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The object of the present paper is to study the gradient Ricci soliton
multiply warped product. We prove that when the manifold is complete,
then the potential function depends only on the base and the fiber must be
an Einstein manifold. We also present the necessary and sufficient conditions
for constructing a gradient Ricci soliton multiply warped product.
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1. Introduction

Warped product spaces play an important role in general theory of relativity.
The (singly) warped product B×bF of two pseudo-Riemannian manifolds (B, gB)
and (F, gF ) with a smooth function b : B → (0,∞) is a product manifold of
form B × F with its projections π : B × F → B and σ : B × F → F . The
warped product B ×b F is the manifold B × F with the Riemannian structure
such that ‖X‖2 = ‖π∗(X)‖2 + (b ◦ π)2‖σ∗(X)‖2 for any vector field X on M .
The metric tensor g = gB ⊕ b2gF . The pair (B, gB) is called the base manifold,
(F, gF ) is the fiber manifold and b is the warping function. The concept of
warped product was introduced by Bishop and O’Neill [2] to construct examples
of complete Riemannian manifolds with negative sectional curvature. Currently,
the warped products have been very useful for studying Einstein type manifolds,
see, e.g., [3, 8, 9, 15,16].

Multiply warped products are generalizations of singly warped products. A
multiply warped product (M, g) is the product manifold M = B ×f1 F1 ×f2 F2 ×
. . .×fmFm with the metric g = gB⊕f21 gF1⊕f22 gF2⊕. . .⊕f2mgFm , where for each i ∈
{1, 2, . . . ,m}, fi : B → (0,∞) are smooth and (Fi, gFi) is a pseudo-Riemannian
manifold. For instance, if B = (c, d), the metric gB = −dt2 is negative and
(Fi, gFi) is a Riemannian manifold, then M is known as the multiply generalized
Robertson–Walker space-time.

In 1982, R.S. Hamilton [10] introduced a concept of the Ricci flow and proved
its existence. This concept was developed to answer Thurston’s Geometrization
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Conjecture which says that each closed 3-manifold admits a geometric decom-
position. A special solution to the Ricci flow is called a Ricci soliton [10] if it
is represented only by a one-parameter group of diffeomorphisms and scalings.
Ricci solitons are characterized by the equation

1

2
£Xg + Ric = ρg,

where £X is the Lie derivative, Ric is the Ricci tensor of the Riemannian metric
g, X is a vector field and ρ is a scalar. The Ricci soliton is said to be shrinking,
steady or expanding if ρ is positive, zero or negative, respectively. Also, we know
that a Ricci soliton is a natural generalization of an Einstein metric.

When the vector field X is the gradient of a smooth function h on M , we call
(M, g) as a gradient Ricci soliton. For a gradient Ricci soliton, the equation will
be

Ric +∇2h = ρg. (1.1)

In this case, h is called the potential function of the Ricci soliton, ∇ is the Levi-
Civita connection of g, and ρ ∈ R. If ∇h is a Killing vector field, i.e., ∇2h = 0,
then (M, g) becomes an Einstein manifold.

Simple examples of gradient Ricci solitons can be obtained by considering Rn
with the canonical metric g0. It is well known that the pair (Rn, g0) is a gradient

shrinker with a potential function given by h(x) = |x|2
4 , Ric +∇2h = 1

2g0. This is
called Gaussian shrinking soliton.

In [9], the authors presented the necessary and sufficient conditions for con-
structing a gradient Ricci soliton on a warped product assuming that the potential
function was lifted from the base. The last assumption was later removed in [3]
under the requirement that the soliton was complete. In our case, we consider
the gradient Ricci soliton on multiply warped product and we follow the same
ideas as in [9]. There is also a well-known fact that there are examples of Ricci
solitons on multiply warped product manifolds in [12]. We have first observed
that when the manifold is complete, then the potential function for a gradient
Ricci soliton multiply warped product depends only on the base and the fibers
are Einstein manifolds. We have also shown the existence criteria for the gradient
Ricci soliton multiply warped product.

The investigations of multiply warped product gradient Ricci soliton help us
to characterize the relation between the potential function of the gradient Ricci
soliton and the multiply warped product.

2. Preliminaries

Throughout this paper, we will consider M to be connected, Hausdorff, para-
compact and smooth. For an arbitrary n-dimensional pseudo-Riemannian mani-
fold (M, g) and a smooth function f : M → R, we have that Hf and ∆f denote
the Hessian (0, 2) tensor and the Laplace-Beltrami operator of f . We follow both
the notation and the terminology of [14]. Moreover, we assume that all warping
functions are non-constant.
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Following the ideas of Bishop and O’Neill, the authors of [5,7,17,18] state the
covariant derivative formulas for multiply warped products in the following way.

Lemma 2.1. Let M = B×f1 F1×f2 F2×· · ·×fm Fm be a pseudo-Riemannian
multiply warped product with the metric g = gB ⊕ f21 gF1 ⊕ f22 gF2 ⊕ · · · ⊕ f2mgFm.
Also, let X,Y ∈ χ(B) and V ∈ χ(Fi),W ∈ χ(Fj), where χ(B), χ(Fi), χ(Fj) are
the set of all vector fields on B, Fi, Fj, respectively. Then

1. ∇XY is the lift of ∇BXY ;

2. ∇XV = ∇VX =
X(fi)

fi
V ;

3. ∇VW =

0 if i 6= j

∇Fi
V W −

g(V,W )

fi
∇Bfi if i = j.

Lemma 2.2. Let M = B×f1 F1×f2 F2×· · ·×fm Fm be a pseudo-Riemannian
multiply warped product with the metric g = gB ⊕ f21 gF1 ⊕ f22 gF2 ⊕ · · · ⊕ f2mgFm.
Let ψ : B → R be a smooth function. Then

1. ∇(ψ ◦ π) = ∇Bψ,

2. ∆(ψ ◦ π) = ∆Bψ +
m∑
k=1

sk
fk
gB(∇Bψ,∇Bfk),

where ∇ and ∆ denote the gradient and the Laplace–Beltrami operator on M .

Lemma 2.3. Let M = B×f1 F1×f2 F2×· · ·×fm Fm be a pseudo-Riemannian
multiply warped product with the metric g = gB ⊕ f21 gF1 ⊕ f22 gF2 ⊕ · · · ⊕ f2mgFm.
Also, let X,Y, Z ∈ χ(B) and V ∈ χ(Fi),W ∈ χ(Fj). Then

1. Ric(X,Y ) = RicB(X,Y )−
m∑
i=1

si
fi
Hfi
B (X,Y ),

2. Ric(X,V ) = 0,

3. Ric(V,W ) =



0 if i 6= j,

RicFi(V,W )−

(
∆Bfi
fi

+ (si − 1)
‖∇Bfi‖2B

f2i

+
m∑
k=1
k 6=i

sk
gB(∇Bfi,∇Bfk)

fifk

)
g(V,W ) if i = j,

where Hfi
B = ∇2

Bfi denotes the Hessian operator on B and si stands for the
dimension of Fi.

3. Gradient Ricci soliton in multiply warped product spaces

In this section we generalize the result of Corollary 2.2 of [3].

Proposition 3.1. Let M = B ×f1 F1 ×f2 F2 × · · · ×fm Fm be a complete
Riemannian multiply warped product with the metric g̃ = gB ⊕ f21 gF1 ⊕ f22 gF2 ⊕
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· · · ⊕ f2mgFm , where fi : B → (0,∞) are non-constant warping functions for i ∈
{1, 2, . . . ,m}. If (M, g̃) is a multiply warped product gradient Ricci soliton, then
the potential function depends only on the base.

Proof. Let M = B×f1 F1×f2 F2×· · ·×fm Fm be a complete multiply warped
product gradient Ricci soliton with the potential function given by ψ : M →
R. Then we proceed as follows. Suppose by contradiction that there is i ∈
{1, 2, . . . ,m} such that ψ is not constant on the fiber Fi. Write M = B̃ × Fi,
with B̃ = B × F1 × · · · × Fi−1 × Fi+1 × · · · × Fm, and consider the metric g̃ =
gB̃ × fi

2gi, where

gB̃ = gB ⊕ f12g1 ⊕ · · · ⊕ fi−12gi−1 ⊕ fi+1
2gi+1 ⊕ · · · fm2gm.

Thus, M = B̃ ×fi Fi is a warped product Ricci soliton with M complete. Using
Corollary 2.2 of [3], we conclude that ψ is constant on Fi, which is a contradiction.
The conclusion is that ψ depends only on the base.

Proposition 3.2. Let M = B ×f1 F1 ×f2 F2 × · · · ×fm Fm be a complete
Riemannian multiply warped product with the metric g̃ = gB ⊕ f21 gF1 ⊕ f22 gF2 ⊕
· · · ⊕ f2mgFm , where fi : B → (0,∞) are non-constant warping functions for i ∈
{1, 2, . . . ,m}. If (M, g̃) is a multiply warped product gradient Ricci soliton, then
the fibers are Einstein manifolds.

Proof. Let M = B×f1 F1×f2 F2×· · ·×fm Fm be a complete multiply warped
product with the potential function ψ : B → R which depends only on the base.
If V ∈ χ(Fi),W ∈ χ(Fj) for i = j, then from Lemma 2.3 we have

Ric(V,W ) = RicFi(V,W )−

(
∆Bfi
fi

+ (si − 1)
‖∇Bfi‖2B

f2i

+
m∑
k=1
k 6=i

sk
gB(∇Bfi,∇Bfk)

fifk

)
f2i gFi(V,W ). (3.1)

Now, for V ∈ χ(Fi) and W ∈ χ(Fj), we have from (1.1)

Ricg̃(V,W ) +Hg̃
ψ(V,W ) = ρg̃(V,W ). (3.2)

Substituting (3.2) in (3.1), we have

RicFi(V,W ) =

(
ρf2i + f2i

(
∆Bfi
fi

+ (si − 1)
‖∇Bfi‖2B

f2i

+
m∑
k=1
k 6=i

sk
gB(∇Bfi,∇Bfk)

fifk

))
gFi(V,W )−Hg̃

ψ(V,W ). (3.3)

Again, it is known by Proposition 3.1 that ψ depends only on the base. Also, we
have

∇V (∇g̃ψ) =
(∇gBψ)(fi)

fi
V.
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Therefore,

Hg̃
ψ(V,W ) =

(∇gBψ)(fi)

fi
g̃(V,W ) = f2i gFi(V,W )

(∇gBψ)(fi)

fi
.

Thus,

Hg̃
ψ(V,W ) = fi(∇gBψ)(fi)gFi(V,W ). (3.4)

Then, putting the value of (3.4) in equation (3.3), we derive

RicFi(V,W ) =

(
ρf2i + f2i

(
∆Bfi
fi

+ (si − 1)
‖∇Bfi‖2B

f2i

+

m∑
k=1
k 6=i

sk
gB(∇Bfi,∇Bfk)

fifk

)
− fi(∇gBψ)(fi)

)
gFi(V,W ).

Hence the proof follows.

4. Existence of multiply warped product gradient Ricci soliton

In this section, we are proving some interesting result to establish the existence
of multiply warped product gradient Ricci soliton.

Let M be a gradient Ricci soliton multiply warped product with a potential
function ψ as the lift of a smooth function on B. Let φ̃ = φ ◦ π be the lift of
a smooth function φ on B. By [9], we get ψ = φ̃. Now, we have the following
proposition.

Proposition 4.1. Let M = B ×f1 F1 ×f2 F2 × · · · ×fm Fm be a Riemannian
multiply warped product with dim(B) = n, dim(Fi) = si, i = 1, 2, . . . ,m, and let
φ be a smooth function on B such that (M, g̃) is a gradient Ricci soliton with a
potential function ψ = φ̃. Then we have on B

2ρφ− |∇φ|2 + ∆φ+

m∑
i=1

si
fi
∇φ(fi) = c

for some constants ρ and c.

Proof. We have the gradient Ricci soliton equation as

Ric +Hψ = ρg.

Taking the trace of the above equation, we get

r + ∆ψ = ρk,

where

k = n+

m∑
i=1

si.
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For the Riemannian case, Hamilton [11] proved that

2ρψ − |∇ψ|2 + ∆ψ = c

for some constant c. So, the above equation can be written as

2ρφ̃− |∇φ̃|2 + ∆φ̃ = c. (4.1)

Also,
∇̃φ = ∇φ̃,

and from Lemma 2.2 we have

∆φ̃ = ∆φ+
m∑
i=1

si
fi
∇φ(fi). (4.2)

Substituting (4.2) in (4.1), we obtain

2ρφ− |∇φ|2 + ∆φ+

m∑
i=1

si
fi
∇φ(fi) = c

for some constants ρ and c.

Proposition 4.2. Let M = B ×f1 F1 ×f2 F2 × · · · ×fm Fm be a Riemannian
multiply warped product, and let φ be a smooth function on B such that (M, g̃) is
a gradient Ricci soliton with the potential function ψ = φ̃. Then we have

RicB = ρgB −HB
φ +

m∑
i=1

si
fi
Hfi
B

and
RicFi = ξigFi ,

where

ξi = ρf2i − fi∇φ(fi)

+ f2i

(
∆Bfi
fi

+ (si − 1)
‖∇Bfi‖2B

f2i
+

m∑
k=1
k 6=i

sk
gB(∇Bfi,∇Bfk)

fifk

)
. (4.3)

Proof. For X,Y ∈ χ(B), from Lemma 2.3, we have

Ric(X,Y ) = RicB(X,Y )−
m∑
i=1

si
fi
Hfi
B (X,Y ). (4.4)

Using (1.1) and the fact HM
ψ(X,Y ) = HB

φ(X,Y ) in (4.4), we obtain

RicB(X,Y ) = ρgB(X,Y )−HB
φ(X,Y ) +

m∑
i=1

si
fi
Hfi
B (X,Y ).

This proves the first part of the proposition.
Since we are assuming ψ = φ̃, the proof of the second part is the same as in

Proposition 3.2.
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Now we can rewrite any (0, 2) tensor T on M as a (1, 1) tensor by

g(T (Z), Y ) = T (Z, Y ), Y, Z ∈ χ(M).

Then we have
div(φT ) = φ div T + T (∇φ, .)

and
∇(φT ) = φ(∇T ) + dφ⊗ T, φ ∈ C∞(M).

Hence,
div(Hφ

B) = Ric(∇φ, ·) + d(∆φ)

and
1

2
d|∇φ|2 = Hφ

B(∇φ, ·).

These identities will be used in our next proposition.

Proposition 4.3. Let (Bn, g) be a pseudo-Riemannian manifold with smooth
functions fi > 0 and φ satisfying

Ric +Hφ = ρgB +

m∑
i=1

si
fi
Hf
i (4.5)

and
2ρφ− |∇φ|2 + ∆φ+

si
fi
∇φ(fi) = c (4.6)

for some constants c, ρ ∈ R and for each i = 1, . . . ,m. Then fi and φ satisfy

m∑
i=1

d(fi(∆fi) + ρf2i + (si − 1)|∇fi|2 − fi∇φ(fi)) = 0.

Proof. Taking the trace of equation (4.5), we get

r = nρ+

m∑
i=1

si
fi

∆fi −∆φ, (4.7)

where r is the scalar curvature of (B, gB). Thus, from (4.7), we have

dr = −
m∑
i=1

si
f2i

∆fidfi +
m∑
i=1

si
fi
d(∆fi)− d(∆φ). (4.8)

In what follows, we will use the second contracted Bianchi identity, namely:

− 1

2
dr + div(Ric) = 0. (4.9)

So, we compute the divergence on both sides of (4.5) to obtain

div(Ric) =

m∑
i=1

si

(
1

fi
div(Hf

i )− 1

f2i
(Hf

i )(∇fi, ·)
)
− div(Hφ).
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Therefore,

div(Ric) =
m∑
i=1

si
fi

Ric(∇fi, ·) +
m∑
i=1

si
fi
d(∆fi)

− Ric(∇φ, ·)− d(∆φ)−
m∑
i=1

si
2f2i

d(|∇fi|2). (4.10)

From (4.5), we have

Ric(∇fi, ·) = ρdfi +

m∑
i=1

si
2fi

d(|∇fi|2)− (Hφ)(∇fi, ·) (4.11)

and

Ric(∇φ, ·) = ρdφ+
m∑
i=1

si
fi

(Hf
i )(∇φ, ·)− 1

2
d(|∇φ|2). (4.12)

Putting (4.11) and (4.12) into (4.10), after a brief simplification we get

div(Ric) =

m∑
i=1

si
fi
ρdfi +

m∑
i=1

si(si − 1)

2f2i
d(|∇fi|2) +

m∑
i=1

si
fi
d(∆fi)− ρdφ

+
1

2
d(|∇φ|2)− d(∆φ)−

m∑
i=1

si
fi

[(Hφ)(∇fi, ·) + (Hf
i )(∇φ, ·)].

We know

d(∇φ(f)) = (Hφ)(∇f, .) + (Hf )(∇φ, ·).

Then

div(Ric) =

m∑
i=1

si
fi
ρdfi +

m∑
i=1

si(si − 1)

2f2i
d(|∇fi|2) +

m∑
i=1

si
fi
d(∆fi)− ρdφ

+
1

2
d(|∇φ|2)− d(∆φ)−

m∑
i=1

si
fi
d(∇φ(f)). (4.13)

Substituting (4.8) and (4.13) in (4.9), after a lengthy calculation we have

d

(
m∑
i=1

fi(∆fi) +

m∑
i=1

ρf2i +

m∑
i=1

(si − 1)|∇fi|2
)

− 2

m∑
i=1

fid(∇φ(fi))−
m∑
i=1

f2i
si
d(∆φ+ 2ρφ− |∇φ|2) = 0. (4.14)

But by our hypothesis, we have

2ρφ− |∇φ|2 + ∆φ+
si
fi
∇φ(fi) = c,
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which gives

−
m∑
i=1

f2i
si
d(∆φ+ 2ρφ− |∇φ|2)−

m∑
i=1

fid(∇φ(fi)) = −
m∑
i=1

∇φ(fi)dfi.

So, from (4.14), we get

m∑
i=1

d(fi(∆fi) + ρf2i + (si − 1)|∇fi|2 − fi∇φ(fi)) = 0,

which completes the proof.

Now we will derive two main results using these propositions.

Theorem 4.4. Let M = B ×f1 F1 ×f2 F2 × · · · ×fm Fm be a gradient Ricci
soliton multiply warped product with ∇Bfi ⊥ ∇Bfk for all i 6= k. Assume the
potential function satisfies ψ = φ̃. If the soliton is steady or expanding and the
warping functions reach both maximum and minimum on the base B, then M is
a simply Riemannian product.

Proof. Let M = B ×f1 F1 ×f2 F2 × · · · ×fm Fm be a gradient Ricci soliton

with Ric +H φ̃ = ρg, where ρ is constant.
Now, from Proposition 4.2, we have RicFi = ξigFi , where

ξi = f2i

(
∆Bfi
fi

+(si−1)
‖∇Bfi‖2B

f2i
+

m∑
k=1,k 6=i

sk
gB(∇Bfi,∇Bfk)

fifk

)
−fi∇φ(fi)+ρf2i .

Now we will assume that the functions fi reach both maximum and minimum on
the base B. At the maximum pi and at the minimum qi of fi, by using equation
(4.6), we get the following:

ξi = ρfi
2(pi) + fi(∆fi)(pi) ≤ ρfi2(pi),

ξi = ρfi
2(qi) + fi(∆fi)(qi) ≥ ρfi2(qi),

which implies, when ρ < 0, that fi
2(pi) ≤ ρ−1ξi ≤ fi

2(qi) ≤ fi
2(pi) for any p ∈

B. As a consequence, ξi < 0 and fi is constant that equals
√
ρ−1ξi. Now, if ρ =

0, then it follows that ξi = 0. Putting this into (4.3) gives

L̃fi = ∆fi −∇u(fi) =
1

fi
(1− si)|∇fi|2 ≤ 0,

where

u = φ−
m∑
k=1
k 6=i

sk ln(fk).

Once one is assuming that the minimum is attained, the strong Maximum Prin-
ciple implies that fi is constant. Hence M is a simply Riemannian product.
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Remark 4.5. The strong Maximum Principle should be applied to L̃, not to
the operator L used in [9], and L̃ is still an elliptic linear differential operator.

Theorem 4.6. Let (B, gB) be a Riemannian manifold with smooth functions
fi > 0 satisfying ∇Bfi ⊥ ∇Bfk for all i 6= k, {i = 1, 2, . . . ,m, i 6= k} and φ
satisfying

Ric +Hφ = ρg +

m∑
i=1

si
fi
Hf
i

and

2ρφ− |∇φ|2 + ∆φ+

m∑
i=1

si
fi
∇φ(fi) = c

for some constants m, c, ρ ∈ R with m 6= 0.

Let F1, F2, . . . , Fm be Riemannian manifolds with metrics gFi whose Ricci
tensors satisfy RicFi = ξigFi , where

ξi = f2i

(
∆Bfi
fi

+ (si − 1)
‖∇Bfi‖2B

f2i
− fi∇φ(fi) + ρf2i +

m∑
k=1
k 6=i

sk
gB(∇Bfi,∇Bfk)

fifk

)
.

Then (B×f1 F1×f2 F2×· · ·×fm Fm, g̃) is a gradient Ricci soliton multiply warped
product.

Proof. From our assumption, we have

Ric +Hφ = ρg +

m∑
i=1

si
fi
Hf
i

and

2ρφ− |∇φ|2 + ∆φ+

m∑
i=1

si
fi
∇φ(fi) = c

for some constant c.

We also assume that ∇Bfi and ∇Bfk, {i = 1, 2, . . . ,m, i 6= k} are orthogonal
to each other, and from Proposition 4.3 we get that any ξi given by (4.5) is
constant. Now we consider the Einstein manifolds (Fi, gFi) with the Ricci tensor
RicFi = ξigFi and the warped product (B×f1 F1×f2 F2×· · ·×fm Fm, g̃) with g̃ =
gB ⊕ f21 gF1 ⊕ f22 gF2 ⊕ · · · ⊕ f2mgFm .

Let us consider three cases.

Case 1: Let Y,Z ∈ χ(B). It follows from the fact

Hφ(Y,Z) = H φ̃(Y,Z), Hf (Y,Z) = H f̃ (Y,Z),

from Lemma 2.3, where φ̃, f̃ are lifts of φ and f , and the hypotheses (4.5), (4.6)

of Proposition 4.3 that the fundamental equation Ric +H φ̃ = ρg is satisfied for
all Y,Z ∈ χ(B).
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Case 2: Let Y ∈ χ(B) and V ∈ χ(Fi). Using ∇φ̃ ∈ χ(B) and Lemma 2.1, we
can easily verify that

H φ̃(Y, V ) = g(DY∇φ̃, V ) = 0.

So, from part 2 of Lemma 2.3, we can assert that the fundamental equation
Ric +H φ̃ = ρg is satisfied.

Case 3: Let V,W ∈ χ(Fi). Using Lemma 2.3 and the definition of ξi, we have

Ric(V,W ) = ξigFi(V,W )− f2i

(
∆Bfi
fi

+ (si − 1)
‖∇Bfi‖2B

f2i

)
gFi(V,W )

since ∇Bfi is orthogonal to ∇Bfk for {i = 1, 2, . . . ,m, i 6= k}. Therefore,

Ric(V,W ) = (ξi − fi∆Bfi − (si − 1)‖∇Bfi‖2B)gFi(V,W )

= (ρf2i − fi∇φ(fi))gFi(V,W ) = (ρ− 1

fi
∇φ(fi))g(V,W ).

Again, from (4.4), we get

H φ̃(V,W ) =
∇φ(fi)

fi
gFi(V,W ). (4.15)

Combining equations (4.5) and (4.6), we conclude that the fundamental equation
is satisfied, which completes the proof.
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Про градiєнтний солiтон Рiччi, що є множинно
викривленим добутком

Tamalika Dutta, Sampa Pahan, X. Chen, and Arindam Bhattacharyya

Метою роботи є вивчення градiєнтного солiтону Рiччi, що є множин-
но викривленим добутком. Ми доводимо, що коли многовид є повним,
то тодi потенцiальна функцiя залежить лише вiд бази, а шар повинен
бути енштейновим многовидом. Також ми наводимо необхiднi та доста-
тнi умови для побудови градiєнтного солiтону Рiччi, що є множинно
викривленим добутком.

Ключовi слова: солiтон Рiччi, викривлений добуток, множинно ви-
кривлений добуток
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