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On Hilbert–Schmidt Frames for Operators

and Riesz Bases

Jyoti and Lalit Kumar Vashisht

Stable analysis and reconstruction of vectors in closed subspaces of
Hilbert spaces can be studied by Gǎvruta’s type frame conditions which
are related with the concept of atomic systems in separable Hilbert spaces.
In this work, first we give Gǎvruta’s type frame conditions for a class of
Hilbert–Schmidt operators (in short, C2 class), where a bounded linear op-
erator controls the lower frame condition. We discuss frame-preserving map-
pings for Hilbert–Schmidt frames for subspaces of a separable Hilbert space.
We establish the existence of Hilbert–Schmidt frames for subspaces of the
Hilbert–Schmidt class C2. It is shown that every separable Hilbert space
admits a Hilbert–Schmidt frame with respect to a given separable Hilbert
space. We obtain necessary and sufficient conditions for Gǎvruta’s type
frame conditions for sums of Hilbert–Schmidt frames for subspaces. Finally,
we discuss Hilbert–Schmidt Riesz bases in separable Hilbert spaces.
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1. Introduction

Frames for a separable Hilbert space H are redundant building blocks which
provide a series representation, not necessarily unique, of each vector of the
space H. The concept of a “Hilbert frame” first appeared in the work of Duffin
and Schaeffer [12] while studying some intense problems related to non-harmonic
Fourier series. The mathematical definition of a frame is based on an operator
inequality. Let H be a separable (infinite or finite-dimensional) complex Hilbert
space with inner product 〈·, ·〉. We recall that a self-adjoint operator T acting on
H is said to be positive if 〈Tx, x〉 ≥ 0 for all x ∈ H. Let S(H) be the family of
self-adjoint operators acting on H. If U, T ∈ S(H) and U −T is positive, then we
write T � U . A countable sequence {xk}k∈I of members of H is called a frame
(or Hilbert frame) for the space H if the map, called the frame operator, 0 : H →
H, given by

0 : x 7→
∑
k∈I
〈x, xk〉xk, x ∈ H,
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satisfies

moIH � 0 �MoIH (1.1)

for some positive constants mo and Mo; here IH is the identity operator on H.
Condition (1.1) is equivalent to

mo‖x‖2 ≤ ‖{〈x, xk〉}k∈I‖2`2(I) ≤Mo‖x‖2 for all x ∈ H.

The scalars mo and Mo, obviously not unique, are known as lower frame bound
and upper frame bound, and the supremum of lower frame bounds and infimum
of upper frame bounds are called optimal frame bounds. The frame {xk}k∈I
is normalized tight (or Parseval) if mo = Mo = 1. If {xk}k∈I fulfills the right
inequality in (1.1), then we say that {xk}k∈I is a Bessel sequence with Bessel
bound Mo. The frame operator 0 : H → H of the frame {xk}k∈I is bounded,
linear, positive and invertible on H. Since 0−1 is a self-adjoint operator, the
reconstruction formula is

x = 00−1x =
∑
k∈I
〈x,0−1xk〉xk, x ∈ H.

The scalars 〈x,0−1xk〉 are known as frame coefficients. The frame condition
(1.1), known as frame inequality, is a powerful tool in the study of the operator
theory [2, 3, 6, 8, 17], iterated function systems [10, 26], quantum physics [16, 18]
and many areas in both pure and engineering sciences. Detailed discussions about
various types of frames and their applications can be found in the texts of Casazza
and Kutyniok [5], Christensen [7], and Heil [15].

Frame properties of a given system in Hilbert (or Banach) spaces have been ex-
tensively studied in the last three decades. More precisely, flexibility and density
of frame vectors are responsible for the development of frame theory in various
directions, including pure mathematics and engineering science. In the direction
of development of frames related to operators, Sun [24] introduced the concept
of “generalized frame” (g-frame, in short) and “generalized Riesz basis” (g-Riesz
basis, in short) in a separable complex Hilbert space. Generalized frames are the
families of operators acting on a given Hilbert space with range in closed sub-
spaces of another Hilbert space. Let H and K be separable Hilbert spaces and
let {Kj}j∈I be a sequence of closed subspaces of K. For each j ∈ I, let Λj be a
bounded linear operator from H into Kj . The collection Λ ≡ {Λj}j∈I is called a
generalized frame (in short, g-frame) for H with respect to {Kj}j∈I if there exist
positive constants mΛ and MΛ such that

mΛ‖x‖2 ≤
∑
j∈I
‖Λjx‖2 ≤MΛ‖x‖2 for all x ∈ H.

Sun [24] showed that generalized frames (respectively, generalized Riesz bases)
share many useful properties with standard frames (respectively, standard Riesz
bases). Furthermore, Sun [24] provided a link between generalized frames and
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another generalization of frames in the context of numerical analysis called “stable
space splittings”. Generalized frames are also used in the atomic resolution of
bounded linear operators, see [24] for technical details. In [25], Sun proved that
generalized frames are stable under small perturbation.

Koo and Lim [20] studied the relations of Schatten p-class operators, the
space of linear compact operators whose sequence of singular values is in `p, to
Bessel sequences and frame conditions. The authors of [21] studied von Neumann-
Schatten p-frames in separable Banach spaces. They showed in [21] that gener-
alized frames and p-frames are a class of von Neumann-Schatten p-frames. It
is proved in [3, Lemma 3.1, Corollary 3.1] that Hilbert–Schmidt operators can
be characterized by using frame conditions. Dual properties of Hilbert–Schmidt
frames in separable Hilbert spaces can be found in [28]. It is necessary to mention
the papers of Schatten [22] and Simon [23] for basic theory on Hilbert–Schmidt
operators and their applications.

Gǎvruta, in [13], proposed a new concept of frames for the range of bounded
linear operators under the name K-frame, where K is a bounded linear operator
acting on a separable Hilbert space. A countable family of vectors {xk}k∈I in H
is called a K-frame for H if for some γ1, γ2 ∈ (0,∞),

γ1‖K∗x‖2 ≤
∑
k∈I
|〈x, xk〉|2 ≤ γ2‖x‖2 (1.2)

holds for all x ∈ H. One can observe that if K is the identity operator on H,
then the K-frame {xk}k∈I turns out to be a standard Hilbert frame. The lower
frame condition in a K-frame depends on K, which gives the linear expansion
of each vector in the range of the operator K, see [13, Theorem 5] for technical
details. Gǎvruta, in [13], relates this concept of K-frames with “local atoms” in
closed subspaces of Hilbert spaces. Some differences between standard Hilbert
frames and K-frames can be found in [13]. One of the major differences between
standard Hilbert frames and K-frames is that the frame operator of a K-frame
for a separable Hilbert space H may be not invertible on H. It is invertible on
its range Ran(K), whenever Ran(K) is closed in H. Recent development of the
study of K-frames in separable Hilbert spaces can be found in [8, 9, 27].

The present study concerns Gǎvruta’s type frame conditions (1.2) for the
Hilbert–Schmidt class of operators, where the lower frame condition is a func-
tion of a bounded linear operator. The paper is structured as follows. We start
with a brief review about Hilbert–Schmidt class in Section 2. Hilbert–Schmidt
frames for the range of operators under the name Θ-Hilbert–Schmidt frames are
studied in Section 3. Proposition 3.6 and Theorem 3.7 give new Θ-Hilbert–
Schmidt frames from a given Θ-Hilbert–Schmidt frame by composing frame ele-
ments with bounded operators. Theorem 3.12 gives the existence of Θ-Hilbert–
Schmidt frames for the Hilbert–Schmidt class C2. In Theorem 3.14, we show that
every separable Hilbert space admits a Θ-Hilbert–Schmidt frame with respect
to a given separable Hilbert space. We also give the construction of Θ-Hilbert–
Schmidt frames from ordinary Hilbert Θ-frames. In Section 5, we extend some
results for the standard Riesz bases to the class of Hilbert–Schmidt operators.
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2. Notation and basic results

We denote by N, Z and C the set of positive integers, integers and complex
numbers, respectively. The symbol I denotes a countable infinite indexing set. H
and K denote real or complex separable Hilbert spaces. The space of bounded
linear operators from H into K is denoted by B(H,K). If H = K, then we write
B(H,K) = B(H). The Hilbert-adjoint of an operator T ∈ B(H,K), denoted by
T ∗, is defined as 〈Tx, y〉 = 〈x, T ∗y〉, x ∈ H, y ∈ K, see [15, Definition 2.10]. The
space of compact linear operators acting on H is denoted by Bo(H). Ran(U)
denotes the range of an operator U . The singular values sn(T ) of T ∈ Bo(H)

are the eigenvalues of the positive operator (T ∗T )
1
2 . Further, the set of singular

values sn(T ) of T counted with their multiplicity is at most countable, they are
bigger than zero and can be arranged in a decreasing sequence as follows:

s1(T ) ≥ s2(T ) ≥ · · · ≥ 0 and sn(T )→ 0 as n→∞.

The Hilbert–Schmidt class, denoted by C2, is defined as

C2 :=

{
T ∈ Bo(H) :

∑
i

s2
i (T ) <∞

}
.

The space C2 is a Banach space with respect to the norm ‖.‖2 defined as

‖T‖2 =
(∑

i

s2
i (T )

) 1
2

=
(
trace (T ∗T )

) 1
2
, T ∈ C2,

where trace is the trace functional defined by trace (T ) =
∑
i∈N
〈Tei, ei〉 for any

orthonormal basis {ei}i∈N of H. Note that ‖T‖2 =
( ∑
i∈N
‖Tei‖2

) 1
2 for T ∈ C2 .

The space C2 is a Hilbert space with respect to the inner product [·, ·]tr defined
as

[T, S]tr = trace (S∗T ), T, S ∈ C2.

The class C2 is a 2-sided ∗-closed ideal in B(H). To be precise, T ∗ ∈ C2 with
‖T ∗‖2 = ‖T‖2, and TU , UT ∈ C2 with ‖TU‖2, ‖UT‖2 ≤ ‖U‖‖T‖2 for T ∈ C2 and
U ∈ B(H). Moreover, if U ∈ B(H) is unitary, then ‖UT‖2 = ‖TU‖2 = ‖T‖2.

The space
⊕
C2, defined as

⊕
C2 =

⊕
i∈I
C2 :=

{
{Ai}i∈I ⊂ C2 :

(∑
i∈I
‖Ai‖22

) 1
2
<∞

}
,

is a Hilbert space with respect to the inner product given by〈
{Ai}i∈I, {Bi}i∈I

〉⊕
C2

=
∑
i∈I

[Ai, Bi]tr.
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It is easy to see that if H = C, then B(H) = C2 = C and
⊕
C2 = `2(I).

For x, y ∈ H, the operator x⊗ y : H → H is defined as

(x⊗ y)(u) = 〈u, y〉x, u ∈ H.

It can be easily verified that x ⊗ y ∈ B(H) with ‖x ⊗ y‖ = ‖x‖‖y‖. For any
x, y, u, v ∈ H and for any U ∈ B(H), the following properties hold:

(x⊗ y)(u⊗ v) = 〈u, y〉(x⊗ v);

trace (x⊗ y) = 〈x, y〉;
(x⊗ y)∗ = y ⊗ x;

U(x⊗ y) = Ux⊗ y;

(x⊗ y)U = x⊗ U∗y.

Notice that x ⊗ y ∈ C2 with ‖x ⊗ y‖2 = ‖x‖‖y‖ for x, y ∈ H. Indeed, for any x,
y ∈ H, we have

‖x⊗ y‖22 = trace
(
(x⊗ y)∗(x⊗ y)

)
= trace

(
(y ⊗ x)(x⊗ y)

)
= trace

(
〈x, x〉(y ⊗ y)

)
= 〈x, x〉trace(y ⊗ y) = 〈x, x〉〈y, y〉 = ‖x‖2‖y‖2.

We conclude this section by recording the following result which will be used
later.

Theorem 2.1 ([11]). Let L1 ∈ B(H1,H) and L2 ∈ B(H2,H). Then the
following statements are equivalent:

(i) Ran(L1) ⊂ Ran(L2);

(ii) there exists a λ > 0 such that L1L
∗
1 � λ2L2L

∗
2;

(iii) there exists M ∈ B(H1,H2) such that L1 = L2M .

3. Hilbert–Schmidt frames for operators

We begin this section with the following definition.

Definition 3.1. Let C2 ⊆ B(K) and Θ ∈ B(H). A countable collection of
operators {Ti}i∈I ⊂ B(H, C2) is called a Θ-Hilbert–Schmidt frame (Θ-HS frame,
in short) for H with respect to K if there exist positive scalars αo, βo such that

αo‖Θ∗x‖2 ≤
∑
i∈I
‖Tix‖22 ≤ βo‖x‖2 (3.1)

holds for all x ∈ H.

If only the upper inequality in (3.1) is satisfied, then we say that {Ti}i∈I is
a Hilbert–Schmidt Bessel sequence or simply HS Bessel sequence with Bessel
bound (or upper frame bound) βo. If the lower inequality in (3.1) holds, then αo
will be called a lower Θ-HS frame bound.
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Let {Ti}i∈I be an HS Bessel sequence for H with Bessel bound βo. The
operator V :

⊕
C2 → H, defined by

V : {Ai}i∈I 7→
∑
i∈I

T ∗i Ai, {Ai}i∈I ∈
⊕
C2,

is called the pre-frame operator (or synthesis operator) associated with {Ti}i∈I.
The analysis operator V∗ : H →

⊕
C2 is given by

V∗ : x 7→ {Tix}i∈I, x ∈ H.

Note that both the synthesis and the analysis operators are linear and bounded.
The composition Ω = VV∗ : H → H is called the frame operator associated with
{Ti}i∈I and it is given by

Ω : x 7→
∑
i∈I

T ∗i Tix, x ∈ H.

If {Ti}i∈I is a Θ-HS frame forH with respect to K, then Ω is a linear and bounded
operator, but it may not be invertible on H. It is invertible on Ran(Ω) whenever
the range Ran(Ω) ⊂ H is closed.

Remark 3.2. If {Ti}i∈I is a Θ-HS frame for H with respect to K, then in-
equality (3.1) can be written as

αoΘΘ∗ � Ω � βoIH.

Regarding the existence of Θ-HS frames in Hilbert spaces, we have the fol-
lowing example.

Example 3.3.

a) Let {ei}i∈N be the canonical orthonormal basis for the Hilbert space `2(N).
For any i ∈ N, define Ti : `2(N)→ C as

Tix = 〈x, ei+1〉, x ∈ `2(N).

Then Ti ∈ B(`2(N),C) for all i ∈ N. Let Θ be the right shift operator acting
on `2(N). Then, for every x ∈ `2(N), we have

‖Θ∗x‖2 =
∑
i∈N
|〈x, ei+1〉|2 =

∑
i∈N
‖Tix‖22 ≤ ‖x‖2.

Hence, {Ti}i∈N is a Θ-HS frame for `2(N) with respect to the unitary space C.

b) Let {ei}i∈Z be an orthonormal basis for the space `2(Z). Let U be the left
shift operator acting on `2(Z), which is defined as

U : {ξi}i∈Z 7→ {ξi+1}i∈Z, {ξi}i∈Z ∈ `2(Z).
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Then U ∈ B(`2(Z)) is unitary. For C2 ⊂ B(`2(Z)), let Θ : C2 → C2 be defined
as

Θ : T 7→ UT, T ∈ C2.

Then Θ ∈ B(C2). Now, for any T , S ∈ C2, we compute

[Θ∗T, S]tr = [T,ΘS]tr = [T,US]tr = trace
(
(US)∗T

)
= trace

(
S∗U∗T

)
= [U∗T, S]tr,

which entails
Θ∗T = U∗T, T ∈ C2.

Define Ti : C2 → C2 as

Ti : T 7→

{
U∗Tei ⊗ ei, i ≤ 1,

U∗Tei−1 ⊗ ei−1, i > 1

for all T ∈ C2. Then {Ti}i∈Z ⊂ B(C2). For any T ∈ C2, we compute∑
i∈Z
‖TiT‖22 =

∑
i≤1

‖U∗Tei ⊗ ei‖22 +
∑
i>1

‖U∗Tei−1 ⊗ ei−1‖22

≤ 2
∑
i∈Z
‖U∗Tei ⊗ ei‖22 = 2

∑
i∈Z
‖U∗Tei‖2‖ei‖2

= 2
∑
i∈Z
‖U∗Tei‖2 = 2‖U∗T‖22 = 2‖T‖22.

This gives the upper frame condition for the Θ-HS frame. For the lower Θ-HS
frame bounded in a similar way we can show that∑

i∈Z
‖TiT‖22 ≥

∑
i∈Z
‖U∗Tei ⊗ ei‖22 = ‖U∗T‖22 = ‖Θ∗T‖22 for all T ∈ C2.

Hence, {Ti}i∈Z is a Θ-HS frame for C2 with respect to `2(Z) with Θ-HS frame
bounds 1 and 2.

Remark 3.4. If Θ = IH, the identity operator on H, then Θ-HS frame is the
standard HS frame for the Hilbert space H with respect to K. A Θ-HS frame,
in general, is not a HS frame for H with respect to K. This is clear by Example
3.3(a)) wherein {Ti}i∈N is a Θ-HS frame but not an HS frame for `2(N) with
respect to C as for x = e1 ∈ `2(N), we have∑

i∈N
‖Tix‖22 =

∑
i∈N
|〈x, ei+1〉|2 = 0.

On the contrary, an HS frame for H with respect to K is always a Θ-HS frame
for H with respect to K for Θ ∈ B(H). In fact, this is a particular case of the
following result which is an application of Douglas’ majorization Theorem (see
Theorem 2.1).
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Theorem 3.5. Let {Ti}i∈I ⊂ B(H, C2) be a Θ-HS frame for H with respect
to K and let Ξ ∈ B(H) with Ran(Ξ) ⊂ Ran(Θ). Then {Ti}i∈I is a Ξ-HS frame
for H with respect to K.

Aldroubi [1] characterized frame-preserving mappings, that is, mappings that
transform frames of H into other frames of H. Some necessary and sufficient con-
ditions satisfied by frame-preserving operators on the underlying space can be
found in [1]. Aldroubi gave the class of operators on `2(N) that generates all the
frames of a Hilbert space H. Inspired by Aldroubi’s type frame-preserving map-
pings, we discuss HS frames under the action of operators in separable Hilbert
spaces. Let {Ti}i∈I ⊂ B(H, C2) be an HS frame for H with respect to K and Θ ∈
B(H). Then {TiΘ∗}i∈I, in general, need not be an HS frame for H with respect
to K. For example, for any i ∈ N, let Ti ∈ B(`2(N),C) be given by

Tix = 〈x, ei〉, x ∈ `2(N),

where {ei}i∈N denotes the canonical orthonormal basis for `2(N). Then, for the
right shift operator Θ ∈ B(`2(N)), the sequence {TiΘ∗}i∈N is not an HS frame
for `2(N) with respect to C as for x = e1 ∈ `2(N), we have∑

i∈N
‖TiΘ∗x‖22 =

∑
i∈N
|〈x, ei+1〉|2 = 0.

However, it is easy to check that {TiΘ∗}i∈N becomes an HS frame for H with
respect to K whenever {Ti}i∈N is an HS frame for H with respect to K if Θ ∈
B(H) is surjective. So, we have seen that {TiΘ∗}i∈I need not be an HS frame
for H with respect to K if {Ti}i∈I is an HS frame for H with respect to K where
Θ ∈ B(H). But {TiΘ∗}i∈I is a Θ-HS frame for H with respect to K for every
Θ ∈ B(H), whenever {Ti}i∈I is an HS frame for H with respect to K . In fact,
this is a particular case of the following result.

Proposition 3.6. Let {Ti}i∈I ⊂ B(H, C2) be a Θ-HS frame for H with respect
to K and E ∈ B(H). Then {TiE∗}i∈I is a EΘ-HS frame for H with respect to K.

The following result shows that a Θ-HS frame for a Hilbert space H with
respect to K can be retained by composing its elements with a bounded below
operator.

Theorem 3.7. Let {Ti}i∈I ⊂ B(H, C2) be a Θ-HS frame for H with respect
to K. Then:

a) {ETi}i∈I is a Θ-HS frame for H with respect to K if E ∈ B(C2) is a bounded
below operator.

b) {TiE}i∈I is a Θ-HS frame for H with respect to K if E ∈ B(H) is a bounded
below operator such that EΘ∗ = Θ∗E.

Proof. Let α, β be Θ-HS frame bounds for {Ti}i∈I. If E ∈ B(C2) is bounded
below, then there exists a positive real number M such that

‖EA‖2 ≥M‖A‖2 for all A ∈ C2.
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Therefore, for any x ∈ H, we have∑
i∈I
‖ETix‖22 ≥

∑
i∈I

M2‖Tix‖22 ≥M2α‖Θ∗x‖2.

Analogously,∑
i∈I
‖ETix‖22 ≤

∑
i∈I
‖E‖2‖Tix‖22 ≤ ‖E‖2β‖x‖2 for all x ∈ H.

This proves a). Condition b) can be proved in a similar way.

The concept of orthonormal bases plays a significant role in the characteriza-
tion of frames for subspaces. This leads to the definition of the Hilbert–Schmidt
orthonormal basis for a Hilbert space.

Definition 3.8. Let C2 ⊆ B(K). A sequence {Ti}i∈I ⊂ B(H, C2) is called a
Hilbert–Schmidt orthonormal basis (HS orthonormal basis, in short) for H with
respect to K if:

a)
∑
i∈I
‖Tix‖22 = ‖x‖2 for all x ∈ H.

b) {Ti}i∈I is HS orthonormal, i.e.,
〈
T ∗i T, T

∗
j S
〉

= δi,j [T, S]tr for all T, S ∈ C2.

Remark 3.9. If {Ti}i∈I ⊂ B(H, C2) is an HS orthonormal basis for H with
respect to K, then every element x of H can be expressed as

x =
∑
i∈I

T ∗i Tix.

Regarding the existence of HS orthonormal bases, we have the following
example.

Example 3.10.

(I) Let {ei}i∈I be an orthonormal basis for a separable Hilbert space H. For
each i ∈ I, define Ti : H → C as

Tix = 〈x, ei〉, x ∈ H.

Then Ti ∈ B(H,C) for each i ∈ I, and T ∗i : C→ H is given by

T ∗i α = αei, α ∈ C.

Therefore, we have:

a)
∑
i∈I
‖Tix‖22 =

∑
i∈I
|〈x, ei〉|2 = ‖x‖2, x ∈ H.

b) 〈T ∗i α, T ∗j β〉 = 〈αei, βej〉 = αβ〈ei, ej〉 = δi,j〈α, β〉 for all α, β ∈ C.

Hence, {Ti}i∈I is an HS orthonormal basis for H with respect to C.
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(II) Let H be a separable Hilbert space and C2 ⊂ B(H). For i ∈ I, define Pi :⊕
C2 → C2 as

Pi : {Aj}j∈I 7→ Ai, {Aj}j∈I ∈
⊕
C2.

Then, for T ∈ C2 and {Aj}j∈I ∈
⊕
C2, we compute〈

P ∗i T, {Aj}j∈I
〉⊕

C2
=
[
T, Pi

(
{Aj}j∈I

)]
tr

= [T,Ai]tr

=
〈

(0, · · · , 0, T︸︷︷︸
ith place

, 0, · · · , 0), {Aj}j∈I
〉⊕

C2
.

Thus, for each i ∈ I, P ∗i : C2 →
⊕
C2 is given by

P ∗i T =
(
0, · · · , 0, T︸︷︷︸

ith place

, 0, · · · , 0
)
, T ∈ C2.

For any {Aj}j∈I ∈
⊕
C2 and for any T, S ∈ C2, we have∑

i∈I

∥∥∥Pi({Aj}j∈I)∥∥∥2

2
=
∑
i∈I
‖Ai‖22 =

∥∥∥{Aj}j∈I∥∥∥2⊕
C2
,

and〈
P ∗i T,P

∗
j S
〉⊕

C2

=
〈

(0, · · · , 0, T︸︷︷︸
ith place

, 0, · · · , 0), (0, · · · , 0, S︸︷︷︸
jth place

, 0, · · · , 0)
〉⊕

C2

= δi,j [T, S]tr.

Hence, {Pi}i∈I is an HS orthonormal basis for
⊕
C2 with respect to H.

In [13, Theorem 4], Gǎvruta characterized K-frames using linear bounded
operators and orthonormal bases. The following theorem generalizes this result
to Θ-HS frames for separable Hilbert spaces. For completeness we include its
proof. Using this result, we can construct a Θ-HS frame for a separable Hilbert
space for any linear bounded operator Θ acting on C2, see Theorem 3.12.

Theorem 3.11. Let Θ ∈ B(H) and {Ti}i∈I ⊂ B(H, C2). Let {Pi}i∈I ⊂
B(
⊕
C2, C2) be an HS orthonormal basis for the space

⊕
C2 with respect to K.

Then {Ti}i∈I is a Θ-HS frame for H with respect to K if and only if there exists
an operator Ξ ∈ B(

⊕
C2,H) such that

a) Ti = PiΞ
∗, i ∈ I.

b) ηΘΘ∗ � ΞΞ∗ for some positive scalar η > 0.

Proof. Suppose first that {Ti}i∈I is a Θ-HS frame for H with respect to K
with frame bounds α, β. Define a linear operator R : H →

⊕
C2 by

Rx =
∑
i∈I

P ∗i Tix, x ∈ H.
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Then R is bounded. Indeed, for any x ∈ H, we have

‖Rx‖2⊕ C2 =

∥∥∥∥∑
i∈I

P ∗i Tix

∥∥∥∥2

⊕
C2

=

〈∑
i∈I

P ∗i Tix,
∑
j∈I

P ∗j Tjx

〉
⊕
C2

=
∑
i∈I

∑
j∈I

〈
P ∗i Tix, P

∗
j Tjx

〉⊕
C2

=
∑
i∈I

[Tix, Tix]tr =
∑
i∈I
‖Tix‖22 ≤ β‖x‖2.

Now, for any i ∈ I and T ∈ C2, we have

〈R∗P ∗i T, x〉 =
〈
P ∗i T,Rx

〉⊕
C2 =

〈
P ∗i T,

∑
j∈I

P ∗j Tjx

〉
⊕
C2

=
∑
j∈I

〈
P ∗i T, P

∗
j Tjx

〉
= [T, Tix]tr = 〈T ∗i T, x〉 for all x ∈ H.

This gives R∗P ∗i = T ∗i , i ∈ I. Thus, a) is proved, where Ξ = R∗. Next we prove
condition b). For any x ∈ H, we have

α‖Θ∗x‖2 ≤
∑
i∈I
‖Tix‖22 = ‖Rx‖2⊕ C2 , x ∈ H.

This can be expressed as αΘΘ∗ � R∗R, which gives b).
Conversely, suppose a) and b) hold for some η > 0. Then, for any x ∈ H and

{Aj}j∈I ∈
⊕
C2, we have〈

Ξ∗x, {Aj}j∈I
〉⊕
C2 =

〈
x,Ξ({Aj}j∈I)

〉
=

〈
x,Ξ

(∑
i∈I

P ∗i Pi({Aj}j∈I)
)〉

=

〈
x,
∑
i∈I

ΞP ∗i Pi({Aj}j∈I)
〉

=

〈
x,
∑
i∈I

T ∗i Pi({Aj}j∈I)
〉

=
∑
i∈I

[Tix, Pi({Aj}j∈I)]tr =

〈∑
i∈I

P ∗i Tix, {Aj}j∈I
〉

⊕
C2
.

This implies that

Ξ∗x =
∑
i∈I

P ∗i Tix, x ∈ H.

Therefore, for any x ∈ H, we have∑
i∈I
‖Tix‖22 =

∥∥∥∥∑
i∈I

P ∗i Tix

∥∥∥∥2

⊕
C2

= ‖Ξ∗x‖2⊕ C2 ≤ ‖Ξ∗‖2‖x‖2.
This gives the upper frame condition. For the lower Θ-HS frame bound, by
condition b), we have

η‖Θ∗x‖2 ≤ ‖Ξ∗x‖2⊕ C2 =
∑
i∈I
‖Tix‖22, x ∈ H.

Hence, {Ti}i∈I is a Θ-HS frame for H with respect to K with frame bounds η,
‖Ξ‖2.
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As an application of Theorem 3.11, we obtain the existence of Θ-HS frames
for C2 with respect to a given separable Hilbert space.

Theorem 3.12. Let H be a separable Hilbert space. Then, for every bounded
linear operator Θ acting on C2, there exists a Θ-HS frame for C2 with respect to
H.

Proof. Let {xi}i∈I be a frame for H with frame bounds α, β, where xi 6= 0
for all i ∈ I. Let {ei}i∈I be an orthonormal basis for H. For each i ∈ I, define
Ti : C2 → C2 by

Ti : T 7→ Θ∗Txi ⊗
xi
‖xi‖

, T ∈ C2.

Then Ti ∈ B(C2) for all i ∈ I. Indeed, for any T ∈ C2, we have

‖TiT‖2 =

∥∥∥∥Θ∗Txi ⊗
xi
‖xi‖

∥∥∥∥
2

= ‖Θ∗Txi‖
∥∥∥∥ xi
‖xi‖

∥∥∥∥ ≤ ‖Θ∗T‖2‖xi‖ ≤ ‖Θ∗‖‖T‖2‖xi‖.
Moreover, {Ti}i∈I is an HS Bessel sequence as∑

i∈I
‖Ti(T )‖22 =

∑
i∈I
‖Θ∗Txi‖2 =

∑
i∈I

∑
j∈I
|〈Θ∗Txi, ej〉|2

=
∑
i∈I

∑
j∈I
|〈xi, (Θ∗T )∗ej〉|2 ≤ β

∑
j∈I
‖(Θ∗T )∗ej‖2

= β‖(Θ∗T )∗‖22 = β‖Θ∗T‖22 ≤ β‖Θ∗‖2‖T‖22 for all T ∈ C2.

Therefore, the pre-frame operator V associated with {Ti}i∈I is a well-defined
linear bounded operator from

⊕
C2 to C2. Considering the HS orthonormal

basis {Pi}i∈I for
⊕
C2 with respect to H given in Example 3.10 ((II)), we get

PiV∗S = Pi({TjS}j∈I) = TiS, S ∈ C2.

That is, condition a) of Theorem 3.11 is satisfied for Ξ = V. Now, for any T ∈
C2, we compute

α‖Θ∗T‖22 = α‖(Θ∗T )∗‖22 = α
∑
j∈I
‖(Θ∗T )∗ej‖2

≤
∑
j∈I

∑
i∈I
|〈xi, (Θ∗T )∗ej〉|2 =

∑
j∈I

∑
i∈I
|〈Θ∗Txi, ej〉|2

=
∑
i∈I
‖Θ∗Txi‖2 =

∑
i∈I
‖TiT‖22 =

∑
i∈I
‖PiΞ∗T‖22 = ‖Ξ∗T‖2⊕ C2 .

Thus, b) of Theorem 3.11 is satisfied for η = α. Hence, {Ti}i∈I is a Θ-HS frame
for C2 with respect to H.

Remark 3.13. Lemma 3.4 of [21] can be obtained from Theorem 3.12.
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The next result gives necessary and sufficient conditions for Θ-HS frames
in terms of a series associated with HS Bessel sequences. This is an adaption
of [13, Theorem 3]. As an application of the following result, the existence of
Θ-HS frames in a separable Hilbert space with respect to a given Hilbert space
is given in Theorem 3.16.

Theorem 3.14. Let Θ ∈ B(H) and {Ti}i∈I ⊂ B(H, C2) be an HS Bessel
sequence in H. The following statements are equivalent:

a) {Ti}i∈I is a Θ-HS frame for H with respect to K.
b) There exists an HS Bessel sequence {Ai}i∈I ⊂ B(H, C2) such that

Θx =
∑
i∈I

T ∗i Aix for every x ∈ H.

c) There exists λ > 0 such that for every x ∈ H there exists a sequence {Si}i∈I ∈⊕
C2 such that

Θx =
∑
i∈I

T ∗i Si and
∑
i∈I
‖Si‖22 ≤ λ‖x‖2.

Remark 3.15. The HS Bessel sequence {Ai}i∈I in part (b)) of Theorem 3.14
is known as a dual Θ-HS Bessel sequence. It can be easily verified that {Ai}i∈I
is a Θ∗-HS frame for H with respect to K. In fact, if βo is an upper HS frame
bound of {Ti}i∈I, then

‖Θx‖2 = 〈Θx,Θx〉

=

〈∑
i∈I

T ∗i Aix,Θx

〉
=
∑
i∈I

[Aix, TiΘx]tr ≤
∑
i∈I
‖Aix‖2‖TiΘx‖2

≤
(∑

i∈I
‖Aix‖22

) 1
2
(∑

i∈I
‖TiΘx‖22

) 1
2

≤
(∑

i∈I
‖Aix‖22

) 1
2√

βo‖Θx‖,

which implies

1

βo
‖Θx‖2 ≤

∑
i∈I
‖Aix‖22, x ∈ H. (3.2)

As an application of Theorem 3.14, the following result shows that every
separable Hilbert space admits a Θ-HS frame with respect to a given separable
Hilbert space.

Theorem 3.16. Let H and K be separable Hilbert spaces, C2 ⊂ B(K) and
Θ ∈ B(H). Then there exists a Θ-HS frame for H with respect to K.

Proof. Let {xi}i∈I be a frame for H with frame bounds α, β and frame
operator Ω. Let {ei}i∈I ⊂ K be an orthonormal set. For each i ∈ I, define Ti :
H → C2 by

Tix = 〈x,Θxi〉ei ⊗ ei, x ∈ H.
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Then, for any x ∈ H, we have

‖Tix‖2 = ‖〈x,Θxi〉ei ⊗ ei‖2 = ‖〈x,Θxi〉ei‖‖ei‖ = |〈x,Θxi〉| ≤ ‖Θxi‖‖x‖.

Thus, Ti ∈ B(H, C2) for all i ∈ I. Moreover, {Ti}i∈I is an HS Bessel sequence as∑
i∈I
‖Tix‖22 =

∑
i∈I
|〈x,Θxi〉|2 =

∑
i∈I
|〈Θ∗x, xi〉|2 ≤ β‖Θ∗‖2‖x‖2, x ∈ H.

For any T ∈ C2 and for any y ∈ H, we compute

〈T ∗i T, y〉 = [T, Tiy]tr = [T, 〈y,Θxi〉ei ⊗ ei]tr = 〈Θxi, y〉[T, ei ⊗ ei]tr
= 〈Θxi, y〉trace ((ei ⊗ ei)∗T ) = 〈Θxi, y〉trace ((ei ⊗ ei)T )

= 〈Θxi, y〉trace (ei ⊗ T ∗ei) = 〈Θxi, y〉〈ei, T ∗ei〉 =
〈
〈Tei, ei〉Θxi, y

〉
,

which entails

T ∗i T = 〈Tei, ei〉Θxi, i ∈ I.

For x ∈ H, we take Si = 〈x,Ω−1xi〉ei ⊗ ei, i ∈ I. Then {Si}i∈I ⊂
⊕
C2 such that∑

i∈I
‖Si‖22 =

∑
i∈I
|〈x,Ω−1xi〉|2 =

∑
i∈I
|〈Ωx, xi〉|2 ≤ β‖Ωx‖2 ≤ β‖Ω‖2‖x‖2,

and∑
i∈I

T ∗i Si =
∑
i∈I

〈 (〈
x,Ω−1xi

〉
ei ⊗ ei

)
ei, ei

〉
Θxi =

∑
i∈I
〈x,Ω−1xi〉Θxi = Θx.

This gives condition c) of Theorem 3.14, where λ = β‖Ω‖2. Hence, by Theorem
3.14, {Ti}i∈I is a Θ-HS frame for H with respect to K.

4. Sums of Θ-HS-frames

It is quite evident that the sum of two Θ-HS frames need not be a Θ-HS
frame. However, the imposition of bounded belowness on the adjoint of Θ may
lead to a condition under which the sum becomes a Θ-HS frame. Explicitly, we
have

Theorem 4.1. Let Θ ∈ B(H) and {Ti}i∈I, {Ri}i∈I ⊂ B(H, C2) be Θ-HS
frames for H with respect to K with frame bounds α1, β1 and α2, β2, respectively.
Let Θ∗ be bounded below with a bound mo such that

m2
o(α1 + α2) > 2

√
β1β2. (4.1)

Then {Ti + Ri}i∈I is a Θ-HS frame for H with respect to K with frame bounds(
α1 + α2 − 2

√
β1β2
m2

o

)
and 2(β1 + β2).
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Proof. For any x ∈ H, we have∑
i∈I
‖(Ti +Ri)x‖22 =

∑
i∈I
‖Tix+Rix‖22 ≥

∑
i∈I

(
‖Tix‖2 − ‖Rix‖2

)2

=
∑
i∈I

(
‖Tix‖22 + ‖Rix‖22 − 2‖Tix‖2‖Rix‖2

)
≥
∑
i∈I
‖Tix‖22 +

∑
i∈I
‖Rix‖22 − 2

(∑
i∈I
‖Tix‖22

) 1
2
(∑

i∈I
‖Rix‖22

) 1
2

≥ α1‖Θ∗x‖2 + α2‖Θ∗x‖2 − 2
√
β1β2‖x‖2

≥
(
α1 + α2 −

2
√
β1β2

m2
o

)
‖Θ∗x‖2

and ∑
i∈I
‖(Ti +Ri)x‖22 =

∑
i∈I
‖Tix+Rix‖22

≤ 2
∑
i∈I
‖Tix‖22 + 2

∑
i∈I
‖Rix‖22 ≤ 2(β1 + β2)‖x‖2.

Hence, {Ti + Ri}i∈I is a Θ-HS frame for H with respect to K with the required
frame bounds.

Remark 4.2. Condition (4.1) in Theorem 4.1 is not necessary. Indeed, consider
the sequence {Ti}i∈Z given in part b) of Example 3.3 which is a Θ-HS frame for
C2 with respect to `2(Z) with Θ-HS frame bounds α1 = 1 and β1 = 2. Note that
Θ∗ is a bounded below operator with lower bound mo = 1. Clearly, {Ti + Ti}i∈Z
is a Θ-HS frame C2 with respect to `2(Z), but condition (4.1) gives 2 = m2

o(α1 +
α2) > 2

√
β1β2 = 4, which is absurd.

The following example illustrates Theorem 4.1.

Example 4.3. Let {ei}i∈N be the canonical orthonormal basis for the Hilbert
space `2(N). For any i ∈ N, define Ri, Ti : `2(N)→ C as

Rix = 〈x, ei〉 and Tix =


〈
x, e1

2
√

2

〉
, i = 1,〈

x, ei−1

2
√

2

〉
, i ≥ 2, x ∈ `2(N).

Then Ti, Ri ∈ B(`2(N),C) for all i ∈ N. Let Θ be the left shift operator acting
on `2(N). Then, for every x ∈ `2(N), we have

1

8
‖Θ∗x‖2 =

1

8
‖x‖2 ≤

∑
i∈N
‖Tix‖22 =

1

8
|〈x, e1〉|2 +

1

8

∑
i≥2

|〈x, ei−1〉|2 ≤
1

4
‖x‖2.

Therefore, {Ti}i∈N is a Θ-HS frame for `2(N) with respect to C with bounds
α1 = 1

8 , β1 = 1
4 . Similarly, {Ri}i∈N is a Θ-HS frame for `2(N) with respect to C

with bounds α2 = β2 = 1.
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Since

9

8
= m2

o(α1 + α2) > 2
√
β1β2 = 1,

by Theorem 4.1, the sum {Ti + Ri}i∈N is a Θ-HS frame for `2(N) with respect
to C.

Recall that the perturbation theory related to operators is one of the impor-
tant branches in analysis, which has been studied extensively, see [19] for technical
details. In the frame theory, it is important that frame conditions should be stable
under perturbation. The following result gives sufficient conditions under which
the sum of a given Θ-HS frame for H with respect to K with perturbed family
of operators in C2 constitutes a Θ-HS frame for the underlying Hilbert space H
with respect to K. Here, the family of operators in the C2 space is perturbed by
a fixed element of the space B(H, C2). The proof is based on a straightforward
modification of the proof of Theorem 4.1.

Theorem 4.4. For Θ ∈ B(H), let {Ti}i∈I ⊂ B(H, C2) be a Θ-HS frame for
H with respect to K with frame bounds α1, β1. Let T ∈ B(H, C2) and {Ci}i∈I ∈⊕
C2. If Θ∗ is bounded below with a bound mo such that

α1m
2
o > 2

√
β1‖T‖

√∑
i∈I
‖Ci‖22,

then the perturbed sum {Ti + TCi}i∈I is a Θ-HS frame for H with respect to K

with frame bounds

(
α1 − 2

√
β1

m2
o
‖T‖

√∑
i∈I
‖Ci‖22

)
and 2

(
β1 + ‖T‖2

∑
i∈I
‖Ci‖22

)
.

Next, we use the concept of orthogonality of HS Bessel sequences for the
sum of two Θ-HS frames to be a Θ-HS frame. The concept of orthogonal Bessel
sequences in separable Hilbert spaces was introduced by Han and Larson in [14]
and further used by Bhatt, Johnson, and Weber [4] to study a vector-valued
discrete wavelet transform. The orthogonality of HS Bessel sequences can be
defined in the same way.

Definition 4.5. Two HS-Bessel sequences {Ti}i∈I and {Ri}i∈I are said to be
orthogonal if for all x ∈ H,

V1V
∗
2x = 0,

where V1 and V2 are the pre-frame operators associated with {Ti}i∈I and {Ri}i∈I.

We now show that the sum of two orthogonal Θ-HS frames is always a Θ-HS
frame. In fact, we will prove a more general result which shows that the sum of
a Θ-HS frame with an orthogonal HS Bessel sequence gives a Θ-HS frame.

Theorem 4.6. Let Θ ∈ B(H) and {Ti}i∈I ⊂ B(H, C2) be a Θ-HS frame for
H with respect to K. Let {Ri}i∈I ⊂ B(H, C2) be an HS Bessel sequence orthogonal
to {Ti}i∈I. Then {Ti +Ri}i∈I is a Θ-HS frame for H with respect to K.
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Proof. Suppose that α1, β1 are the Θ-HS frame bounds of {Ti}i∈I and βo is
an HS Bessel bound for {Ri}i∈I. For any x ∈ H, we compute∑

i∈I
‖(Ti +Ri)x‖22 =

∑
i∈I

[(Ti +Ri)x, (Ti +Ri)x]tr

=
∑
i∈I

[Tix, Tix]tr +
∑
i∈I

[Tix,Rix]tr +
∑
i∈I

[Rix, Tix]tr +
∑
i∈I

[Rix,Rix]tr

=
∑
i∈I
‖Tix‖22 +

〈
x,
∑
i∈I

T ∗i Rix

〉
+

〈∑
i∈I

T ∗i Rix, x

〉
+
∑
i∈I
‖Rix‖22

=
∑
i∈I
‖Tix‖22 +

∑
i∈I
‖Rix‖22 ≥

∑
i∈I
‖Tix‖22 ≥ α1‖Θ∗x‖2.

Similarly,
∑
i∈I
‖(Ti+Ri)x‖22 ≤ (β1 +βo)‖x‖2, x ∈ H. This concludes the proof.

Remark 4.7. The condition of orthogonality in Theorem 4.6 is not a necessary
condition. Indeed, consider Θ-HS frames {Ti}i∈N and {Ri}i∈N for `2(N) with
respect to C given in Example 4.3. It can be easily verified that {Ti}i∈N and
{Ri}i∈N are not orthogonal. Yet their sum {Ti + Ri}i∈N is a Θ-HS frame for
`2(N) with respect to C.

Lastly, we will discuss the sum of a Θ-HS frame and its dual Θ-HS Bessel
sequence. By Remark 3.15, it is clear that the sum of a Θ-HS frame with its
dual Θ-HS Bessel sequence need not be a Θ-HS frame. In the following result,
we show that this happens if Θ is chosen to be a positive operator.

Theorem 4.8. Let Θ ∈ B(H) and {Ti}i∈I ⊂ B(H, C2) be a Θ-HS frame for
H with respect to K with dual Θ-HS Bessel sequence {Ai}i∈I. Then {Ti +Ai}i∈I
is a Θ-HS frame for H with respect to K, provided Θ is positive.

Proof. Clearly, {Ti + Ai}i∈I is an HS Bessel sequence in H. Suppose that
αo, βo are Θ-HS frame bounds of {Ti}i∈I. Then, for any x ∈ H, using (3.2), we
compute∑

i∈I
‖(Ti +Ai)x‖22 =

∑
i∈I

[(Ti +Ai)x, (Ti +Ai)x]tr

=
∑
i∈I

[Tix, Tix]tr +
∑
i∈I

[Tix,Aix]tr +
∑
i∈I

[Aix, Tix]tr +
∑
i∈I

[Aix,Aix]tr

=
∑
i∈I
‖Tix‖22 +

〈
x,
∑
i∈I

T ∗i Aix

〉
+

〈∑
i∈I

T ∗i Aix, x

〉
+
∑
i∈I
‖Aix‖22

=
∑
i∈I
‖Tix‖22 + 〈x,Θx〉+ 〈Θx, x〉+

∑
i∈I
‖Aix‖22

≥
∑
i∈I
‖Tix‖22 +

∑
i∈I
‖Aix‖22 ≥ αo‖Θ∗x‖2 +

1

βo
‖Θx‖2 =

(
αo +

1

βo

)
‖Θ∗x‖2.

Hence, {Ti + Ai}i∈I is a Θ-HS frame for H with respect to K. The proof is
complete.
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5. Hilbert–Schmidt Riesz bases

This section studies Hilbert–Schmidt Riesz bases in separable Hilbert spaces.
We begin with the following definition.

Definition 5.1. [21] Let C2 ⊆ B(K). A countable sequence {Ti}i∈I ⊂
B(H, C2) is called a Hilbert–Schmidt Riesz basis (HS Riesz basis, in short) for H
with respect to K if:

1. {Ti}i∈I is HS-complete, that is, {x ∈ H : Ti(x) = 0 for every i ∈ I} = {0}.
2. There exist positive scalars Lo ≤ Uo <∞ such that

Lo

(∑
i∈J
‖Ai‖22

) 1
2

≤
∥∥∥∥∑
i∈J

T ∗i Ai

∥∥∥∥ ≤ Uo(∑
i∈J
‖Ai‖22

) 1
2

, (5.1)

where J ⊆ I is any finite set and {Ai}i∈I ∈
⊕
C2.

Remark 5.2. One can observe that {Ti}i∈I is HS-complete if and only if
span{T ∗i (C2)}i∈I = H. Indeed, let {Ti}i∈I be HS-complete. Then, for x ∈ H
satisfying x⊥span{T ∗i (C2)}i∈I, we get

‖Ti(x)‖22 = [Ti(x), Ti(x)]tr = 〈x, T ∗i Ti(x)〉 = 0 for all i ∈ I.

This gives Ti(x) = 0 for every i ∈ I. Thus, by the HS-completeness of
{Ti}i∈I, we have x = 0. Hence, span{T ∗i (C2)}i∈I = H. On the other hand,
let span{T ∗i (C2)}i∈I = H. Let x ∈ H be such that Ti(x) = 0 for every i ∈ I.
Then, for each T ∈ C2, 〈x, T ∗i (T )〉 = [Ti(x), T ]tr = 0. This implies that x is
orthogonal to span{T ∗i (C2)}i∈I and therefore x is orthogonal to H. This gives
x = 0. Hence, {Ti}i∈I is HS-complete.

The following is an example of an HS Riesz basis for the Hilbert space
⊕
C2.

Example 5.3. Let C2 ⊂ B(H). For each i ∈ I, define Ti :
⊕
C2 → C2 as

Ti

(
{Aj}j∈I

)
=

{
3A1, i = 1,

Ai, i ≥ 2.

Then, for T ∈ C2 and {Aj}j∈I ∈
⊕
C2, we have〈

T ∗1 (T ), {Aj}j∈I
〉⊕
C2 =

[
T, T1

(
{Aj}j∈I

)]
tr

= [T, 3A1]tr =
〈

(3T, 0, · · · , 0), {Aj}j∈I
〉⊕

C2
;

and for i ≥ 2,〈
T ∗i (T ), {Ai}j∈I

〉⊕
C2 =

[
T, Ti

(
{Aj}j∈I

)]
tr

= [T,Ai]tr

=
〈

(0, . . . , 0, T︸︷︷︸
ith place

, 0, . . . , 0), {Aj}j∈I
〉⊕

C2
.
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That is, T ∗i : C2 →
⊕
C2 is given by

T ∗i (T ) =

{
(3T, 0, · · · , 0), i = 1,

(0, . . . , 0, T , 0, . . . , 0), i ≥ 2.︸︷︷︸
ith place

Let {Aj}j∈I ∈
⊕
C2 be such that Ti

(
{Aj}j∈I

)
= 0 for every i ∈ I. Then Aj =

0 for every j ∈ I, and hence {Ti}i∈I is HS-complete. For a finite set J ⊆ I and
{Ai}i∈I ∈

⊕
C2, we have

∑
i∈J
‖Ai‖22 ≤

∥∥∥∥∑
i∈J

T ∗i Ai

∥∥∥∥2

⊕
C2
≤ 9

∑
i∈J
‖Ai‖22.

Therefore, {Ti}i∈I is an HS Riesz basis for
⊕
C2 with respect to H.

It is well-known that starting from an orthonormal basis for a separable
Hilbert space H, all orthonormal bases can be characterized in terms of unitary
operators on H, see [7]. In the direction of HS orthonormal bases, let {Ti}i∈I ⊂
B(H, C2) be an HS orthonormal basis for H with respect to K and U ∈ B(H) be
unitary. Then, for each x ∈ H, we have∑

i∈I
‖TiU∗x‖22 = ‖U∗(x)‖2 = ‖x‖2 (5.2)

and 〈
(TiU

∗)∗T, (TjU
∗)∗S

〉
=
〈
UT ∗i T,UT

∗
j S
〉

=
〈
T ∗i T, T

∗
j S
〉

= δi,j [T, S]tr.

Hence, {TiU∗}i∈I is an HS orthonormal basis forH with respect to K. In a similar
way, we can show that if {TiU∗o }i∈I is an HS orthonormal basis for H with respect
to K for some Uo ∈ B(H), then Uo is unitary. Thus, HS orthonormal bases for
H with respect to K are precisely of the form {TiU∗}i∈I.

The condition on the operator U ∈ B(H) in (5.2) is much weaker in the case
of HS frames. In fact, we have the following result which gives a bigger class of
HS frames constructed from a known HS frame. For ordinary Hilbert frames,
this result can be found in [7, Theorem 5.5.5].

Proposition 5.4. Let {Ti}i∈I ⊂ B(H, C2) be an HS frame for H with respect
to K. If U ∈ B(H) is surjective, then {TiU∗}i∈I is an HS frame for H with
respect to K.

The following result gives a characterization of the HS Riesz basis in terms
of the HS orthonormal basis. This is an adaption of [7, Theorem 3.6.6].

Theorem 5.5. Let {Ti}i∈I ⊂ B(H, C2) be a sequence and let {Ξi}i∈I be an
HS orthonormal basis for H with respect to K. Then {Ti}i∈I is an HS Riesz
basis for H with respect to K if and only if there is a bijective operator U ∈ B(H)
such that {Ti}i∈I = {ΞiU∗}i∈I.
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Corollary 5.6. Let {Ti}i∈I ⊂ B(H, C2) be an HS Riesz basis for H with
respect to K. Then there exists an HS Riesz basis {Fi}i∈I for H with respect to
K such that

x =
∑
i∈I

T ∗i Fi(x), x ∈ H. (5.3)

Proof. Let {Ti}i∈I be of the form {ΞiU∗}i∈I for a bijective operator U ∈
B(H) and an HS orthonormal basis {Ξi}i∈I for H with respect to K. For x ∈ H,
we have

x = UU−1(x) = U

(∑
i∈I

Ξ∗iΞi(U
−1(x))

)
=
∑
i∈I

T ∗i ΞiU
−1(x).

Since (U−1)∗ is a bounded bijective operator on H, the sequence {Fi}i∈I =
{ΞiU−1}i∈I is an HS Riesz basis for H with respect to K satisfying (5.3).

Remark 5.7. The sequence {Fi}i∈I satisfying (5.3) is called the dual HS
Riesz basis of {Ti}i∈I. We have seen that the dual HS Riesz basis of {Ti}i∈I =
{ΞiU∗}i∈I is {Fi}i∈I = {ΞiU−1}i∈I. Therefore, the dual HS Riesz basis of {Fi}i∈I
is given by {

Ξi
((
U−1

)∗)−1
}
i∈I

= {ΞiU∗}i∈I = {Ti}i∈I.

Hence, for a pair of dual HS Riesz bases {Ti}i∈I and {Fi}i∈I for H, we get

x =
∑
i∈I

T ∗i Fi(x) =
∑
i∈I
F∗i Ti(x), x ∈ H.

Remark 5.8. It is clear by Theorem 5.5 that every HS orthonormal basis for
a Hilbert space H with respect to K is an HS Riesz basis for H with respect to
K. But an HS Riesz basis need not be an HS orthonormal basis. For example,
consider the sequence {Ti}i∈I in

⊕
C2 given in Example 5.3. Then {Ti}i∈I is not

an HS orthonormal basis since it is not an HS orthonormal system as〈
T ∗1 (T ), T ∗1 (S)

〉⊕
C2 =

〈
(3T, 0, · · · , 0), (3S, 0, · · · , 0)

〉⊕
C2 = 9[T, S]tr 6= [T, S]tr.

Remark 5.9. It is shown in [21] that every HS Riesz basis for a Hilbert space
H with respect to K is an HS Bessel sequence in H. Moreover, it satisfies the
lower HS frame inequality. In fact, let {Ti}i∈I be an HS Riesz basis for H with
respect to K. By Theorem 5.5, there exists a bijective operator U ∈ B(H) and
an HS orthonormal basis {Ξi}i∈I for H with respect to K such that {Ti}i∈I =
{ΞiU∗}i∈I. Then, for any x in H, we have

‖x‖2 = ‖(U∗)−1U∗(x)‖2 ≤ ‖(U∗)−1‖2
∑
i∈I
‖ΞiU∗(x)‖22 = ‖(U∗)−1‖2

∑
i∈I
‖Ti(x)‖22,

which entails

1

‖(U∗)−1‖2
‖x‖2 ≤

∑
i∈I
‖Ti(x)‖22, x ∈ H.

Hence, every HS Riesz basis for H with respect to K is an HS frame for H with
respect to K.
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Щодо фреймiв Гiльберта–Шмiдта для операторiв i
базисiв Рiса

Jyoti and Lalit Kumar Vashisht

Стiйкий аналiз i реконструкцiю векторiв у замкнених пiдпросторах
гiльбертових просторiв можна вивчати за допомогою фреймових умов за
типом Гурвiти, якi пов’язанi з поняттям атомарних систем у сепарабель-
них гiльбертових просторах. У цiй роботi спочатку ми надаємо фреймовi
умови за типом Гурвiти для класу операторiв Гiльберта–Шмiдта (коро-
тко, клас C2), де обмежений лiнiйний оператор контролює нижню фрей-
мову умову. Ми обговорюємо вiдображення, що зберiгають фрейм для
фреймiв Гiльберта–Шмiдта для пiдпросторiв сепарабельного гiльберто-
вого простору. Встановлюємо iснування фреймiв Гiльберта–Шмiдта для
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пiдпросторiв класу Гiльберта–Шмiдта C2. Показано, що кожен сепара-
бельний гiльбертовий простiр допускає фрейм Гiльберта–Шмiдта вiд-
носно даного сепарабельного гiльбертового простору. Отримано необхi-
днi та достатнi умови для фреймових умов за типом Гурвiти для сум
фреймiв Гiльберта–Шмiдта для пiдпросторiв. Нарештi, ми обговорюємо
базиси Гiльберта–Шмiдта Рiса в сепарабельних гiльбертових просторах.

Ключовi слова: фрейми, фрейми Гiльберта–Шмiдта, К-фрейми, збу-
рення
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