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Operators
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We consider a fractal transformed doubly reflected Brownian motion with
state space being a Cantor-like set. By applying the theory of fractal trans-
formations as developped by Barnsley, et al., together with an application
of a generalised Taylor expression we show that its infinitesimal generator is
given in terms of a second order measure geometric derivative d

dµ
d
dµ as intro-

duced by Freiberg and Zähle. Furthermore we investigate its connection to
the well known classical Krein–Feller operator d

dµ
d
dx which is the generator

of a so called “gap-diffusion”.
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1. Introduction

In [10] Freiberg defined the second order differential operator d
dµ

d
dν with re-

spect to finite atomless Borel measures µ and ν with compact supports and
supp(µ) ⊆ supp(ν) ⊆ R as a generalisation of the well-known Krein–Feller oper-
ator of the form d

dµ
d
dx which was previously studied in [9] and [17].

Thus, when choosing ν = λ, where λ denotes the one-dimensional Lebesgue
measure, the operator allows an interpretation as the infinitesimal generator of
a so called quasi- (or gap-) diffusion (cf. [3, 7, 16]). Applying the more general
framework of Dirichlet forms, it is shown in [12] that also d

dµ
d
dν is an infinitesimal

generator of a strong Markovian stochastic process with almost surely continuous
paths on supp(µ). In the case that µ equals a Cantor type measure the spectral
asymptotics of d

dµ
d
dx was obtained in [14] — and generalized later in [11] — where

the square root of the eigenvalues of the operator imposed with Dirichlet bound-
ary conditions can be regarded (up to a multiplicative constant) as the eigenfre-
quencies of a vibrating string with (singular) mass distribution according to µ
(cf. [1]).

Instead, choosing ν = µ the operator can be regarded as a Laplacian on
certain compact (possibly fractal) subsets of the real line. Correspondingly, a
harmonic calculus and spectral asymptotics of d

dµ
d
dµ were developed in [13]. More-

over, eigenvalues and eigenfunctions of Dirichlet respectively. Neumann boundary
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problems involving this operator were explicitly calculated in [19] and determined
to be a composition of the appropriated classical trigonometric functions com-
posed with a phase space transformation induced by the distribution function
of µ. In the following elaboration we are concerned with a strong Markovian
stochastic process possessing the operator d

dµ
d
dµ as its infinitesimal generator.

In Section 2 we briefly define d
dµ

d
dν as a second order derivative with respect

to the measures µ and ν and deduce a generalised Taylor expression. In Section
3 we illustrate how fractal transformations act on the class of functions defined
on the attractors of two iterated function systems (IFS) with the same number
of similitudes whereas in Section 4 we elaborate how these fractal transforma-
tions act on the class of derivatives with respect to the invariant measures with
respect to the underlying IFSs. We then consider in Section 5 the connections
to stochastic processes. In Subsection 5.1 we firstly recall the construction of the
doubly reflected Brownian motion with state space being the unit interval [0,1].
In Theorem 5.9 its infinitesimal generator is given in terms of the second order
differential operator d

dx
d
dx with Neumann boundary conditions. In Subsection 5.2

we then apply suitable fractal transformations on the doubly reflected Brown-
ian motion such that the resulting process has state space being a Cantor-like
set. We summarise its properties and define a semigroup of operators related to
this process. The main result in Theorem 5.15 then claims that the infinitesimal
generator of the associated semigroup is given in terms of d

dµ
d
dµ with generalised

Neumann boundary conditions where µ is the invariant measure with respect to
the IFS having the Cantor-like state space as its attractor. In order to prove the
assertion we apply the generalised Taylor expression derived in Section 2. We
finally conclude in Section 6 by sketching the construction of a stochastic process
having infinitesimal generator of the form d

dµ
d
dν and discuss how our approach

is connected to already established results involving space and time change of a
Brownian motion.

2. Measure geometric Krein–Feller operators

In the following section we define a derivative of a function with respect to a
measure.

We follow the ideas of Freiberg [10], Arzt [1], Minorics [22] and Ehnes [6].

Definition 2.1. Let ν and µ be two atomless Borel probability measures on
[0, 1] with supp(µ) ⊆ supp(ν) and 0, 1 ∈ supp(µ). Let L2(ν) := L2(supp(ν), ν)
and L2(µ) := L2(supp(µ), µ). Define the space

Dν1 :=

{
f : [0, 1]→ R

∣∣∣∣ ∃fν ∈ L2(ν) : f(x) = f(0) +

∫ x

0
fν(y)dν(y) , x ∈ [0, 1]

}
.

Then the operator d
dν : Dν1 → L2(ν), f 7→ fν will be referred to as the ν-derivative.

We will write d
dν f = df

dν := fν for the ν-derivative of f . Furthermore we define
the space

Dµ,ν2 :=

{
f ∈ Dν1

∣∣∣∣ ∃fµ ∈ L2(µ) :
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d

dν
f(x) =

d

dν
f(0) +

∫ x

0
fµ(y) dµ(y), x ∈ [0, 1]

}
.

The operator d
dµ

d
dν : Dµ,ν2 → L2(µ), f 7→ fµ will then be called µ-ν-derivative (or

generalised measure geometric Krein-Feller operator). We will write d
dµ

d
dν f =

d
dµ

(
d
dν f
)

=: fµ for the µ-ν-derivative of f .

Remark 2.2.

(i) For any f ∈ Dµ,ν2 we obtain by Fubini’s theorem the following representation
(cf. [10, Remark 2.5])

f(x) = f(0) +
d

dν
f(0)Fν(x)

+

∫ x

0
(Fµ(y)− Fµ(x))

d

dµ

d

dν
f(y)dµ(y) (x ∈ [0, 1]), (2.1)

where Fν and Fµ denote the cumulative distribution functions of ν and µ.

(ii) In the case ν = µ in definition 2.1 we write Dµ,µ2 =: Dµ2 and d
dµ

d
dµ =: d2

dµ2
.

A detailed survey of analytical properties of derivatives with respect to a
measure can be found in [10] and [22].

In the rest of this chapter we assume µ = ν.
Analogously to the classical case we derived the following mid-value theorem

as an auxiliary result.

Lemma 2.3. Let µ be an atomless Borel probability measure on [0, 1]. Let
f, g : [0, 1]→ R be continuous and [c, d] ⊆ [0, 1]. Then there exists τ ∈ [c, d] such
that ∫ d

c
f(x)g(x)dµ(x) = f(τ)

∫ d

c
g(x)dµ(x).

By an application of Cauchy–Schwarz inequality (cf. [1, Proposition 2.1.6]) we
know that Dµ1 ⊆ C([0, 1]) and one can verify easily by definition that f ∈ Dµ1 is
constant on [0, 1] \ supp(µ) and so f is defined uniquely by its values on supp(µ).

We define for k ∈ {1, 2} the space Ckµ to consist of all functions f ∈ Dµk such

that dm

dµm f ∈ L
2(µ) (1 ≤ m ≤ k) is represented by a continuous function that is

linear on [0, 1] \ supp(µ).
From lemma 2.3 we derive the next auxiliary result.

Lemma 2.4. Assume that f ∈ C2
µ and [c, x] ⊆ [0, 1]. Then there exists ξ ∈

[c, x] such that∫ x

c
(Fµ(x)− Fµ(y))

d2

dµ2
f(y)dµ(y) =

d2

dµ2
f(ξ)

(Fµ(x)− Fµ(c))2

2
.

Together with equation (2.1) the previous lemma immediately gives us a gen-
eralised second-order Taylor formula.
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Corollary 2.5. Assume that f ∈ C2
µ and [c, x] ⊆ [0, 1]. Then there exists ξ ∈

[c, x] such that

f(x) = f(c) +
d

dµ
f(c)(Fµ(x)− Fµ(c)) +

d2

dµ2
f(ξ)

(Fµ(x)− Fµ(c))2

2
.

3. Fractal transformations

In this section we are going to present the notion of fractal transformations
as in [2]. Further we give assumptions on the IFSs being used in all the following
sections.

In the following we are interested in iterated function systems (IFS) of type

S := {[0, 1] | s1, . . . , sN},

where N ∈ N, N ≥ 2, and si : [0, 1] → [0, 1] (i = 1, . . . , N) are contractions, i.e.
|si(x) − si(y)| ≤ λ|x − y| for all x, y ∈ [0, 1] and for some λ ∈ [0, 1). Further we
impose the following assumptions

(A.1) the si are increasing functions;

(A.2) the contractions satisfy an ascending order, i.e.

0 = s1(0) ≤ s1(1) ≤ s2(0) ≤ s2(1) ≤ · · · ≤ sN (0) ≤ sN (1) = 1.

From [15] we know that for any such an IFS there exists a unique non-empty
compact set AS satisfying AS =

⋃N
i=1 si(AS). The set AS will be called attractor

of the IFS S. If the ascending order in (A.2) is strictly less then the emerging
attractor will be a Cantor-like set.

Now let F := {[0, 1] | f1, . . . , fN} and G := {[0, 1] | g1, . . . , gN} be two IFSs
with the same number of contractions satisfying the above assumptions (A.1) and
(A.2). Let AF and AG be their attractors. We are now going to introduce the
notion of fractal transformations as in [2].

Definition 3.1. Let {1, . . . , N}N denote the code-space.
We define the coding maps πF : {1, . . . , N}N → AF and πG : {1, . . . , N}N →

AG respectively as

πF (σ) := lim
k→∞

fσ1 ◦ · · · ◦ fσk(x) (σ ∈ {1, . . . , N}N, x ∈ [0, 1]).

πG(ρ) := lim
k→∞

fρ1 ◦ · · · ◦ fρk(y) (ρ ∈ {1, . . . , N}N, y ∈ [0, 1]).

Further we define the section of πF to be the map τF : AF → {1, . . . , N}N that
satisfies πF ◦ τF = idAF . Analogously we define the section of πG to be the map
τG : AG → {1, . . . , N}N that satisfies πG ◦ τG = idAG . We then define the fractal
transformations

TFG : AF → AG, TFG(x) := πG ◦ τF (x) (x ∈ AF ),

TGF : AG → AF , TGF (y) := πF ◦ τG(y) (y ∈ AG).
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Remark 3.2.

(i) The section in above definition is not necessarily defined uniquely. Therefore
we will always use τF (x) := minπ−1

F (x) (x ∈ AF ) and τG(y) := minπ−1
G (y)

(y ∈ AG) (where the minimum is with respect to the lexicographic order, i.e.
we have ρ > σ if ρ 6= σ and ρk > σk where k is the least integer satisfying
ρk 6= σk).

(ii) If TFG is a homeomorphism, then we will call it a fractal homeomorphism
and in particular it then holds (TFG)−1 = TGF .

For a given IFS S with contractions s1, . . . , sN and a given probability vector
p = (p1, p2, . . . , pN ) there exists a unique Borel probability measure µS supported
on the attractor AS that is invariant under the IFS S in the sense that

µS(B) =
N∑
i=1

piµS(s−1
i (B)) (B ∈ B([0, 1])),

where B([0, 1]) denotes the Borel measurable subsets of [0, 1].
If the IFS S consists of similitudes and satisfies the open set condition and if

we choose pi = cDi (i = 1, . . . , N) where ci denotes the scaling ratio of the i-th
similitude si and where D denotes the Hausdorff dimension of the invariant set,
then the unique invariant Borel probability measure is given by the normalised
D-dimensional Hausdorff measure supported on AS . For the theory of invariant
measures we refer to [15].

Example 3.3. Consider the IFSs

F :=

{
[0, 1]

∣∣∣∣ f1(x) =
1

2
x, f2(x) =

1

2
x+

1

2

}
and

G :=

{
[0, 1]

∣∣∣∣ g1(x) =
1

3
x, g2(x) =

1

3
x+

2

3

}
.

The contraction maps of these IFSs are increasing and satisfy the ascending order
and so the assumptions (A.1) and (A.2) are fulfilled.

For the IFS F the attractor AF is given by the unit interval [0, 1]. For the
IFS G the unique non-empty compact set C satisfying C = g1(C)∪ g2(C) is called
Cantor set.

For the unit interval the Hausdorff dimension equals 1 and for the Cantor set
the Hausdorff dimension equals ln(2)

ln(3) . The corresponding invariant measures with

respect to the same probability vector p = (1/2, 1/2) are the one-dimensional
Lebesgue measure λ1|[0,1] (denoted by λ for short) supported on [0, 1] and the
invariant measure supported on the Cantor set will be called Cantor measure
and denoted by µ.

The corresponding fractal transformation TFG : [0, 1]→ C is a fractal homeo-
morphism.

We again consider IFSs F and G with the properties (A.1) and (A.2) stated
at the beginning of the section. Then the corresponding attractors AF and AG
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are non-overlapping with respect to its IFSs. (For the notion of non-overlapping
sets see [2, Definition 2.5]).

Therefor we have the following transformation of invariant measures under
fractal transformations (cf. [2, Theorem 2.4]).

Proposition 3.4. Let F and G be two IFSs with the same number of simil-
itudes. Suppose the attractors AF and AG to be non-overlapping with respect to
the given IFSs, and let µF and µG be the invariant measures with respect to the
same probability vector. Then we have with the fractal transformations TFG and
TGF

µF ◦ TGF = µG and µG ◦ TFG = µF .

We now want to transform functions defined on AF to functions defined on
AG and vice versa.

Let L2(µF ) := L2(AF , µF ) and L2(µG) := L2(AG, µG) denote the space of
equivalence classes of square-integrable functions on AF and AG with respect to
the invariant measures µF and µG respectively. Define the scalar products

〈ΨF ,ΦF 〉F :=

∫
AF

ΨF (x)ΦF (x)dµF (x),

〈ΨG,ΦG〉G :=

∫
AG

ΨG(y)ΦG(y)dµG(y)

for ΨF ,ΦF ∈ L2(µF ) and ΨG,ΦG ∈ L2(µG).
Then (L2(µF ), 〈·, ·〉F ) and (L2(µG), 〈·, ·〉G) are Hilbert spaces.

Definition 3.5. Define the linear operators UFG : L2(µF ) → L2(µG) and
UGF : L2(µG)→ L2(µF ) to be

(UFGφF ) (x) := φF (TGF (x)) (φF ∈ L2(µF ), x ∈ AG),

(UGFφG) (y) := φG (TFG(y)) (φG ∈ L2(µG), y ∈ AF ).

With notations and conditions as in previous definition it is known the fol-
lowing (cf. [2, Theorem 4.1]).

Proposition 3.6. (i) UFG : L2(µF ) → L2(µG) and UGF : L2(µG) →
L2(µF ) are isometries;

(ii) UFG ◦ UGF = idL2(µF ) and UGF ◦ UFG = idL2(µG);

(iii) 〈ψG, UFGφF 〉G = 〈UGFψG, φF 〉F (ψG ∈ L2(µG), φF ∈ L2(µF )).

4. Fractal transformation of derivatives

We now can formulate how the derivative with respect to an invariant measure
transforms under fractal transformations.

Observe that f ∈ UFG(DµF1 ) is only defined on AG. Therefore let UFG(DµF1 )
lin

denote the set of all functions from UFG(DµF1 ) that are extended linearly on [0, 1]\
AG.
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Theorem 4.1. Let F and G be two IFSs with non-overlapping attractors
AF , AG ⊆ [0, 1] with 0, 1 ∈ AF ∩ AG and invariant measures µF and µG with
respect to the same probability vector. Let the fractal transformation TFG : AF →
AG be a bijection. Then we have UFG(DµF1 )

lin
= DµG1 with

d

dµG
(UFGf) =

(
UFG ◦

d

dµF
◦ UGF

)
(UFGf) (f ∈ DµF1 )

in the weak sense of the definition of a derivative with respect to a measure (def-
inition 2.1).

Proof. We know that DµF1 ⊂ C ([0, 1],R) ⊂ L2(µF ), therefore we can apply
the operator UFG. Let f ∈ DµF1 and x ∈ [0, 1]. As UFGf is determined by its
values on AG it is enough to consider x ∈ AG. By virtue of Proposition 3.4 and
the statement (ii) of Proposition 3.6 we deduce

UFGf(x) = f(TGFx) = f(0) +

∫ TGF x

0

d

dµF
f(y) dµF (y)

= f(0) +

∫ TGF x

0

d

dµF
f(y) dµF (y)

− f(0) + f(TGF 0)−
∫ TGF 0

0

d

dµF
f(y) dµF (y).

Since

f(0) + f(TGF 0)−
∫ TGF 0

0

d

dµF
f(y)dµF (y) = 0,

we get

UFGf(x) = f(TGF 0) +

∫ TGF x

TGF 0

d

dµF
f(y)dµF (y)

= (UFGf)(0) +

∫ x

0

d

dµF
f(TGF y)dµF ◦ (TGF )−1(y)

= (UFGf)(0) +

∫ x

0
(UFG ◦

d

dµF
f)(y)dµF ◦ (TFG)(y)

= (UFGf)(0) +

∫ x

0
(UFG ◦

d

dµF
◦ UGF )(UFGf)(y)dµG(y)

so the linear extension of UFGf is in DµG1 and d
dµG

(UFGf) = (UFG ◦ d
dµF
◦

UGF )(UFGf). If TFG is bijective it remains to show that for any g ∈ DµG1 there
exists f ∈ DµF1 such that UFGf = g. As TFG is bijective we have T−1

GF = TFG.
Setting f := UGF g ∈ DµF1 we obtain UFGf = f ◦ TGF = (g ◦ TFG) ◦ TGF = g as
desired. The statement about the derivative with respect to µF follows similarly
as in the calculation before.

Remark 4.2. The same way one can show that UFG(DµF2 )
lin

= DµG2 ,

UFG(CkµF )
lin

= CkµG (k ∈ {1, 2}) and

d2

dµ2
G

(UFGf) =

(
UFG ◦

d2

dµ2
F

◦ UGF
)

(UFGf) (f ∈ DµF2 )
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in the weak sense of Definition 2.1.

We now consider the special case that the attractor of the IFS F is given by
the unit interval [0, 1] and that the invariant measure is given by µF = λ1|[0,1] = λ.
We again assume the contractions of the IFS to be increasing (A.1) and satisfying
an ascending ordering (A.2). Further we assume that the fractal transformation
TFG is a fractal homeomorphism. Then we have the following local representation
of the µG-derivative (cf. [2, Theorem 5.1])

Proposition 4.3. Let f : [0, 1]→ R be a continuously differentiable function
and define g := UFGf . Then

(UFG ◦
d

dx
◦ UGF )g(y0)

d

dµG
g(y0) = lim

y→y0

g(y)− g(y0)

FµG(y)− FµG(y0)
(y0 ∈ AG).

The above Proposition 4.3 states that under the given assumptions the µG-
derivative is given as conjugation of the classical derivative d

dx via the fractal
transformations.

5. Fractal transformed doubly reflected Brownian motion

The construction of a fractal transformed doubly reflected Brownian motion
is due to Ehnes in [5].

5.1. Doubly reflected Brownian motion. Let us recall the definition of
a Brownian motion.

Definition 5.1. Let (Ω,A,P) be a probability space. A stochastic process
B = (Bt)t≥0 with Bt : (Ω,A)→ (R,B(R)) (t ≥ 0) is a Brownian motion if

(i) P (B0 = 0) = 1;

(ii) for 0 ≤ s0 < · · · < sn (n ∈ N) the increments Bs1 −Bs0 , . . . , Bsn −Bsn−1 are
stochastically independent;

(iii) for 0 ≤ s < t we have Bt −Bs ∼ N (0, t− s);
(iv) the trajectories of B are continuous P-almost surely.

Remark 5.2. With Px (x ∈ [0, 1]) we denote the probability measure such
that (Bt− x)t≥0 is a Brownian motion. Moreover we equip the probability space
with the natural filtration F = (Ft)t≥0 induced by B, i.e. Ft = σ(Bs | s ≤ t).

Definition 5.3. Let h : R→ [0, 1] be defined by h(x) := 1(−1,1)(x)(1− |x|).
Then we define the reflection map φ : R→ [0, 1] by

φ(x) :=
∑
n∈Z

h(x+ 2n− 1).

Definition 5.4. Let (Bt)t≥0 be a Brownian motion and let φ be the previous
reflection map. Then the process B̃ = (B̃t)t≥0 defined by

B̃t := φ(Bt) (t ≥ 0)

is called doubly reflected Brownian motion.
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In [5, Proposition 4.7 and Proposition 4.33] is shown the following

Theorem 5.5. The doubly reflected Brownian motion B̃ is a [0, 1]-valued,
F-adapted, strong Markovian stochastic process.

Definition 5.6. Define for u ∈ C([0, 1]), x ∈ [0, 1] and t ∈ [0,∞)

Ptu(x) := Ex
[
u
(
B̃t

)]
.

With the notation from the previous definition we have the following.

Theorem 5.7.

(i) (Pt)t≥0 defines a semigroup of operators on C ([0, 1]);

(ii) Pt is strongly continuous on C([0, 1]), i.e. limt→0 ‖Ptu − u‖∞ = 0 for u ∈
C([0, 1]).

Proof. The proof follows as in [24, Lemma 7.1. and Proposition 7.3. (f)].
(i) By the linearity of the expectation it follows that Pt is a linear operator.

Now let u ∈ C([0, 1]). Then ũ := u ◦ φ ∈ C([0, 1]) and ũ is bounded. We then
infer by Lebesgue’s dominated convergence theorem that for y ∈ [0, 1]

lim
x→y

Ptu(x) = lim
x→y

Ex[u(B̃t)] = lim
x→y

Ex[ũ(Bt)]

= lim
x→y

E[ũ(Bt + x)] = E[ũ(Bt + y)] = Ptu(y),

and this shows that Ptu(·) ∈ C([0, 1]) for any t ≥ 0. By the Markov-property we
infer that for s, t ≥ 0 and u ∈ C([0, 1])

Pt+su(x) = Ex
[
u(B̃t+s)

]
= Ex

[
Ex
[
u(B̃t+s)|Fs

]]
= Ex

[
EB̃s

[
u(B̃t)

]]
= Ex

[
Ptu(B̃s)

]
= PsPtu(x)

and so (Pt)t≥0 has the semigroup property.
(ii) As the reflection map φ is uniformly continuous we have for any u ∈

C([0, 1]) that ũ := u ◦ φ is uniformly continuous on [0, 1]. Then for given ε > 0
there exists δ > 0 such that for all x, y ∈ R with |x− y| < δ we have

|ũ(x)− ũ(y)| ≤ ε.

Thus we have with ũ|[0,1] = u that

‖Ptu− u‖∞ = sup
x∈[0,1]

|Ex[u(B̃t)]− u(x)| = sup
x∈[0,1]

|Ex[ũ(Bt)]− ũ(x)|

≤ sup
x∈[0,1]

Ex [|ũ(Bt)− ũ(x)|]

= sup
x∈[0,1]

(∫
{|Bt−x|<δ}

|ũ(Bt)− ũ(x)|dPx
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+

∫
{|Bt−x|≥δ}

|ũ(Bt)− ũ(x)|dPx
)

≤ ε sup
x∈[0,1]

Px (|Bt − x| < δ) + 2‖ũ‖∞ sup
x∈[0,1]

Px (|Bt − x| ≥ δ)

≤ ε+ 2‖ũ‖∞P (|Bt| ≥ δ) .

Since (Bt)t≥0 is uniformly stochastically continuous, i.e.

lim
t→0

sup
x∈R

Px (|Bt − x| > δ) = 0, δ > 0,

(cf. [24, Lemma 7.2]), we get lim supt→0 ‖Ptu− u‖∞ ≤ ε. Letting ε tend to zero
then gives the assertion.

Definition 5.8. Let C(E) denote the continuous functions on a compact set
E. Let (Pt)t≥0 be a strongly continuous semigroup on C(E). Define

Au := lim
t→0

Ptu− u
t

where the limit is taken with respect to ‖ · ‖∞

and

DA :=

{
u ∈ C(E)

∣∣∣∣∃g ∈ C(E) : lim
t→0

∥∥∥∥Ptu− ut
− g
∥∥∥∥
∞

= 0

}
.

Then A is called the infinitesimal generator with domain DA of the semigroup
(Pt)t≥0.

It is readily known (cf. [25, p.65]) that the infinitesimal generator of the semi-
group (Pt)t≥0 is given by the Neumann–Laplacian as explained in the following
theorem.

Theorem 5.9. Let B̃ = (B̃t)t≥0 denote the doubly reflected Brownian motion
and (Pt)t≥0 (as in Definition 5.6) its associated semigroup. Further denote by A
its infinitesimal generator. Then for f ∈ DA

Af =
1

2

d2

dx2
u

with domain DA = C2,N ([0, 1]) := {u ∈ C2([0, 1]) | ddxu(0) = d
dxu(1) = 0}.

5.2. Fractal transformed doubly reflected Brownian motion. Let F
and G be two IFSs with the same number of increasing contractions satisfying the
assumptions (A.1) and (A.2) from Section 3 on the ascending ordering. Further
assume that the fractal transformation TFG is bijective. We assume that the
attractor of the IFS F is given by the unit interval [0, 1] and that the invariant
measure µF is given by µF = λ1|[0,1] = λ. The invariant measure supported on
AG will be denoted by µ for short.
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Definition 5.10. Let F and G be the two previous IFSs. Let TFG : [0, 1]→
AG be the fractal transformation and B̃ the doubly reflected Brownian motion.
Then the process TB̃ = (TB̃t)t≥0 defined by

TB̃t := TFG(B̃t) (t ≥ 0)

is called fractal transformed doubly reflected Brownian motion.

It is known from [5, Proposition 5.2 and Proposition 5.20] that

Theorem 5.11. TB̃ is an AG-valued, (Ft)t≥0-adapted, strong Markovian
stochastic process.

We now define a semigroup of operators related to the fractal transformed
doubly reflected Brownian motion by conjugation of the semigroup of the doubly
reflected Brownian motion.

Definition 5.12. Let (Pt)t≥0 be the semigroup associated to the doubly
reflected Brownian motion. We define for u ∈ UFG(C([0, 1])), x ∈ AG and t ≥ 0

Qtu(x) := UFG ◦ Pt ◦ UGFu(x).

Remark 5.13. Since for any u ∈ UFG (C([0, 1])) there exists f ∈ C([0, 1]) with
u = UFGf we have for x ∈ AG and t ≥ 0 the following representation

(Qtu) (x) = ETGF x
[
u
(
TB̃t

)]
,

i.e. the expectation of TFGB̃t under the condition that B0 = TGFx.

Immediately from the definition and the corresponding properties of the semi-
group of the doubly reflected Brownian motion we have the following:

Theorem 5.14.

(i) (Qt)t≥0 defines a semigroup of operators on UFG(C([0, 1])));

(ii) Qt is strongly continuous on UFG(C([0, 1])).

We now state the main result of this section in which we want to present an
application of Corollary 2.5 resembling the method in [24, Example 7.9].

Theorem 5.15. Denote

C2,N ([0, 1]) = {u ∈ C2([0, 1]) | d
dx
u(0) =

d

dx
u(1) = 0}.

Then we have for all u ∈ C2,N
µ := UFG(C2,N ([0, 1]))

lin

lim
t→0

Qtu− u
t

=
1

2

d2

dµ2
u where the limit is with respect to ‖ · ‖∞.
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Proof. Let u ∈ C2,N
µ . Then we have u ∈ C2

µ and u satisfies the µ-Neumann

boundary conditions since u = UFGf for some f ∈ C2,N ([0, 1]) and for x ∈ {0, 1}
we have TGF (x) = x, so we get

d

dµ
u(x) = UFG ◦

d

dx
f(x) =

d

dx
f(TGFx) =

d

dx
f(x) = 0 (x ∈ {0, 1}).

Let t > 0. Write as abbreviation y := y(t, ω) := TFGB̃t ∈ AG. Let x ∈ AG. We
apply the generalised Taylor formula (Corollary 2.5) on u around x:

u(y) = u(x) +
d

dµ
u(x)(Fµ(y)− Fµ(x)) +

1

2

d2

dµ2
u(ξ)(Fµ(y)− Fµ(x))2

for some ξ = ξ(t, ω) ∈ ([x, y] ∪ [y, x]). Inserting this into the operator Qt we have
an expansion of the semigroup as follows

Qtu(x) = ETGF x [u(y)]

= ETGF x
[
u(x) +

d

dµ
u(x)(Fµ(y)− Fµ(x)) +

1

2

d2

dµ2
u(ξ)(Fµ(y)− Fµ(x))2

]
= u(x) +

d

dµ
u(x)ETGF x(Fµ(y)− Fµ(x))

+ ETGF x
[

1

2

d2

dµ2
u(ξ)(Fµ(y)− Fµ(x))2

]
.

As µ = λ ◦ T−1
FG = λ ◦ TGF by Proposition 3.6 we have

Fµ(y)− Fµ(x) = Fµ(TFGB̃t)− Fµ(x) = µ([x, TFGB̃t])

= λ([TGFx, B̃t]) = B̃t − TGFx

(together with the convention λ([TGFx, B̃t]) = −λ([B̃t, TGFx]) if TGFx > B̃t) and
we can write

Qtu(x) = u(x) +
d

dµ
u(x)ETGF x

[
B̃t − TGFx

]
+ ETGF x

[
1

2

d2

dµ2
u(ξ)(B̃t − TGFx)2

]
.

So we have the following∣∣∣∣1t (Qtu(x)− u(x))− 1

2

d2

dµ2
u(x)

∣∣∣∣ =

∣∣∣∣1t ddµu(x)ETGF x
[
B̃t − TGFx

]
+

1

2t
ETGF x

[
d2

dµ2
u(ξ)

(
B̃t − TGFx

)2
]
− 1

2

d2

dµ2
u(x)

∣∣∣∣
≤
∣∣∣∣1t ddµu(x)ETGF x

[
B̃t − TGFx

]∣∣∣∣
+

∣∣∣∣ 1

2t
ETGF x

[
d2

dµ2
u(ξ)

(
B̃t − TGFx

)2
]
− 1

2

d2

dµ2
u(x)

∣∣∣∣ . (5.1)

First we consider the case that x /∈ {0, 1}. Then we can choose δ :=
min{TGFx, 1− TGFx} > 0 and denote by Bδ(TGFx) := {y ∈ R | y− TGFx| < δ}.
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For the above summands in (5.1) we can estimate as follows; for the first sum-
mand in (5.1) we have∣∣∣∣1t ddµu(x)ETGF x

[
B̃t − TGFx

]∣∣∣∣ ≤ ∥∥∥∥ ddµu
∥∥∥∥
∞

1

t

∣∣∣ETGF x [B̃t − TGFx]∣∣∣
≤
∥∥∥∥ ddµu

∥∥∥∥
∞

1

t

∣∣∣∣∣
∫
{Bt∈Bδ(TGF x)}

(B̃t − TGFx) dPTGF x

+

∫
{Bt /∈Bδ(TGF x)}

(B̃t − TGFx) dPTGF x
∣∣∣∣∣ .

Since B̃t = Bt, we get∣∣∣∣1t ddµu(x)ETGF x
[
B̃t − TGFx

]∣∣∣∣
≤
∥∥∥∥ ddµu

∥∥∥∥
∞

1

t

∣∣∣∣∣
∫
{Bt∈Bδ(TGF x)}

(Bt − TGFx) dPTGF x

+

∫
{Bt /∈Bδ(TGF x)}

(B̃t − TGFx) dPTGF x

−

(∫
{Bt∈Bδ(TGF x)}

(Bt − TGFx) dPTGF x

+

∫
{Bt /∈Bδ(TGF x)}

(Bt − TGFx) dPTGF x
)∣∣∣∣∣ .

Taking into account∫
{Bt∈Bδ(TGF x)}

(Bt − TGFx) dPTGF x +

∫
{Bt /∈Bδ(TGF x)}

(Bt − TGFx) dPTGF x

= ETGF x [Bt − TGFx] = E [Bt] = 0

we obtain∣∣∣∣1t ddµu(x)ETGF x
[
B̃t − TGFx

]∣∣∣∣
=

∥∥∥∥ ddµu
∥∥∥∥
∞

1

t

∣∣∣∣∣
∫
{Bt /∈Bδ(TGF x)}

(B̃t − TGFx) dPTGF x

−
∫
{Bt /∈Bδ(TGF x)}

(Bt − TGFx) dPTGF x
∣∣∣∣∣

≤
∥∥∥∥ ddµu

∥∥∥∥
∞

1

t

(∣∣∣∣∣
∫
{Bt /∈Bδ(TGF x)}

(B̃t − TGFx) dPTGF x
∣∣∣∣∣

+

∣∣∣∣∣
∫
{Bt /∈Bδ(TGF x)}

(Bt − TGFx) dPTGF x
∣∣∣∣∣
)
. (5.2)
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For the first summand in (5.2) we estimate

1

t

∣∣∣∣∣
∫
{Bt /∈Bδ(TGF x)}

(B̃t − TGFx) dPTGF x
∣∣∣∣∣ ≤ 1

t

∫
{Bt /∈Bδ(TGF x)}

|B̃t − TGFx| dPTGF x.

Since |B̃t − TGFx ≤ 1, we obtain

1

t

∣∣∣∣∣
∫
{Bt /∈Bδ(TGF x)}

(B̃t − TGFx) dPTGF x
∣∣∣∣∣ ≤ 1

t

∫
{Bt /∈Bδ(0)}

1 dP

=
1

t
P({Bt /∈ Bδ(0)}) =

1

t
P({|Bt| ≥ δ})

=
2

t
P ({Bt ≥ δ}) =

2

t
P
({

1√
t
Bt ≥

δ√
t

})
=

2

t

1√
2π

∫ ∞
δ√
t

e−
x2

2 dx.

Taking into account ∫ ∞
δ√
t

e−
x2

2 dx ≤
√
t

δ
e−

δ2

2t

(cf. [24] Lemma 10.5.), we deduce

1

t

∣∣∣∣∣
∫
{Bt /∈Bδ(TGF x)}

(B̃t − TGFx) dPTGF x
∣∣∣∣∣ ≤ 2

δ
√

2π

1√
t
e−

δ2

2t
t→0−−→ 0

and for the second term in (5.2) we calculate

1

t

∣∣∣∣∣
∫
{Bt /∈Bδ(TGF x)}

(Bt − TGFx) dPTGF x
∣∣∣∣∣ =

1

t

∣∣∣∣∣
∫
{Bt /∈Bδ(0)}

Bt dP

∣∣∣∣∣
=

1

t

1√
2πt

∣∣∣∣∫ −δ
−∞

xe−
x2

2t dx+

∫ ∞
δ

xe−
x2

2t dx

∣∣∣∣ = 0

because of the symmetry of the integrands. In the case x ∈ {0, 1} the first term
in (5.1) involving a first order µ-derivative vanishes by the Neumann boundary
conditions. Therefore we have shown

lim
t→0

sup
x∈AG

∣∣∣∣1t ddµu(x)ETGF x
[
B̃t − TGFx

]∣∣∣∣ = 0.

Now we are going to estimate the second term in (5.1). In this case we choose

δ′ :=

{
min{TGFx, 1− TGFx} , x ∈ AG \ {0, 1}
1 , x ∈ {0, 1}

.

We then calculate in a similar manner setting t = ETGF x
[
(Bt − TGFx)2

]
∣∣∣∣ 1

2t
ETGF x

[
d2

dµ2
u(ξ)

(
B̃t − TGFx

)2
]
− 1

2

d2

dµ2
u(x)

∣∣∣∣
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=
1

2t

∣∣∣∣ETGF x [ d2

dµ2
u(ξ)

(
B̃t − TGFx

)2
]
− t d

2

dµ2
u(x)

∣∣∣∣
=

1

2t

∣∣∣∣ETGF x [ d2

dµ2
u(ξ)

(
B̃t − TGFx

)2
]
− ETGF x

[
d2

dµ2
u(x) (Bt − TGFx)2

]∣∣∣∣
=

1

2t

∣∣∣∣ ∫
{Bt∈Bδ′ (TGF x)}

d2

dµ2
u(ξ)(B̃t − TGFx)2 dPTGF x

Since (B̃t − TGFx)2 = (B̃t − TGFx)2, we get∣∣∣∣ 1

2t
ETGF x

[
d2

dµ2
u(ξ)

(
B̃t − TGFx

)2
]
− 1

2

d2

dµ2
u(x)

∣∣∣∣
+

∫
{Bt /∈Bδ′ (TGF x)}

d2

dµ2
u(ξ)(B̃t − TGFx)2 dPTGF x

−
∫
{Bt∈Bδ′ (TGF x)}

d2

dµ2
u(x) (Bt − TGFx)2 dPTGF x

−
∫
{Bt /∈Bδ′ (TGF x)}

d2

dµ2
u(x) (Bt − TGFx)2 dPTGF x

∣∣∣∣
=

1

2t

∣∣∣∣ ∫
{Bt∈Bδ′ (TGF x)}

(
d2

dµ2
u(ξ)− d2

dµ2
u(x)

)
(Bt − TGFx)2 dPTGF x

∣∣∣∣
+

1

2t

∣∣∣∣ ∫
{Bt /∈Bδ′ (TGF x)}

d2

dµ2
u(ξ)(B̃t − TGFx)2 dPTGF x

−
∫
{Bt /∈Bδ′ (TGF x)}

d2

dµ2
u(x) (Bt − TGFx)2 dPTGF x

∣∣∣∣
≤ 1

2t

∣∣∣∣ ∫
{Bt∈Bδ′ (TGF x)}

(
d2

dµ2
u(ξ)− d2

dµ2
u(x)

)
(Bt − TGFx)2 dPTGF x

∣∣∣∣
+

1

2t

∣∣∣∣ ∫
{Bt /∈Bδ′ (TGF x)}

d2

dµ2
u(ξ)(B̃t − TGFx)2 dPTGF x

∣∣∣∣
+

1

2t

∣∣∣∣ ∫
{Bt /∈Bδ′ (TGF x)}

d2

dµ2
u(x) (Bt − TGFx)2 dPTGF x

∣∣∣∣. (5.3)

We are going to show that the last two integrals in (5.3) vanish for t→ 0 uniformly
in x ∈ AG. Taking into account (B̃t − TGFx)2 ≤ 1 for the second summand in
(5.3), we observe

1

2t

∣∣∣∣ ∫
{Bt /∈Bδ′ (TGF x)}

d2

dµ2
u(ξ)(B̃t − TGFx)2 dPTGF x

∣∣∣∣
≤
∥∥∥∥ d2

dµ2
u

∥∥∥∥
∞

1

2t
PTGF x({Bt /∈ Bδ′(TGFx)})

≤
∥∥∥∥ d2

dµ2
u

∥∥∥∥
∞

1

2t
P({|Bt| ≥ δ}) ≤

∥∥∥∥ d2

dµ2
u

∥∥∥∥
∞

1

2t
2P({Bt ≥ δ′})

≤
∥∥∥∥ d2

dµ2
u

∥∥∥∥
∞

1

δ′
1√
2π

1√
t
e−

δ′2
2t

t→0−−→ 0
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and for the third summand in (5.3) we estimate

1

2t

∣∣∣∣ ∫
{Bt /∈Bδ′ (TGF x)}

d2

dµ2
u(x) (Bt − TGFx)2 dPTGF x

∣∣∣∣
≤
∥∥∥∥ d2

dµ2
u

∥∥∥∥
∞

1

2t

∫
{Bt /∈Bδ′ (TGF x)}

(Bt − TGFx)2 dPTGF x

≤
∥∥∥∥ d2

dµ2
u

∥∥∥∥
∞

1

2t

∫
{Bt /∈Bδ′ (0)}

Bt
2 dP =

∥∥∥∥ d2

dµ2
u

∥∥∥∥
∞

1

2t

2√
2πt

∫ ∞
δ′

e−
x2

2t dx

=
2√
2πt

1

t

√
t

∫ ∞
δ′√
t

ty2e−
y2

2 dy =
2√
2π

∫ ∞
δ′√
t

y2e−
y2

2 dy

=
2√
2π

(
δ′√
t
e−

δ′2
2t +

∫ ∞
δ′√
t

e−
y2

2 dy

)
.

Taking into account ∫ ∞
δ′√
t

e−
y2

2 dy ≤
√
t

δ′
e−

δ′2
2t

we conclude

1

2t

∣∣∣∣ ∫
{Bt /∈Bδ′ (TGF x)}

d2

dµ2
u(x) (Bt − TGFx)2 dPTGF x

∣∣∣∣
≤ 2√

2π

(
δ′√
t
e−

δ′2
2t +

√
t

δ′
e−

δ′2
2t

)
t→0−−→ 0

because
δ′√
t
e−

δ′2
2t

t→0−−→ 0 and

√
t

δ′
e−

δ′2
2t

t→0−−→ 0.

It remains to show that the first term in (5.3) including second order µ-derivatives
vanishes uniformly in x as t→ 0. This can be achieved as follows

1

2

∣∣∣∣ ∫
{Bt∈Bδ′ (TGF x)}

(
d2

dµ2
u(ξ)− d2

dµ2
u(x)

)
1

t
(Bt − TGFx)2 dPTGF x

∣∣∣∣
≤ 1

2

√∫
{Bt∈Bδ′ (TGF x)}

(
d2

dµ2
u(ξ)− d2

dµ2
u(x)

)2

dPTGF x

×
√∫

{Bt∈Bδ′ (TGF x)}

1

t2
(Bt − TGFx)4 dPTGF x. (5.4)

Again we estimate separately. For the last term in (5.4)√∫
{Bt∈Bδ′ (TGF x)}

1

t2
(Bt − TGFx)4 dPTGF x ≤

√
ETGF x

[
1

t2
(Bt − TGFx)4

]

=

√√√√ETGF x
[(

1

t
(Bt − TGFx)2

)2
]

=

√√√√E

[(
1

t
(Bt)

2

)2
]
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=

√√√√E

[(
1

t

(√
tB1

)2
)2
]

=

√
E
[
t2

t2

]
= 1.

Here Bt ∼
√
tB1 has been used. For the first term in (5.4) we observe√∫
{Bt∈Bδ′ (TGF x)}

(
d2

dµ2
u(ξ)− d2

dµ2
u(x)

)2

dPTGF x

≤

√∫
Ω

(
d2

dµ2
u(ξ)− d2

dµ2
u(x)

)2

dPTGF x

=

√√√√ETGF x
[(

d2

dµ2
u(ξ)− d2

dµ2
u(x)

)2
]
. (5.5)

Since (
d2

dµ2
u(ξ)− d2

dµ2
u(x)

)2

≤ 4

∥∥∥∥ d2

dµ2
u

∥∥∥∥2

∞

and

d2

dµ2
u(ξ)

t→0−−→ d2

dµ2
u(x)

uniformly in x by the continuity of d2

dµ2
u we now can apply Lebesgue’s dominated

convergence theorem to show that for (5.5) it holds that√√√√ETGF x
[(

d2

dµ2
u(ξ)− d2

dµ2
u(x)

)2
]

t→0−−→ 0.

Summarising all auxiliary estimates we have eventually shown that

lim
t→0

sup
x∈AG

∣∣∣∣1t (Qtu(x)− u(x))− 1

2

d2

dµ2
u(x)

∣∣∣∣ = 0.

Remark 5.16. From [8, section 2] it is readily known that the generator of
a strongly continuous semigroup which is conjugated by a bijection is given by
the corresponding conjugated infinitesimal generator defined on the transformed
domain, i.e. if 1

2
d2

dx2
denotes the generator of the semigroup (Pt)t≥0 with domain

C2,N ([0, 1]) (see theorem 5.9), then the generator of (UFG ◦ Pt ◦ UGF )t≥0 with

domain UFG(C2,N ([0, 1])) is given by 1
2UFG ◦

d2

dx2
◦ UGF as one can easily verify.

Namely for f ∈ C2,N ([0, 1]) and u := UFGf we have uniformly in x ∈ AG that

lim
t→0

1

t
(Qtu(x)− u(x)) = lim

t→0

1

t
((UFG ◦ Pt ◦ UGF )UFGf(x)− UFGf(x))

= lim
t→0

1

t
(Ptf (TGFx)− f (TGFx))
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=
1

2

d2

dx2
f (TGFx) =

1

2
UFG ◦

d2

dx2
f(x)

=
1

2

(
UFG ◦

d2

dx2
◦ UGF

)
u(x) =

1

2

d2

dµ2
u(x).

This observation coincides with the result from Theorem 5.15 that we derived by
application of a generalised second order Taylor-formula.

6. Space and time change of a Brownian motion

In this section we want to sketch the construction of a stochastic process such
that its associated semigroup has generator d

dµ
d
dν . The ideas can be found in [3]

and [18]. Moreover we want to discuss its connections to the fractal transformed
doubly reflected Brownian motion from Section 5.2.

Again we denote by B = (Bt)t≥0 a Brownian motion defined on the proba-
bility space (Ω,A,F ,P), where F = (Ft)t≥0 denotes the natural filtration of the
Brownian motion. For the subsequent construction we need the notion of the
local time of a Brownian motion which is given by

l(t, x) = l(t, x, ω) :=P− lim
ε↘0

1

2ε

∫ t

0
1(−ε,ε)(Bs − x)ds

=P− lim
ε↘0

1

2ε
λ({s ∈ [0, t] |Bs ∈ (x− ε, x+ ε)})

for t ≥ 0 and x ∈ R.
As in the Section 2 let ν and µ be two atomless Borel probability measures

on [0, 1] with supp(µ) ⊆ supp(ν) and 0, 1 ∈ supp(µ).

Definition 6.1. Let l(t, x) = l(t, x, ω) (t ≥ 0, x ∈ R, ω ∈ Ω) denote the local
time of a standard Brownian motion. We define for t ≥ 0

St :=

∫
Fν(supp(µ))

l(t, x)dµ ◦ F−1
ν (x) and Tt := inf{u ≥ 0 |St > t}.

Then we set

X :=
(

(Xt)t≥0 := (BTt)t≥0 , (FTt)t≥0 ,P
)

and call X a gap diffusion with speed measure µ ◦ F−1
ν . Furthermore we define

Y := (Yt)t≥0 :=
(
F̌−1
ν (Xt)

)
t≥0

,

where F̌−1
ν (x) := inf{y ∈ [0, 1]|Fν(y) ≥ x} denotes the generalised inverse of Fν .

We will call Y a gap diffusion with speed measure µ ◦ F−1
ν and scale measure ν.

With the notations as in previous definition we have the following

Proposition 6.2.

(i) for all t ≥ 0 we have Yt ∈ supp(µ) P- almost surely ;
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(ii) X is a strong Markovian stochastic process;

(iii) for all f ∈ C (supp(µ)) the map x 7→ Ex [f(Xt)] belongs to C (supp(µ));

(iv) for f ∈ C (supp(µ)) and x ∈ supp(µ) we have limt→0 Ex [f(Xt)] = f(x).

Proof. (i) From [7, Lemma 3.1] we know that Xt ∈ supp(µ ◦ F−1
ν ) =

Fν(supp(µ)) P- almost surely, thus Yt = F̌−1
ν (Xt) ∈ supp(µ) P-almost surely

for any t ≥ 0.
(ii)–(iv) For these assertions we refer to [18, Theorem 4.8].

Due to the Markov property of the process (Yt)t≥0 the expression
(Ex [f(Yt)])t≥0 (x ∈ supp(µ)) again defines a semigroup of operators for which its
infinitesimal generator is stated in the following theorem.

Theorem 6.3. Let (Yt)t≥0 =
(
F̌−1
ν (Xt)

)
t≥0

be the gap diffusion described

in Definition 6.1 with speed-measure µ ◦ F−1
ν and scale measure ν. Let A be the

infinitesimal generator of the semigroup (Ex [f(Yt)])t≥0 (x ∈ supp(µ)). Then for
f in the domain of A there exists a continuous continuation (again denoted by f)
in Dµ,ν2 such that

f(x) = f(0) +

∫ x

0
(Fµ(x)− Fµ(y)) 2Af(y)dµ(y) (x ∈ R),

i.e. A = 1
2
d
dµ

d
dν and the Neumann boundary conditions d

dν f(0) = d
dν f(1) = 0 are

satisfied.

Proof. See ( [18], Theorem 4.11).

Remark 6.4. Setting µ = ν in Definition 6.1 gives a process Y such that its
state space and the infinitesimal generator of its associated semigroup coincides
with that of a fractal transformed doubly reflected Brownian motion.

Therefore we now want to briefly sketch the connection of the fractal trans-
formed doubly reflected Brownian motion TB̃ from Definition 5.4 and the process
Y from Definition 6.1. Assume that µ = ν in Definition 6.1 and assume that µ
is the invariant measure supported on the attractor AG.

Again assume that AF = [0, 1] and µF = λ. Under the given assumptions
on the IFSs F and G, i.e. the increasing contraction maps (A.1), that are or-
dered ascendingly (A.2), gives that the fractal transformation TGF : AG → [0, 1]
is essentially the cumulative distribution function Fµ restricted on AG and F̌−1

µ

coincides with TFG : [0, 1]→ AG. Hence the fractal transformed doubly reflected
Brownian motion just evolves by the transformation of a doubly reflected Brown-
ian motion via the cumulative distribution function Fµ; compare to the definition
of the process Y by transformation of the gap diffusion X with speed measure
µ ◦ F−1

µ = λ|[0,1] by F̌−1
µ as in Definition 6.1.

In our setting the transformation via fractal transformations is essentially a
transformation via the distribution function of the measure µ supported on the
attractor AG and known results from classical analysis on [0, 1] can be transferred
via a transformation with Fµ to results on a Cantor-like set AG.

For more examples on this we refer to [2, 18,20,21].
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Фрактальне перетрорення операторiв
Крейна–Феллера

Max Menzel and Uta Freiberg

Ми розглядаємо фрактально перетворений броунiвський рух з по-
двiйним вiдбиттям з простором станiв, що є множиною, подiбною до
канторової. Застосовуючи теорiю фрактальних перетворень, розвинуту
Барнслi та iн., а також узагальнений вираз Тейлора, ми доводимо, що
його iнфiнiтезимальний генератор задається в термiнах геометричної
похiдної другого порядку за мiрою d

dµ
d
dµ , яку було розглянуто Фрайбер-

ґом i Целе. Крiм того, ми дослiджуємо його зв’язок з добре вiдомим
класичним оператором Крейна–Феллера d

dµ
d
dx , який є генератором так

званої “щiлинної дифузiї” (“gap-diffusion”).

Ключовi слова: геометричний оператор мiри Крейна–Феллера, мно-
жини, подiбнi до канторової, iнфiнiтезимальний генератор, фрактальне
перетворення, щiлинна дифузiя (gap-diffusion)
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