltjes transform of the
Marchenko—Pastur law.

Remark 1.1.

1. In Section 2, for the Readers convenience we gather some useful properties
of f and give the explicit form of C(z1, 22).

2. In what follows for the sake of simplicity we suppose that m = cn?. Our main
results, Theorems 3.1 and 1.1, remain valid in general case m/n? — ¢ > 0,
m,n — oo (see Remark 3.1.)

Having proved Theorem 1.1 and following step by step the scheme proposed
in [25] (used in [12, 18]), one can prove the corresponding CLT for the linear
eigenvalue statistics and show that under conditions of Theorem 3.1, given a
smooth enough test function ¢ (¢ € H® for some s > 2), the centered linear
eigenvalue statistic Tr ¢(M,,)—E Tr ¢(M,,) converges in distribution to a Gaussian
random variable with zero mean and variance

2
it B (2o e
Vi =vOlL| |+ ( | et ¢<a+—u><u—a_>d“) oy

To find a regularity class for the test functions, one can get an analog of Lemma
3.2 of [12] and then apply Proposition 1 of [25]. (We also refer the Reader
to [17,26] as to some optimal results on regularity classes for the CLTs for Wigner
and sample covariance matrices.)

Though the scheme of the proof of Theorem 1.1 and similar results is quite
standard nowadays, there are some difficulties in the details, namely in the esti-
mating of the error terms, such as variances of various resolvent statistics, and in
showing that what we expect to be small is indeed small enough. In addition to
a bit complicate structure of the sample, we need to take into account some del-
icate cancellations we have due to the moment conditions specific to the vectors
uniformly distributed on a sphere. As in many other papers dealing with random
matrices without independence structures in columns (see, e.g., [22] and [5]), our
research is based on the asymptotic analysis of the bilinear forms (AY)Y). In
Section 3, using a bootstrapping argument we get the order and find the limit
of the properly normalised covariance of bilinear forms (G(z)Y,Y). Section 4
contains the proof of Theorem 1.1. In Section 5 we gather auxiliary technical
results.
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2. Notations and preliminary results

Moments of y ~ U(S" ') and Y = yD @ y@. Lety = (y1,...,yn) €
S5™~! be a random vector uniformly distributed on the unit sphere in R™. It is
easy to see that this distribution is unconditional, and that

Eyz = 07 Eyzy] = n_léijv Za] <n.

Also it can be shown that

1 1 2
= E = == ~ 410" | £ g
ylyj n(n +2) n2 3 +0(n"), i#j,
4 _ 4 2\2 _ 6
Byj = 3020 =0, Byj = 3(By;)” = ~Sor oy

Ey;ysypyq = a2,2(05s0pq + 0jpdsq + djq0sp)-

This shows that in (1.1) a = —2 and b = 0, so that V[p] =
Now let y) and y® be independent and identically distributed copies of y

and let Y = y(1) @ y(? = (yfl)yJ(Q))w - We have

EY;; =0, EYUqu = ”_25ij5pqa

1 _ 1 4 n 12
n2(n+2)2 nt nd  nd
EYJ’J”YSS’%p’qu’ = a%,2(6185pq + 5jp58t1 + 5]'(15817)(5]"8/510’11’ + 5]":0’55’(1’ + 5j’q’58’p’)'

EY;Y,, = a3, =

+0(n77), (2.1)

Note that ||Y|| = 1, though the distribution of Y is not uniform on S =1,

Here and in what follows given a vector X we use notation ||X|| for the
Euclidian norm of X. Also given a matrix M, we use ||[M||,, for its operator
norm, |[M|op = supy. x|=1 M X[, and [[M|[ns for its Hilbert-Schmidt norm,

1M s = (3;; M3

The Stieltjes transform of the Marchenko—Pastur law. Here we
gather some simple facts on the Stieltjes transform f(z) of the Marchenko—Pastur
law (see [20]) that we need in what follows. We have

Zf2+f(z+1—6)+1:0,f:%[—(z+1—c)+\/(z+1—c)2—4z}, (2.2)

<wwmuww*:—ﬁ (z—c/A+ ) =—f/1,
Az c 1! 1

Af f(Zl (2) A+ f)A+ f(z2) fFUF+1D) sa(z)

() =l =e] () ==

where sq(z) := /(2 + 1 — ¢)2 — 4z. This allows to get the explicit expression in
(1.7):

1 de — (21 — am) (22 — ap) 1 Zi—am
Clnan) =~ [+ - %Ik[ww> ]
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2

3 2¢c — (zi — am)
+ = Zi — Qm + )
c? i£[2 [ o sq(zi)

where a,, = 1+ c. Note that compared with the previously known results for the
n X n sample covariance matrices M,(Ll), here we have an additional term (the last

one, see [12,24].)

The resolvent and some related spectral statistics. Let G(z) =
(M, — 2)71, 2 € C, be the resolvent of M,. We have |G(2)|o < 1/|3z],

|G (2)|| s < n'/?/|3z|. Introduce n x n matrices G and G by the formulas

g= (Zqu,kq)l , G= <Zqu,qk>
q J q

7k J7k

It is easy to check that ||G(2)]|op < n/|S%], Hg(z)Hop < n/|Sz|. Introduce also

’Yn(z) = TI‘G(Z), gn = n727n7 (23)
1 _
95 (21, 22) = 3 Z Gjops(21)Gjgpg(22) = n > TrG(21)G(22), (2.4)
J:$:D,q
921, 22) = n 3 Tr G(21)G(22),
1
97(12)(Zlaz2) ) Z Gjs,pq(21)Gps,jq(22)- (2.5)
J:$:D,q

Here and in what follows the summations over the Latin indices are from 1 to n

and over the Greek indices are from 1 to m. Let f, = Eg,, fff) = Egﬁf), i1=1,2.

We normalize the introduced functions so that they are uniformly bounded in n.
The following statement was proved in [18, Lemmas 6.1,7.2]:

Lemma 2.1 ([18]). Let 7, be defined in (2.3). Given a compact set K C C\
R, we have uniformly in z, 21,29 € K as n — 0o:
() Varyu(z) = O(n), Varg, = O(n?),
(i) Vargqg),Var 577(11) = O(n*Q).

Here and in what follows the constants hidden in O(n_e) may depend only
on K. Let

m
My =M, -YY = > vyl
B#a,B=1
In what follows we use the upper index « for the quantities which does not depend
on Y,:
Gz) = (Mg —2)7', gy =n?TrG% [ :=Egy,
and so on. Let E, = Ey, denote expectation with respect to Y,. We have by

(2.1),
Ea(GaYmYa) = .97057 E(GaYavya) = fr?
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Also given & = £(Y1,...,Y), we put

£ =¢6-E (§a=¢&—Eu&,
so that Var & = E|¢°]2, Var, € = E,|(€)2, Cov{¢, & =E6 & .

3. Covariance and central moments of bilinear forms (G(z)Y,Y)

In this section we establish some auxiliary results concerning the asymptotic
properties of the bilinear forms (G*Y,, Ya), a < m. Let Y be defined in (1.2).
Take any two matrices F', H which do not depend on Y and have the operator
norms uniformly bounded in n. With the help of (2.1) one can get

Ey(FY,Y)(HY,Y)S = (a55 —n~ ") Tr F Tr H + 2a3 , Tr FH
+ 2(1%,2 Z (Fjs,psHJ’qm + Flis,jqHps,pq + Fjs,quPSJq)a (3.1)

]7p787q

where | Tr FH| < n?||F||op||H||op and by the Cauchy—Schwarz inequality,

Fjs,qups,jq

< 12| Fllopll H llop-

< n2||FH0p||HH0p and Z Fljs psHjq,pq

]?p7s7q J7p?87q

This, (2.1), and (3.1) yield
By (FY,Y)(HY,Y)5| < Cn7 | Fllop]| Hllop, (3.2)

where C' is an absolute constant. Let now F' = G(z1) and H = G(22), 21, 22 €
C \ R, where G(2) = (M,, — z)~! is the resolvent of M,,. Suppose that Y and
Y1,...,Y,, in the definition of M,, are mutually independent. Let

Dp(21, 22) := Cov{(G(21)Y,Y), (G(22)Y,Y)} = E(G(21)Y, Y )(G(2)Y,Y)°.
Since [|G(2)]lop < |S2|71, we have by (3.2)
Ey(G(21)Y,Y)(G(2)Y,Y)y = O(n™1). (3.3)
Also we have

Dn(z1,22) = Ey; .y, (By (G(21)Y,Y))(G(22)Y,Y)5)
+ Covyi,.. v, {9n(21), gn(22) }, (3.4)

where by Lemma 2.1(i) the second term is of order O(n™?). Hence
Dy(21,22) = O(n71). (3.5)

The main purpose of this section is to show that Dy (z1, 22) = O(n™?) (see Lemma
3.1 below) and then to find the limit of n?D,(21,22) as n — 0o (see Theorem
1.1).
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Lemma 3.1. Let f, = Eg, and fff) = Egﬁf) (see (2.3)=(2.5).) Given a
compact set K C C\ R, we have uniformly in z,21,22 € K as n — oo, m = cn?:
(i) Dn(z1,22) = O(n_2),

(i) fu(2) = f(z2) +O(n7?),
1 cf?(21)f*(22) -
1) — - 3/2
i) fn/(z1,22) = f(21)f(22) + +0(n ;
() e 2) = JE0IED) e (e sy O
cf?*(21)*(z2) —1/2
4+ O(n .
A+ S+ fe) O

Proof. To prove (i)—(iv) we use a bootstrap argument: first we prove a weaker

statement and show that

fa(2) = f(2) +O(n7") and  f{M(z1,22) = f(21)f(22) +O(n™")  (3.6)

and then repeating the argument and using (3.5) and (3.6) we get (i)—(iii).
We start with the first equality in (3.6). The rank one perturbation formula

(iv) £P(21,20) = f(z1) f(z2) +

. GoY, YT G
T e 0

implies that

a2
TrG—TrGa:—% = —iz, (3.8)
(GYa, Vo) = (GOVa, Ya) — (Gaﬁ;Ya)Q - (Gai’ Yo) _q_ Ala. (3.9)
Taking into account that ||Yy||2 = 1 and |[(G®Ya, Ya)*| < |Sz|7F, we get
|Aal, [AZY < 1427 (3.10)
This and (3.8) lead to
[fn = f2] = 0(n™?), (3.11)
hence, EA,(2) =1+ f2(2) = 1+ fu(z) + O(n2). We also have
(EAL) ™Y = max{2,4/|3z|} (3.12)
(see (4.9) in [18].) Applying the resolvent identity and (3.7) we get
YoXy G° (3.13)

2G(2) = =T+ MpG(2) = =T+ > Yo ¥[G=-T+) e,

so that taking the trace and applying (3.9) and equality m = cn? we get

1 1 — (G, Ya) c 1
zﬁTrG(z):—l—l—ﬁza:T:—1+C—E20;A—a. (3.14)

(0}
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Note that for every k € N we have

1 1 A (42)° (=DF(A2)"

1 B I Gty €7 3.15
Ao BA,  (BA T BAS T Amayer G
and in particular,
1 1 AS (A2)? 5
Il _ « « 0 ’
Ao 140 O+ Adl+f? " (™)
where we also used (3.10)—(3.12). This and (3.14) leads to
c c A2? _9
Z2fn(z) =—=1+c— 57 + T )2 ZQ:EAQ +0(n™?).
Since EqAq(z) =14 ¢5(2) and
Ay = (Aa)o + 9% (3.16)
we get
Var 4, < 2(EEq|(44)5|* + Var{g3}) = O(n™1), (3.17)

where we have applied Lemma 2.1(i) and used that by (3.3), Eo|(44)5? =
O(n_l). Thus

2fn(z)==14+c— +O(n_1). (3.18)

c
14+ fn
On the other hand,

(see (2.2).) This implies

fa2) = f(2) = (z—c(1+ )" A+ fu) ™)~

and the first statement of (3.6) follows. Now we turn to the second part of (3.6).
By (3.7),

'o(n™1), (3.19)

o (GY4)j(GYa) Vi (GOY,)
Gip = G, — Ian P (MnG)jp:Z " P

«

This and (3.13) allows to get (cf (3.14))

_ G(z Yo)psYajs a
21910 (21, 22) = —gn(22) + 070 > Z( (;1) (zigj =G pq(22)

Jip;S,q

_ 3 Z Z YajS(j:E'Zliya)ps (G*(22)Ya)jg(G*(22)Ya)pg

= —gn(22) + T1 — T2, (3.20)
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where
1 hna(zlazQ)
T — — Dnal\<l, ©2)
L ~ Aa(z1)
1 o o
hne = ﬁ (G (Zl)Ya)psYajs jp(ZQ)’ (321)
Js$:p
T, — i Hna(zlaZQ)
273 L Ag(21) Aa(z2)
Hyo = Z Yajs Zl ) S(GQ(ZQ)Y@)jQ(Ga(ZQ)YCY)PQ' (322)
J,8:p,q

Applying the Cauchy—Schwarz inequality we get

> Yais(GYa)ps(GYa)jq(G*Ya)pg| < [IYall IGYall IGYal?
JipyS,q

—0(1). (3.23)

This and (3.10) yield T = O(n™'). It is easy to check that Ehpa(z1,22) =
fél)o‘(zl, z9). Also it can be shown that

hnoa = O(1) and  Varh,, =0(n"")

(see Lemma 5.1.) This, (3.15), and (3.17) allow to get

_ hna(zl 22)
_ 2 )
Bl =mn Z EW

_22 21,22 _ QZEA Zl na 21722)‘4;1(21)
1+ fo(z1) L+ fo(z1) ’

where

EAS e + BAZ D0 A7

EA°h, Azl =
“ “ 1+ fa

=0(n™"). (3.24)

Since replacing f and fn1 * with f, and fr(Ll) results in terms of order O(nfz),

this leads to BT} = cf\! )(21,22)/(1 + fn(21)) + O(n™') and we finally get from
(3.20)

nysl) (21,22)
1+ fn(zl)

This and (3.19) yield the second equality in (3.6). In the second round of the
proof we repeat the schemes proposed above and equipped with (3.6) get (i)—(iii).
(i) It follows from (3.1) with F' = G(21) and H = G(z2) and (2.1) that

A fV (21, 220) = — fulz2) + +0(n71).

_ —4n? —4n 2Tr G(21)G(22)
N Wgn(m)gn(za) + n(n —|i 2)2 :

nEy (G(21)Y,Y)(G(22)Y,Y)y
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2 - _
+ n 0 W (21, 20) + 3 (21, 20) + 01 glP (21, 22) ). (3.25)
(n+2)2

Since G(21)G(22) = (G(21) —G(22)) /(21— 22) and Eg,(21)gn(22) = fu(21) fn(22)+
O(n?) (see Lemma 2.1(i)), this together with (3.4) lead to

nDyp(z1,20) = —(4 — 1207 1) fru(21) fu(22) + an(zz : Z(ZQ)

+(2-8n71) (f,gl)(zl, 2) + (21, 22) + n P (2, ZQ)) + O(n*Q). (3.26)

Substituting here (3.6), we get that the right-hand side is of order O(n_l), and
so (i) follows.
(ii) The proof of (ii) repeats that one of (3.6) except that now by (i) we have

Var A, = O(n™?), (3.27)

which leads to O(n™?) in the right-hand sides of (3.17)~(3.18).
(ili) We already have (3.20)—(3.24), where now applying (3.27), we get
O(n_3/2) in the right-hand side in (3.24) so that

ET1 = cf{V(21,22) /(1 + fu(z1)) + O(n=3/3). (3.28)

It follows from (3.22) that

B n_g EHna(Z17Z2 _3 Hpo z1722)(A01( )A (Z2))
BT =07 ) A (o) An(e 2B e A (o) B Aa (1) A (22))

By (3.23), Hpo = O(1). Also it can be shown that EH,o = f(21)f?(22)+O0(n 1),
n — oo (see Lemma 5.2.) This and (3.27) allow to get

1 cf (21) f*(22) n3/2
BT = AT fena+ fan TOT) (3:29)

Finally, applying (3.20) and (3.28) we get

(1) 2
ot ) — (s cfn’ (21, 22) _l cf(z1)f?(22) =y
B S CYNE (e V(R ey R

This leads to (iii).
(iv) Similar to (3.20) we have

2P (a1, 22) = — fu(z2) + BT — ETy, (3.30)

where

T _9 bna 21,22
=n Z :

bna(z1,22) = > (G(2 )Y )quaJstsyq( 2);

JiP»8,q
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21,22
02 ZA z)’

Z Ya]s ZQ ) S(Ga(zQ)Ya)jq(Ga(zl>Ya)P(I'

]’ ’pq

It can be shown that |b,o| = O(n), Eb,, = (D fn +0(n71), and E|b,|? =
O(n). This together with (3.15) and (3.27) leads to (cf (3.28))

(2)a -1
;o Sn (21722 _ox— EAL (21)bpa(21,22) Ay (1)
ETl - Z 1 + fa 21 Z 1 +fa(zl)
(2)<21 2)
== 2L L o). 3.31
1+ fn(zl) (TL ) ( )

Also comparing Ty and T3 one can see that ET) = nET,, where ET is given by
(3.29). Hence

(2) 2
@) _ cfn(21,22) cf(z1)f*(22) _1/2
Al o) = I Y T G e+ e O )
This implies (iv) and finishes the proof of the lemma. O

Remark 3.1. Note that in general case when m is not identically equal
to cn? but ¢, := m/n?> — ¢ as n — oo, the right-hand sides of (ii)—(iv) can
have additional terms of order bigger than O(n_3/ 2), though item (i) as well as
Theorem 3.1 below remain valid. For example, if ¢, = ¢ +n"7¢; for some ¢ >
0, c1 # 0, v € (0,1), then as it follows from the proof above that f,, = f +
an 7 f'(1+ f)71, but still Dy (21,22) = O(n?).

Now we are ready to prove the main result of this section.

Theorem 3.1. Given z1, zo € C\R, let Dy (21, 22) be defined in (3.4). Then

e CLAf 6ef? (1) f?(22)
D(z1,29) = nh_)rgon2Dn(Z1,22) = 2Az 2f(21)f(22) + (14 f(21))A + f(22))’

where Af[Az = (f(z1) — f(22))/(21 = 22).

Proof. Let F := cf?(z1)f?(22)/(1 + f(21))(1 + f(22)). It follows from (3.26)
and Lemma 3.1 that

nDy(1,22) =(—4 +1207) (F(21) + O(n%)) (F(z2) + O(n ) + 251

+(2—8n) (2f(21) f(22) + 20 F + 7 (f(21) f(22) + F)) + O(n™?)
— (“21Gs) 25T 4 oF) 4 0f)

and the theorem follows. O
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Lemma 3.1 allows also to refine the results of Lemma 2.1 and, in particular,
to show that the variance of the resolvent’s trace is uniformly bounded in n.
Namely, we have

Lemma 3.2. Let vy, and A, be defined in (2.3) and (3.8), respectively. Given
a compact set K C C\ R, we have uniformly in z € K as n — oo:

i) Eofl(4a)el’} =0O(n7?),

(
(ii) E{lnl"} =001),
(iii) E{|A3"} = O(n7P).

Proof. (i) The proof of the first part is similar to the proof of [12, Lemma 2.1].
It is based on (3.27) and the dimension free Khinchine-Kahane-type inequality
by Bourgain [8] (see also [7]), which says that if P; is a polynomial of degree d,
and y € R" has a log-concave distribution, then

E{|Fa(y)["} < C(d, p)E{| Pa(y)I}", (3.32)

where C(d, q) depends only on d and p and does not depend on n. Now since Y’
defined in (1.2) has a log-concave distribution, substituting Py(Y) = [(G*Y,Y)°|?
in (3.32) and applying (3.27) we get (i).

(ii) The proof of the second part repeats the proof of [25, Proposition 2] (see
also [12, Lemma 3.2]) combined with (i). For the Reader’s convenience we provide
here the main steps. It follows from [10] that for every p > 2 there exists C), > 0
such that

E{l P} < Con?=2 Y E{|(m)al"), (3.33)

where by (3.8), (3.10), and (3.12) we have

E{l(v)al’} = E{lm — 7 — Ea{vm — 7237}
Ba  Eo{Ba} P o

_ (Ba)a
Ao Eo{A.} } B CE{’EQ{AQ}  Aq E {A.}
< C'E{Eo{|(Ba)al"} + Eafl(Aa)al"}}-

< CE{ Ba - (Aa)g

'}

Here C,C’ depends only on z € K and p. Since both A, and B, satisfy (i), this
and (3.33) imply (ii).
It remains to note, that now (iii) follows from (3.16) and (ii). O

4. Proof of Theorem 1.1

We start with a technical lemma.

Lemma 4.1. Let A, be defined in (3.8). As n — oo, we have
Var E,{(A2)?} = O(n™%?)

uniformly in z1,29 € {z € C: Iz >ny > 0}.
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Proof. It follows from (3.25) and Lemma 2.1 that
Var Ea{(AZ)Q} <Cn~ (Var g%% + n7? Var g% /02
+ 2Var gV + n~2 Var gg)a)
< On~2Var gV® + Cn~* Var g2 + O(n™?),
where we do not distinguish between g( )% and n It can be shown that
Varg( ) = =O0(n _5/2) (cf Lemma 2.1(ii)) and Varg,(l) = O(n_1/2). We postpone

the proof of this bound to Section 5 (see Lemma 5.3). This finishes the proof of
the lemma. O

(Do

Let Cy (21, 22) := Evn(21)7n(22). In order to prove Theorem 1.1 we need to
show that the limit of every converging subsequence of {C,, (21, 22) }», is given by

B 872 ﬂ B 2c
Clz1,22) = 021022 [2 log Az (T4 f(21))(1+ f(22))
3¢ f2(21) £2(22) (4.1)
(U+ f)2(1 + f(22))? |

21,20 € {z € C: Iz >y} for some ngy € (0,00). By (3.14), we have
21Cn (21, 22) ZE{A (27 (22)} = Y S B{AL (21) (9 — 72)°(22)}
= 7! ) +T2. (4.2)

It follows from (3.15) with k = 3 that

(1) _ E{As(21)77°(22)}  E{AZ(z21)7°(22)} | E{A'AP(21)73°(22)}
=2 { (1+ f3(21))? O+ eGP (1+ f2(21))?
T n? Z E{Vln:}avzl (;2)} +0(n~1),

where we used that by the Cauchy—Schwarz inequality and Lemmas 3.2 and 4.1,
‘E{A02 (z1)70° (22 }‘ (Var Ea{ (Ag, 2}Var77°:)1/2 = O(n_9/4), and
IB{A; A% (21)78°(20) Y] < C(B{| 4S5} Var42)'/? = O(n~?).

Applying (3.8), (3.15), the Cauchy—Schwarz inequality, and Lemma 3.2 we also
get

[E{(v = 1m)°(20)77°(22)}] = [B{(Ba/Aa)" (21)77° (22) }|
< (Var{B,/As} Var~5) V2 O(n_l).

Hence,

19« (L o, @
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Consider now 7). of (4.2). By (3.8),
T2 = B{A;'(21)(Ba/Ad)(22) }-

Denote for the moment A; := A,(2;), i = 1,2, By := By(22). Applying (3.15)
with k& = 2 with respect to A; and Ay and Lemma 3.2(iii) with p = 3 to estimate
the reminder term, we get

—A° 1 go2 _ o —1 402\0
(141" (B 4z} = DAL A ADNBBL) - Duds £ By 4570

_ “E{ATBE{ Ay} + E{Bp}E{AjAp} O(n?)
E{A1}PE{A,}? ’
Taking into account that B,(z) = 0A.(2)/0z, and applying Theorem 3.1 we get
TP = -% 1 0 E{Aa(21)4;(22)}
" - E{Aa(zl)}Q 822 E{AQ(ZQ)}
_ c 0 D(z1,2) (n 1)
(14 f(21))2 0221 + f(22) '
This, (4.2)—(4.3), and (2.2) lead to
(2 L) 2 D
fi\Oz11+f1/) 0z 1+ fo ’
where for shortness we use notations f; = f(z;). Substituting the expression for
D, we get

c (0 1 o 1 Af
Clez) = =23 <8zll+f1> 921+ f> Az
n 0? [_ 2¢ n 3 f2f3 ]
0210z9 | (L4+f1)(A+f2)  (A+ f1)2(1+ f2)?]
By (2.2), we have for the first term on the right-hand side
c 0 1 o 1 Af 0 1 0 cfifa Af
- hom <1 +f1> O l+ fa Az 0z fifs <021(1 + f1)(1 +f2)> Az

+ O(n_l)

C(z1,22) =

Az
02 Az o2 Af
= e o X T = G2002 8 As

B 821 822
This leads to (4.1) and finishes the proof.

5. Auxiliary results

Lemma 5.1. Let Y, Yi,...,Y,, be mutually independent identically dis-
tributed vectors defined in (1.2), M, = Y. Y, YT m = en?, G(z) = (M, —
2I,)7Y, G = (Zq GjQJW)j,k’ and

h(21,22) =071 (G(21)Y)psVisGip(22).

J:8:p
Then h, = O(1) and Var hy(z1,22) = O(n™1).
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Proof. Since [|Gllop = O(n), we have [hn| < |G (22)[|op [[Y [ |G(21)Y || = O(1).
Applying (2.1) we get

1 — _

Vary by = — > GjpGuBy (GY)psYis(GY ) Yuy
n j7p787t7u7v

2

1
- | B,

J\Ds$

a5 — _ _
= 77,72 g gjpguv [Gps,jdGus,vd + Gps,jdGud,vs

JsPs8,d,u,v

+ Gps,vdéus,jd + Gps,vdéud,js]

2.2 =2 1 = el
4+ —=Tr QQQ + E Z(gg)up(GG)us,ps
JsD»S
a%,Q

+ n2 Z (gg)qups,jdéud,js + (a%,gn_Q - n_6) (Tr g?)Q

j7p7s7d

To estimate the terms on the right-hand side we use the Cauchy—Schwartz in-
equality and bounds [|Gllop = O(1), [|Gllop = O(n), a55 = n~* + O(n~"). Thus
for the first term on the right-hand side we have

1 _ _
5 Z gjpgqups,jdGus,vd
7,p,s,d,u,v
. 2\ 1/2
< — ( Z ‘gjpgu’l}’ Z ZGps,jdGus,vd )
:P’“v :P,UU S,d
el 2 -1
< ETrgg Y |Gpsjal? =0(n).

j7p787d
Similarly, it can be shown that the remaining terms also have order at most
O(n_l)- Hence Vary h,, = O(n‘l). Since Eh,, = ng}) and by Lemma 2.1

Varg( ) = O(n_Q), we have Varh,, = O(n_l). This finishes the proof of the
lemma. O

Lemma 5.2. Let Y, Yy,..., Y, be mutually independent identically dis-
tributed unit vectors satisfying (2.1), M, = Y0 Yo, YT, m = cn?, G(z) =
(M, —2I,)7', G = (Zq Gj’]ak‘I)ch’ and

n(21, 22) Z Ygs (G(Z2)Y)jq(G(Z2)Y)pQ'

3:8:p,q
Then we have as n — 0o
(i) VarEyH,=0(n1),
(i) EH, = f(z1)/*(22) + O(n7}).



390 Alicja Dembczak-Kolodziejczyk and Anna Lytova

Proof. (i) For the moment we skip the arguments z;, 22 in the resolvents and
use the same notation G for (Zq GjQ:kQ)j ., and (Zq quk)jk. It follows from
(2.1) that

1
EYH - H Z gpugqupq,uv

p7q7u7v
2 1
+ [n4 > 9u(Guapa 57 D (G*)paanGrvg
b,q,u p,q,u,v

Z Gpu Jq,qupq,Jv‘i‘ Z Gps,jvGiqusGpauv |- (5.1)

JXRIEN) DU,
It can be shown that the term in the square brackets is of order O(n_l/ 2) and
that 1
Ty = oy Z GpuGaqvGpguw = O(1).

p7q7u7v

Hence, to get (i) it is enough to show that VarT,, = O(n~'). Similarly to (3.33)
we have

VarT, <Y E{|T, - B.T,[*} =) E{|T, - T3 — Eo(T, — T)I*},
« [e%

_ 1 —
where T = -5 37 0 Gpu960Gigun 9% = (Zq G;V%kq)j’k. We have

1
Tn — T,? = ﬁ Z ((g - ga)pugqupq,uv =+ ggu(g - ga)qUGPCLUU

p,q,u,v

+G5,65(G — G")pgaw) =1 S + 52 + SP).

Since (G — G)pguv = —(GYa)pq(G*Ya)uw, applying the Cauchy-Schwartz in-
equality we get

s’ :ig 3 (zt:(ay )t (GYo) )(quv pquv> i
o
< 5 LIVl G Vol 10l 3 Gunal? = 0(7).
P, u, D,q,U,V
Similarly, sﬁf)f — 0(n™3). Also,
= 3 gngnovamc L] < LB IGYI* < SIBI3,

p,q,u,v

where B is a n? x n? matrix such that Bpguv = gguggg. Since for every unit vector

X = (Xuw)ypo1 € R™ we have

IBx|* =

p.q

Z Z gz?u gt(;v?gs??t Xuv Xst

D4 u,0,8,0

2
> 65,60, Xu| =

U,
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= 3 (6°GM)au(G°G ) Xuw Xst < Te(G°G||X | = O(n°)
u,,s,t
then ’57(13)’2 = O(n_3). Thus VarT,, < 3ZQE<‘S,(LD‘2 + |SV(L2)}2 + ’5723)’2) =
O(nil). This together with (5.1) finishes the proof of the first part.
(ii) It follows from (5.1) that EH,, = ET,, + O(n_l/Q). Let

FP(21,20) == BTy (21, 22) = Z EGpq.uv(22)Gqv(21)Gpu(22).

P‘Luv

Repeating the scheme based on (3.13) and (3.15) and omitting the details, we get

20f (21, 22) = — fu(21) fu(22) +7 S Y E Yooun(G¥(22)Y,)

u,v,p,q « )

Z Z E au’v )Ya)pv (gqv(zl)gpu(?&) - gqv(ZQ)gPu(Zl))

21)

PG (21) G (22)

u,v,p,q,a,b &

Cfr(zg) (21, 22)

= Sz falz2) + 57

+ O(nil).

Hence,
FO (21, 20) = f(21) f2(22) + O(n_l).
This finishes the proof of the lemma. O

Lemma 5.3. Let g(l) and g(2) be defined in (2.4) and (2.5). Then there exists
no € (0,00) such that we have uniformly in z1,2z9 € {z € C: Sz > 1o}
Var g{!)(z1,22) = O(n™"?),  Varg®(z1,2) = 0(n™'/?)

as n — o0.

Proof. Let V =V (z1,22) := Varg( )(zl, 29) = EgS)gS)O. By (3.20)-(3.22),
AV =B((—ga() + T1 — To)g°) = ETigl)° ~ ETg° + 0(n%), (5.2)

where we used that by Lemma 2.1 and Lemma 3.2(ii), Egng,(ll)O = O(n_3). We
have

QZE%MO:%MVN()E%ﬁMﬁM%%ﬂ

BTig," (Bdo(o1))? (Bda(er))?

= R1+R2+R3.

It follows from the Cauchy-Schwartz inequality, boundedness of h,,A~! and
Lemma 3.2 (i) with p = 4 that |R3| < Cn~2V'/2. To treat Ry, we note first
that

Blinagl” = B (Balna)3i°° + BhG, (5 —90%) =V +0(n ),
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where we used that similar to (3.11)

g =g +0(n?)
and that by Lemma 5.1, |E hna(g% ) —gn Y < Cn?E|hS,| < Cn~5/2. Together
with (3.12) this yields

|Ri| < CV +0(n™?),
Treating Ry similarly to R; we get

E huag V0 A8 = E (Eahna AS)g D + O (n %),

where by Lemma 3.2 (i) with p = 2 and Lemma 5.1, Egh,q A, = O(n‘3/2). This
leads to
|Ra| < Cn =32y 12 4 O(n_3).

Hence,

BT < OV 4032012 47502, (5-3)

Consider ET: 2553)". It can be written in the form

,(1)040 1 - 1)0¢)O

n n ’rL gn gn
ETg,)° 3 Z Aa(z1)Aa(z2) ot ns Z v 21) Aa(22)
( ) ( Jao
E Hna gn (AaAoz) -3
W Z EAA, P Z ATE(ALAL O

Since Hpq = O(1) and by Lemmas 3.2(iii) and 5.2 we have Var(4,A4,) = O(n™?)
and VarE,H,,, = O(n‘l), then

’ETﬁS)C’ < CO[n2vY2 4 n73).

This, (5.2) and (5.3) lead to
NV < V| < OV +n32v12 4 n75/2.

Choosing 7 big enough we get V — Cin=3/2V1/2 — Con=5/2 < 0, where C;,Cy >
0. Hence V = Vargf@l) = O(n_5/2).

The proof of the second part of the lemma follows the same scheme, for g,(f)
this scheme is based on (3.30)—(3.31). This finishes the proof of the lemma. [
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IIpo LII'T ans ajis JiHIAHUX CTATHUCTUK BJIACHUX
3HaA4YeHb TE€H30PHOI MO/IeJli BUOIpKOBUX KOoBapialiiiHUX
MaTpuIlb
Alicja Dembczak-Kolodziejezyk and Anna Lytova

B [18] 6ymo moeeneno mnentpanbHy rpanmdny teopemy (III'T) mus -
HIHHUX CTATUCTUK BJIACHUX 3HaueHb Tr¢(M,,) BubipkoBuX KoBapialiiHUX

marpunps M, = >0, yfy.l) ® y&z)(yg) ® yg,z))T, e (y((xl)7 yg?))a € He3aJje-

JKHUMH KOIlisiMu BekTopa y € R™, mo 3anoBosbase ymosu Byy? = n=11,,
Eyiy; = (14 did)n=? + a(l + dizdi)n™> + O(n™*) nna nesxux a,d,d; €
R. Byno mokazano, mo [isi JOCTATHBO IVIAJKUX TECTOBUX (DYHKINNA ¢ Ma-
emo Var Trp(M,,) = O(n), komu m,n — oo, m/n?> — ¢ > 0, kpim TOrO
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(Tr p(M,,) — ETr¢(M,))//n 36iraerbcst 3a pO3MOALTIOM JIO IayCciBChKOI BU-
HAJKOBOI BEJIMYUHU 3 HyJIbOBUM CepelHiM Ta jucrepcieo V[p| uponopuiii-
HOIO @ + d. 30KpeMa, sIKITO Y PIBHOMIPHO PO3IIOJIIJIEHO Ha ONMUHUYHIN cdepi,
o a+d=01V[p = 0.V niit pobori MU MOKA3yeEMO, IO B IHOMY BU-
nazgky Var Tr(M,, — 21,,)~t = O(1), tak mo LII'T mae 6yTH cripaBeinBo0
JUIsE CAMUX JIHIHUX CTATUCTUK BJIACHUX 3HAUYEHb 0€3 HOPMAJIi3yBaJIbHOTI'O
koedinienra (Ha BiaMiHy Biji BUNAAKy BiANOBIAHUX rayciBcbKux BuGIpKOBUX
KOBapialliiiHuX MaTpPUIIb).

KirrowoBi cjioBa: BUOIpKOBI KOBapialliitHi MaTpHITi, IIEHTPAJIbHA TPAHTTHA
TeopeMa, JIHINHA CTATUCTUKA BJIACHUX 3HAYEHD
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