
Journal of Mathematical Physics, Analysis, Geometry
2006, vol. 2, No. 2, pp. 207–224

Isometric Expansions of Quantum Algebra of Linear
Bounded Operators

V.A. Zolotarev
Department of Mechanics and Mathematics, V.N. Karazin Kharkov National University

4 Svobody Sq., Kharkov, 61077, Ukraine
E-mail:Vladimir.A.Zolotarev@univer.kharkov.ua

Received March 29, 2005

The isometric expansion
{
Vs,

+

Vs

}2

s=1

for a quantum algebra of linear

bounded nonunitary operators {T1, T2}, which is given by commutative re-
lation T1T2 = qT2T1 (|q| = 1), is constructed. Basic properties of charac-

teristic function S(z) corresponding to isometric expansion
{
Vs,

+

Vs

}2

s=1

for

given quantum algebra {T1, T2} are described.
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Spectral decompositions of the selfadjoint operators have its origin in quantum
mechanics and are among the major achievements of the functional analysis. They
play the key role in many fields of mathematics and physics. It is common to
consider functional models [3, 4] as an analogue of such spectral decompositions
for non-selfadjoint and nonunitary operators. Construction of these models is
based on the theory of isometric and unitary expansions (dilations) of the opera-
tor semigroups. Given field of analysis is well investigated and has a number of
nontrivial and substantial applications. Solution of the problem of construction
of the spectral decomposition for the linear selfadjoint operator systems {Ak}n1
satisfying certain commutative relations (e.g. that of the Lie algebra), that also
emerged in quantum mechanics, stimulated mutually enriching development of
different fields of mathematics, [1]. For the commutative systems of linear non-
selfadjoint operators {Ak}n1 , the construction of the functional models is based
[5, 6] on the basic idea of M.S. Livs̆ic [5] who showed that construction of the
isometric (unitary) expansions of the semigroups for such operator systems is
based on the study of the consistency conditions for the systems of differential
equations. Given consistency conditions signify closedness of the differential forms
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and are written in terms of the external parameters of the expansion. The author
[7] has successfully generalized this approach for the Lie algebras of the linear
non-selfadjoint operators {Ak}n1 . This fact led to the problems of the harmonic
analysis on the Lie groups and also to the noncommutative Lax–Fillips scattering
scheme on groups. At the same time, the important connections with theory of
functions on the Riemann surface have been established.

The formation [8] of the similar constructions for the commutative systems
of linear operators {Tk}n1 that are close to the unitary ones (e.g. contractions)
allowed to find the constructive approach to the solution of the problem (which
is more than 30 years old) of the construction of the unitary dilation and of the
corresponding functional model for the commutative system of the contractive
operators{Tk}n1 , [3]. The search for the sensible discrete noncommutative analogue
of the Lie algebras for the operator systems {Tk}n1 that are close to the unitary
ones has led the author to the quantum operator algebras [10, 11]. In this work,
the simplest quantum algebra of the linear operators {T1, T2}, that represent the
so-called Rieffel torus [9–11], the commutative relation for which is T1T2 = qT2T1,
q ∈ C, |q| = 1, is studied. Really, if q = eih, h ∈ R, and T2 = exp {hA2}
then the corresponding classical limit process in the relation T1T2 = qT2T1

when q → 1, h→ 0, leads us to the Lie algebra of the linear operators [A1, A2] =

iA1 (T1
def
= A1) which represents the Lie algebra of affine line transformations

[7]. Thus, the quantum algebra {T1, T2}, T1T2 = qT2T1 is nothing else than the
quantification of the operator Lie algebra {A1, A2}, [A1, A2] = iA1 [11]. In this
work following the constructions [8], the construction of the isometric expansion{
Vs,

+
Vs

}2

s=1

for the quantum algebra of linear bounded nonunitary operators

{T1, T2} given by the relation T1T2 = qT2T1 is offered. In Part 3, the totality of
the invariants of the given quantum operator algebra is presented.

1. The Preliminary Information

I. An arbitrary linear bounded operator T acting in the Hilbert space H has
the isometric (in the indefinite, generally speaking, metric) expansion [3, 4, 8].
This fact means that there exist the Hilbert spaces E and Ẽ and such operators
Φ : E → H, Ψ : H → Ẽ, K : E → Ẽ that the expansion operator

VT =

[
T Φ
Ψ K

]
: H ⊕ E → H ⊕ Ẽ (1)

has properties

V ∗T

[
I 0
0 σ̃

]
VT =

[
I 0
0 σ

]
; VT

[
I 0
0 σ−1

]
V ∗T =

[
I 0
0 σ̃−1

]
, (2)
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where σ and σ̃ are the selfadjoint boundedly invertible operators in E and Ẽ
respectively. The expansion VT (1) is built by the operator T in an ambiguous
way. Consider one of the methods of the construction of such an expansion which
we will need later on [4, 8]. Let D = T ∗T − I and D̃ = TT ∗ − I be the deficient
operators [3, 4, 8] corresponding to the operator T , and E = D̃H, Ẽ = DH be
respective deficient subspaces. Define operators: Φ = D̃ : E → H; Ψ = PẼ :
H → Ẽ is an orthoprojector in H on Ẽ; K = T ∗: E → Ẽ; and, finally, σ = −D̃,
σ̃ = −D, [4]. It is easy to see that the operator VT (1) constructed in such a
manner will satisfy relations (2).

II. Denote by hn ∈ H, un ∈ E, vn ∈ Ẽ the vector-functions of discrete
argument n ∈ Z+ = {n ∈ Z : n ≥ 0} in the respective Hilbert spaces. Further,
consider the equation system which is commonly [4] known as the open expansion
system VT (1),{

hn+1 = Thn + Φun; h0 = h;
vn = Ψhn +Kun; n ∈ Z+;

VT

[
hn
un

]
=

[
hn+1

vn

]
. (3)

The following conservation law results from the first relation in (2):

‖hn‖2 + 〈σun, un〉 = ‖hn+1‖2 + 〈σ̃vn, vn〉 . (4)

Note that if un ≡ 0 then hn is generated by the semigroup Tn = Tn of the discrete
argument n ∈ Z+, i.e. hn = Tnh and vn = ΨTnh.

Now consider the vector-functions h̃n ∈ H, ũn ∈ E, ṽn ∈ Ẽ of the argument
n ∈ Z− = {n ∈ Z : n < 0} and specify the dual open system (regarding (3)) that
is generated by the operator V ∗T ,{

h̃n−1 = T ∗h̃n + Ψ∗ṽn; h̃−1 = h̃;

ũn = Φ∗h̃n +K∗ṽn; n ∈ Z−;
V ∗T

[
h̃n
ṽn

]
=

[
h̃n−1

ũn

]
. (5)

Then, if ṽn ≡ 0 then the vector-function h̃n−1 has the form of h̃n−1 = T ∗|n|h̃ and is

generated by the semigroup T ∗|n| = (T ∗)|n| where (−n) ∈ Z+ and ũn−1 = Φ∗T ∗|n|h̃.
The conservation law for system (5) has the former type (4) if hn = h̃−n−1,
vn = σ̃−1v−n−1, un = σ−1ũ−n−1 (n ∈ Z+).

Let un = znu0 (z ∈ C, u0 ∈ E) and assume that hn and vn depends on
n ∈ Z+, similarly hn = znh0, vn = znv0. Then from equations (3) for the open
system, we obtain that h0 = (zI − T1)−1 Φu0, v0 = S(z)u0, where

S(z) = S∆(z) = K + Ψ(zI − T )−1Φ (6)

is the characteristic function of M.S. Livs̆ic of the expansion VT (1) [4, 8], which
is defined for all z outside the spectrum of operator T .
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Study of the isometric expansions VT (1) of the open systems (3), (5) plays the
fundamental role in the construction of the unitary dilation U of the contraction
T (‖T‖ ≤ 1) [3, 4], and also in the construction of the functional models U and T
[3, 4]. Sensible generalization of the constructions mentioned above on the case
of the commutative systems of linear nonunitary operators {Tk}n1 , [Tk, Ts] = 0,
1 ≤ k, s ≤ n, was proposed in work [8]. So, in [8] the commutative isometric
expansion for the system of the commutative linear operators has been built.
It turned out that the construction of the isometric expansion stated in [8] has
natural generalization on the quantum algebra of linear operators (the Rieffel
torus).

2. Isometric Expansions and Open Systems

I. In the Hilbert space H, consider the system of the linear bounded operators
{T1, T2} satisfying the relation

T1T2 = qT2T1, q = eih, h ∈ R. (7)

In the same way as for the commutative operator systems q = 1 [8], define the
isometric expansion corresponding to the case of q 6= 1 that generalizes the concept
of the expansion VT (1).

Definition 1. The totality of the mappings

Vs =

[
Ts ΦNs

Ψ K

]
: H ⊕ E → H ⊕ Ẽ, s = 1, 2;

+
Vs=

[
T ∗s Ψ∗Ñ∗s
Φ∗ K∗

]
: H ⊕ Ẽ → H ⊕ E, s = 1, 2,

(8)

is said to be the isometric expansion of the system of linear bounded operators
{T1, T2} in H satisfying (7) if there are such operators σs, τs, Ns, Γ and σ̃s, τ̃s,
Ñs, Γ̃ in the Hilbert spaces E and Ẽ respectively (σs, τs and σ̃s, τ̃s are selfadjoint
(s = 1, 2)) that equalities

1) V ∗s

[
I 0
0 σ̃s

]
Vs =

[
I 0
0 σs

]
, s = 1, 2;

2)
+
V ∗s

[
I 0
0 τs

]
+
Vs=

[
I 0
0 τs

]
, s = 1, 2;

3) qT2ΦN1 − T1ΦN2 = qΦΓ; Ñ1ΨT2 − qÑ2ΨT1 = qΓ̃Ψ;

4) qÑ2ΨΦN1 − Ñ1ΨΦN2 = qKΓ− qΓ̃K;

5) KNs = ÑsK, s = 1, 2,

(9)
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are true.

First of all, show that there exists such an expansion Vs,
+
Vs (8) for every

operator system {T1, T2} satisfying (7). Let Ds = T ∗s Ts − I and D̃s = TsT
∗
s − I

be the defect operators (s = 1, 2). Consider the operators

N1 = D̃1T
∗
2 ; N2 = qD̃2T

∗
1 ; Ñ1 = qT ∗2D1; Ñ2 = T ∗1D2;

σ̃1 = −D1; σ̃2 = −D2; σ1 = −T2D̃1T
∗
2 ; σ2 = −T1D̃2T

∗
1 ;

τ1 = −D̃1; τ2 = −D̃2; τ̃1 = −T ∗2D1T2; τ̃2 = −T ∗1D2T1;

Γ = D̃1 − D̃2; Γ̃ = D1 −D2; K = T ∗1 T
∗
2 .

(10)

Further, define the Hilbert spaces

E = span
{
D̃kH +N∗sH : k, s = 1, 2

}
;

Ẽ = span
{
DkH + ÑsH : k, s = 1, 2

}
.

(11)

It is easy to see that the operators

Vs =

[
Ts PENs

PẼ K

]
;

+
VS=

[
T ∗s PẼÑ

∗
s

PE K∗

]
, s = 1, 2, (12)

satisfy the conditions 1), 2) (9). Relations 3) (9) follow from the identities

T2D̃1T
∗
2 − T1D̃2T

∗
1 = D̃1 − D̃2; T ∗2D1T2 − T ∗1D2T1 = D1 −D2, (13)

that are easily verified if one takes into account (7) and the fact that |q| = 1.
Relations 4), 5) in (9) are verified directly in view of equality (7). The inclusion
KE ⊆ Ẽ is an obvious corollary of the relations

T ∗1 T
∗
2 D̃1H = qT ∗2D1T

∗
1H ⊂ Ñ1T

∗
1H ⊆ Ẽ;

T ∗1 T
∗
2N
∗
1H = D1T

∗
1H + Ñ2D̃1H ⊆ E

and of relations similar to them.
O b s e r v a t i o n 1. The external parameters {σs, τs, Ns,Γ} in E and{

σ̃s, τ̃s, Ñs, Γ̃
}

in Ẽ of the expansion Vs,
+
Vs (8) are not independent. So from

(10) and (13), it follows that

σ2 − σ1 = τ2 − τ1 = Γ; σ̃2 − σ̃1 = τ̃2 − τ̃1 = Γ̃.

From relation 1) (9) and from the presentation of Vs,
+
Vs (8), it follows that,

in the case of invertibility of σs and σ̃s, operators τs and τ̃s have the form of
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τs = Nsσ
−1
s N∗s and τ̃s = Ñsσ̃

−1
s Ñ∗s , s = 1, 2, but, as can be seen from (10), the

invertibility of the operators σs and σ̃s, generally speaking, is not taking place.
O b s e r v a t i o n 2. It is obvious that the following relation is true:[

I 0

0 Ñs

]
Vs =

+

V ∗s

[
I 0
0 Ns

]
, s = 1, 2, (14)

for the operators Vs and
+
Vs (8).

II. Define the vector-functions of discrete argument hn ∈ H, un ∈ E, vn ∈ Ẽ
at the points of integer-valued grid n = (n1, n2) ∈ Z2

+ = Z+ × Z+. Consider
the differential linear operators ∂1 ш ∂2 that on the vector-function hn act in the
following way:

∂1hn = h(n1+1,n2), ∂2hn = q−n1h(n1,n2+1), (15)

besides it is obvious that
q∂1∂2 = ∂2∂1. (16)

Further, define the analogue with two variables of the open system (3)
∂1hn = T1hn + ΦN1un; h(0,0) = h0;

∂2hn = T2hn + ΦN2un; n ∈ Z2
+;

vn = Ψhn +Kun;
Vs

[
hn
un

]
=

[
∂shn
vn

]
, s = 1, 2,

(17)
where {∂1, ∂2} have the form of (15). Using relations (7) and (16), we obtain the
following statement.

Theorem 1. The equation system (17) is consistent if the vector-function un
is the solution of the equation

{qN2∂1 −N1∂2 + qΓ}un = 0. (18)

The proof of the theorem easily follows from (7), (16) taking into account the
first relation 3) in (9).

Theorem 2. Suppose that un is the solution of equation (18) and the vector-
functions hn and un are defined by relations (17), then vn satisfies the following
equation {

qÑ2∂1 − Ñ1∂2 + qΓ̃
}
vn = 0. (19)

P r o o f. Really, from (17) and 3)–5) (9), it follows that{
Ñ1∂2 − qÑ2∂1

}
vn =

(
Ñ1ΨT2 − qÑ2ΨT1

)
h+

(
Ñ1ΨΦN2 − qÑ2ΨΦN1

)
u
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+K (N1∂2 − qN2∂1)u = qΓ̃Ψh+ q(Γ̃K −KΓ)u+ qKΓu = qΓ̃v,

this fact ends the proof. �

Calculate the expression

∂2∂1hn = T1T2hn + T1ΦN2un + ΦN1∂2un = qT2T1hn + qT2ΦN1un − qΦΓun

+ΦN1∂2u = q {T2T1hn + T2ΦN1un + ΦN2∂1un} = q∂1∂2hn

in view of relations (7), 3) (9) and equation (18), and thus ‖∂2∂1hn‖ = ‖∂1∂2hn‖
since |q| = 1. Using the isometric property 1) (9) of the expansions Vs (8), it is
easy to see that

‖∂2∂1hn‖2 + 〈σ̃2∂1vn, ∂1vn〉+ 〈σ̃1vn, vn〉 = ‖hn‖2 + 〈σ2∂1un, ∂1un〉
+ 〈σ1un, un〉 ;

‖∂1∂2hn‖2 + 〈σ̃1∂2vn, ∂2vn〉+ 〈σ̃2vn, vn〉 = ‖hn‖2 + 〈σ1∂2un, ∂2un〉
+ 〈σ2un, un〉 .

(20)

Therefore similarly to (4), the following conservation laws are true for the open
system (17):

1) ‖∂shn‖2 + 〈σ̃svn, vn〉 = ‖hn‖2 + 〈σsun, un〉 , s = 1, 2;

2) 〈(σ̃1 − σ̃2) vn, vn〉+ 〈σ̃2∂1vn, ∂1vn〉 − 〈σ̃1∂2vn, ∂2vn〉

= 〈(σ1 − σ2)un, un〉+ 〈σ2∂1un, ∂1un〉 − 〈σ1∂2un, ∂2un〉 .

(21)

Note that equality 2) (21) follows from (20) after the subtraction and will play
the important role hereinafter.

III. The equation system (17) corresponding to the operators Vs describes
“the dynamics” of the outgoing waves that are defined on Z2

+. To study the dual
situation, consider the vector-functions h̃n ∈ H, ũn ∈ E, ṽn ∈ Ẽ at the points
of the integer-valued grid n = (n1, n2) ∈ Z2

− = Z− × Z− Define the differential
linear operators ∂̃1 and ∂̃2 that act on the function h̃n in the following way:

∂̃1h̃n = h̃(n1−1;n2); ∂̃2h̃n = qn1 h̃(n1;n2−1), (22)

besides, as is easy to see,
q∂̃1∂̃2 = ∂̃2∂̃1. (23)

Similarly to (5), consider the analogue with two variables of the dual open system
∂̃1h̃n = T ∗1 h̃n + Ψ∗Ñ∗1 ṽn; h(−1;−1) = h̃−1;

∂̃2h̃n = T ∗2 h̃n + Ψ∗Ñ∗2 ṽn; n ∈ Z2
−;

ũn = Φ∗h̃n +K∗ṽn;

+
Vs

[
h̃n
ṽn

]
=

[
∂̃sh̃n
ũn

]
, s = 1, 2,

(24)
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and the operators ∂̃1, ∂̃2 are defined by formulas (23).
For the equation system (24), the statements similar to Theorems 1 and 2 are

true.

Theorem 3. The consistency of the equation system (24) for h̃n takes place
if the function ṽn satisfies the equation{

qÑ∗2 ∂̃1 − Ñ∗1 ∂̃2 + Γ̃∗
}
ṽn = 0. (25)

Theorem 4. The vector-function ũn (24) is the solution of the difference equa-
tion {

qN∗2 ∂̃1 −N∗1 ∂̃2 + Γ∗
}
ũn = 0 (26)

if ṽn satisfies equation (25) and h̃n is the solution of system (24).

As in the case of system (17), in this case
∥∥∥∂̃2∂̃1h̃n

∥∥∥ =
∥∥∥∂̃1∂̃2hn

∥∥∥. Taking into
account the isometric property 2) (9), it is easy to show that the conservation
laws

1)
∥∥∥∂̃sh̃n∥∥∥2

+ 〈τsũn, ũn〉 =
∥∥∥h̃n∥∥∥2

+ 〈τ̃sṽn, ṽn〉 , s = 1, 2;

2) 〈(τ1 − τ2) ũn, ũn〉+
〈
τ2∂̃1ũn, ∂̃1ũn

〉
−
〈
τ1∂̃2ũn, ∂̃2ũn

〉
= 〈(τ̃1 − τ̃2) ṽn, ṽn〉+

〈
τ̃2∂̃1ṽn, ∂̃1ṽn

〉
−
〈
τ̃1∂̃2ṽn, ∂̃2ṽn

〉
(27)

take place.
As it will be shown later, the relations of isometric nature 2) (28) and 2)

(27) result in the nontrivial relations for the characteristic function S(z) of the
operator T1.

3. The Basic Properties of the Characteristic Function

I. Suppose the vector-functions hn, un, vn from the equations of the open
system (17) have the form of hn = zn1hn2 , un = zn1un2 , vn = zn1un2 where
n = (n1, n2) ∈ Z2

+ and z ∈ C. Then from the first equation in (17) and the last
one in (17) it follows that

vn2 = S(z)un2 ,

where S(z) = K + Ψ (zI − T1)−1 ΦN1 is the characteristic function (6) of the
expansion V1 (8) of the operator T1.

Theorem 5. Suppose that the operators N1 and Ñ1 of the isometric expansion{
Vs,

+
Vs

}2

s=1

(8) are such that N−1
1 and Ñ−1

1 exist and are bounded. Then the
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characteristic function S(z) = K+Ψ (z − T1)−1 ΦN1 of the expansion V1 satisfies
the “intertwining” condition,

Ñ−1
1

(
Ñ2z + Γ̃

)
S(z) = S(zq)N−1

1 (N2z + Γ) . (28)

P r o o f. First of all, note that from (7) it follows that (T1 − zqI)T2 =
qT2 (T1 − zI) and so

T2 (T1 − zI)−1 = q (T1 − zqI)−1 T2. (29)

Rewrite the first equality in 3) (9) in the following way: qT2ΦN1 = (T1 − zqI) ΦN2

+qΦ (N2z + Γ), then

T2 (T1 − zI)−1 ΦN1 = ΦN2 + q (T1 − zqI)−1 Φ (N2z + Γ) (30)

by virtue of (29). Similarly rewriting the second equality in 3) (9) in the form of
Ñ1ΨT2 = qÑ2Ψ (T1 − zI) + q

(
Γ̃ + Ñ2z

)
Ψ, we obtain that

Ñ1ΨT2 (T1 − zI)−1 = qÑ2Ψ + q
(

Γ̃ + Ñ2z
)

Ψ (T1 − zI)−1 . (31)

Multiplying equality (30) by Ñ1Ψ from the left and subtracting from it equality
(31) multiplied by ΦN1 from the right, we obtain the relation

Ñ2ΨΦN1 − qÑ1ΨΦN2 + qÑ1Ψ (T1 − zqI)−1 Φ (N2z + Γ)

= q
(
Ñ2z + Γ̃

)
Ψ (T1 − zI)−1 ΦN1.

Now using 4) (9) and the form of the characteristic function S(z), we can rewrite
the last equality in the following way:

Γ̃K −KΓ + Ñ1(K − S(zq))N−1
1 (N2z + Γ) =

(
Ñ2z + Γ̃

)
(K − S(z)).

To complete the proof, one needs to take into account 5) (9). �

Using similar considerations as applied to the dual equation system (24), we

obtain the characteristic function
+
S (z) = K∗ + Φ∗ (zI − T ∗1 )−1 Ψ∗Ñ∗1 that also

will satisfy the intertwining relation, besides the last one will coincide with (22)
up to conjunction.

From the conservation laws 1) (21) and 1) (27) when s = 1, the following
formulas result:

S∗(w)σ̃1S(z)− σ1

1− zw̄
= N∗1 Φ∗ (w̄I − T ∗1 )−1 (zI − T1)−1 ΦN1;
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+
S∗ (w)τ1

+
S (z)− τ̃1

1− zw̄
= Ñ1Ψ (w̄I − T1)−1 (zI − T ∗1 )−1 Ψ∗Ñ∗1 .

Therefore the kernel

K(z, w) =


S∗(w)σ̃1S(z)− σ1

1− zw̄
N∗1

+
S (z)−

+
S (w̄)

w̄ − z

Ñ1
S(z)− S(w̄)

w̄ − z

+
S∗ (w)τ1

+
S (z)− τ̃1

1− zw̄

 (32)

is the positively defined kernel [4, 8] since for all the finite sets {zk, fk}N1 , N <∞,
where zk ∈ C рnd fk ∈ E ⊕ Ẽ,

N∑
k,s=1

〈K (zk, zs) fk, fs〉 ≥ 0

takes place, for K(z, w) = Y ∗(w)Y (z) besides Y (z) =
[
(zI − T1)−1 ΦN1;

(zI − T ∗1 )−1 Ψ∗Ñ∗1

]
.

II. Consider the following subspace in H:

H1 = span
{
T (n)Φg + T ∗(m)Ψ∗f : f ∈ Ẽ, g ∈ E,n,m ∈ Z2

+

}
, (33)

where T (n) = Tn1
1 Tn2

2 , n = (n1, n2) ∈ Z2
+.

Theorem 6. Suppose that the operators N1 and Ñ1 of the isometric expansion{
Vs,

+
Vs

}2

s=1

(8) are invertible. Then subspace (33) reduces both operators T1 and

T2, besides the contractions of the operators T1 and T2 on the subspace H0 =
H 	H1 are the unitary operators.

P r o o f. First, prove that the subspace H1 reduces the operator T1. To prove
that, it is enough to show that

T1T
∗(m)Ψ∗Ẽ ⊆ H1; T ∗1 T (n)ΦE ⊆ H1

for all n, m ∈ Z2
+. Prove the first inclusion (the second one is proved similarly).

From 3) (9) by virtue of invertibility of Ñ1, it follows that T ∗2 Ψ∗ = q̄T ∗1 ΨÑ∗2 Ñ
∗−1
1 +

q̄Ψ∗Γ̃∗Ñ∗−1
1 , therefore using (7) we obtain that

T ∗(m)Ψ∗Ẽ ⊂ span
{
T ∗n1 Ψ∗g : n ∈ Z+, g ∈ Ẽ

}
.
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And since T1T
∗
1 + Φτ1Φ∗ = I and T1Ψ∗ + Φτ1K

∗Ñ∗−1
1 = 0 (in virtue of 2) (9))

then it is easy to prove by induction that T1 (T ∗1 )n Ψ∗Ẽ ⊆ H1 for all n ∈ Z+.
Thus, the space H1 reduces the operator T1 and since H0 ⊂ Ker (T ∗1 T1 − I) and
H0 ⊂ Ker (T1T

∗
1 − I), for (I − T ∗1 T1)H = Ψ∗σ̃1ΨH ⊂ H1. and (I − T1T

∗
1 )H =

Φτ1Φ∗H ⊂ H1. Then we obtain that the operator T1 induces the unitary operator
on the subspace H0.

To prove that the subspace H1 also reduces the operator T2 (in virtue of the
similar considerations), it is sufficient to prove that

T2T
∗n
1 Ψ∗Ẽ ⊂ H1, T ∗2 T

m
1 ΦE ⊂ H1

for all n, m ∈ Z+. Prove, for example, the first inclusion. Let Ln = T2T ∗n1 Ψ∗Ẽ
and let Ln = Ln

1 ⊕ Ln
0 where Ln

s = PsL
n, besides Ps is the orthoprojector on Hs,

s = 0, 1. From the reducibility of the operator T1 by the subspaces H1 and H0,
it follows that T1L

n
1 ⊂ H1, T1L

n
0 ⊂ H0. And on the other hand, T1T2T

∗n
1 Ψ∗Ẽ =

qT2T1T
∗n
1 Ψ∗Ẽ and so T2T1Ψ∗Ẽ ⊂ H1 when n = 0, since T1Ψ∗Ñ∗1 + Φτ1K

∗ = 0,
consequently L0

0 = {0}, and using T1T
∗
1 + Φτ1Φ∗ = I when n ≥ 1, we will have

that T1L
n ⊂ span

{
Ln−1 +H1

}
(by virtue of 3) (9)). Therefore P0T1L

n
0 ⊂ Ln−1

0

and thus P0T
n
1 L

n
0 ⊂ L0

0 = {0}. Using now the unitarity of the contraction of the
operator T1 on H0, we obtain that Ln

0 = {0}. Thus Ln ⊂ H1 for all n ∈ Z+. The
unitarity of the contraction of operator T2 on H0 is proven in the same way as
for T1. �

O b s e r v a t i o n 3. From the proof of Theorem 6 it follows that in the
case of the reversibility of the operators N1 and Ñ1 the operator T1 generates the
simple component (33) [4, 8], i.e.

H1 = span
{
Tn

1 Φg + T ∗m1 Ψ∗f : g ∈ E, f ∈ Ẽ;n,m ∈ Z+

}
. (34)

The isometric expansion Vs,
+
Vs (8) is said to be the simple expansion

if H1 = H, where H1 has the form of (33).
Along with the operator system {T1, T2} in H satisfying relation (7), consider

another system of linear bounded operators {T ′1, T ′2} in H ′ satisfying (7). The iso-

metric expansion
{
Vs,

+
Vs

}2

s=1

(8) of the system {T1, T2} is said to be the unitarily

equivalent to the expansion
{
V ′s ,

+

V ′s

}2

s=1

(8) of the system {T ′1, T ′2} if:

1) the external spaces E = E′ and Ẽ = Ẽ′ coincide and the respective opera-
tors σs, τs, Ns, Γ and σ̃s, τ̃s, Ñs, Γ̃ acting in them coincide also;

2) there exists the unitary operator U from H into H ′ such that

UTs = T ′sU (s = 1, 2); UΦ = Φ′; Ψ′U = Ψ.
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It is obvious that the characteristic functions S(z) of the unitarily equivalent
expansions coincide. The following theorem of unitary equivalency is true [4, 8].

Theorem 7. Suppose that simple (33) isometric expansion
{
Vs,

+
Vs

}2

s=1

(8)

of the operator system {T1, T2} that satisfies equality (7) and the simple isometric

expansion V ′s ,
+

V ′s (8) of the system {T ′1, T ′2}, for which also (7) takes place, are
defined. And let the external spaces of these expansions E = E′, E = Ẽ′ coincide
and the corresponding operators be equal, Γ = Γ′, Ns = N ′s, σs = σ′s, τs = τ ′s and
also Γ̃ = Γ̃′, Ñs = Ñ ′s, σ̃s = σ̃′s, τ̃s = τ̃ ′s, s = 1, 2. Then if in some general region
of holomorphy S(z) = S′(z) takes place and operators N1 and Ñ1 are invertible

then the commutative expansions Vs,
+
Vs and V ′s ,

+

V ′s are unitarily equivalent.

P r o o f. Denote formulas (29) and (30) in the following way:

(zqI − T1)−1 Φ (N2z + Γ) = ΦN2 + q (zqI − T1)−1 T2ΦN1;

q
(
Ñ2z + Γ̃

)
Ψ (zI − T1)−1 = qÑ2Ψ + Ñ1ΨT2Ψ(zI − T1)−1.

(35)

Therefore after the necessary number of iterations from the right N−1
1 (N2z + Γ)

and from the left (N∗2 w̄ + Γ∗)N∗−1
1 of the block K1,1

(z,w) of the kernel K(z, w)

(32) and also after the appropriate substitutions z → zq, we obtain that the
expressions

Φ∗T ∗m2 (w̄I − T ∗1 )−1 (zI − T1)−1 Tn
2 Φ, ∀n, m ∈ Z+,

for the extensions Vs,
+
Vs and V ′s ,

+

V ′s (8) coincide since S(z) = S′(z). Use of
the similar considerations for other blocks of the kernel K(z, w) (32) leads to the
coincidence of expressions

ΨTn
2 (w̄I − T1)−1 (zI − T ∗1 )−1 T ∗n2 Ψ∗; ΨTm

2 (w̄I − T1)−1 (zI − T1)−1 Tn
2 Φ

for all n, m ∈ Z+. Define the operator U from H into the space H ′ by the
formulas

UT (n)Φg = T ′(n)Φ′g (g ∈ E);

UT ∗(m)Ψ∗f =
(
T ′(m)

)∗
Ψ′∗f (f ∈ Ẽ),

where T (n) = Tn1Tn2
2 for all n, m ∈ Z2

+. The unitarity of the operator U ,
as well as the fulfillment of the unitary equivalence conditions, follows from the
coincidence of the expressions listed above. �
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III. The characteristic function S(z) of the isometric expansion
{
Vs,

+
Vs

}2

s=1
(8) has not only the traditional hermitian nonnegativeness of the kernel K(z, w)
(32) [4, 8], but also the additional properties that are inherited by the fact that
T1 and T2 satisfy equality (7). Suppose that the operators N1 and Ñ1 of the

expansion
{
Vs,

+
Vs

}2

s=1

(8) are invertible, then the following relations:

1) S(zq)N−1
1 (N2z + Γ) = Ñ−1

1

(
Ñ2z + Γ̃

)
S(z);

2) K1,1
(z,w) − (N∗2 w̄ + Γ∗)N∗−1

1 K1,1
(zq,wq)N

−1
1 (N2z + Γ)

= S∗(w)σ̃2S(z)− σ2;

3) K2,2
(z,w) −

(
Ñ2w̄q̄ + Γ̃

)
Ñ−1

1 K2,2
(zq,wq)Ñ

∗−1
1

(
Ñ∗2 zq + Γ̃∗

)
=

+
S∗ (w)τ2

+
S (z)− τ̃2,

(36)

where
{
Kp,s

(z,w)

}
are the corresponding blocks of the kernelK(z, w) (32), are taking

place. While relation 1) (36) follows from Theorem 5, equalities 2) and 3) in (36)
follow from the conservation laws 2) (21) and 2) (27) on condition that (18), (19)
and (25), (26) are taking place. For example, prove that relation 2) (36) follows
from 2) (21). Really, the fact that

∂2vn = qÑ−1
1

(
Ñ2z + Γ̃

)
vn; ∂2un = qN−1

1 (N2z + Γ)un

follows from (18) and from (19) by virtue of the dependence of un and vn by the
variable n1 chosen in Paragraph I of this section and also from the form of ∂1

(15). Therefore relation 2) (21) we can represent in the form

S∗(w) (σ̃1 − σ̃2)S(z) + zw̄S∗(w)σ̃2S(z)− S∗(w)
(
Ñ∗2 w̄ + Γ̃∗

)
Ñ∗−1

1 σ̃1

×Ñ−1
1

(
Ñ2z + Γ̃

)
S(z) = σ1 − σ2 + zw̄σ2 − (N∗2 w̄ + Γ∗)N∗−1

1 σ1N
−1
1 (N2z + Γ) .

Now using the intertwining relation 1) (36), we obtain that

(1− zw̄) [S∗(w)σ̃2S(z)− σ2] = S∗(w)σ̃1S(z)− σ1

−
(
N∗2 w̄ + Γ̃

)
Ñ∗−1

1 [S∗(wq)σ̃1S(zq)− σ1]N−1
1 (N2z + Γ) ,
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this fact proves 2) (36) by virtue of the form of the kernel K1,1
(z,w) (32).

O b s e r v a t i o n 4. Equating the coefficients of equal powers in (33), we
can obtain the additional relations between the external parameters of expansion
(8), σs, Ns, τs, Γ and σ̃s, Ñs, τ̃s, Γ̃, for example,

K∗
(
σ̃2 − Ñ∗2 Ñ∗−1

1 σ̃1Ñ
−1
1 Ñ2

)
K = σ2 −N∗2N∗−1

1 σ1N
−1
1 N2;

K
(
τ2 −N2N

−1
1 τ1N

∗−1
1 N∗2

)
K∗ = τ̃2 − Ñ2Ñ

−1
1 τ̃1Ñ

∗−1
1 Ñ2.

The description of the independent parameters of expansion (8) is the separate
problem, and we will not touch it here.

IV. Consider now the description of the class of functions S(z) that are the

characteristic functions of the expansion
{
Vs,

+
Vs

}2

s=1

(8) of the operator system

T1, T2 satisfying (7). First of all, note several obvious properties of the expansion

operators Vs and
+
Vs (8). It is easy to see that for all the vectors u from E,

V1

[
(zI − T1)−1 ΦN1u

u

]
=

[
z (zI − T1)−1 ΦN1u

S(z)u

]
;

V2

[
(zI − T1)−1 ΦN1u

u

]
=

[
q (zqI − T1)−1 ΦN1N

−1
1 (N2z + Γ)

S(z)u

] (37)

take place by virtue of (30) and 3) (9). It is important that the isometric property
of the expansion V1, 1) (9), results in the fact that the block K1,1

(z,w) of the kernel

K(z, w) (32) has the form of K1,1
(z,w) = N∗1 Φ∗ (w̃I − T ∗1 )−1 (zI − T1)−1 ΦN1, and

the isometric condition 1) (9) in terms of K1,1
(z,w) exactly gives equality 2) (36)

obtained above. Similarly, the operators
+
Vs (8) will act in the dual situation,

+
V1

[
(zI − T ∗1 )−1 Ψ∗Ñ∗1 v

v

]
=

[
z (zI − T ∗1 )−1 Ψ∗Ñ∗1 v

+
S (z)v

]
;

(38)

+
V2

[
(zI − T ∗1 )−1 Ψ∗Ñ∗1 v

v

]
=

 (zqI − T ∗1 )−1 Ψ∗Ñ∗1 Ñ
∗−1
1

(
Ñ∗2 zq + Γ̃∗

)
v

+
S (z)v


for all v ∈ Ẽ by virtue of (31) and 3) (9). As before, the isometric property 2)

(9) of the operator
+
V1 (38) results in the fact that the block K2,2

(z,w) of the kernel

K(z, w) (32) has the form of K2,2
(z,w) = Ñ1Ψ (w̄I − T1)−1 (zI − T ∗1 )−1 Ψ∗Ñ∗1 , and

the isometric condition 2) (9) of the operator
+
V2 results in equality 3) (36) for the
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block K2,2
(z,w). Finally, if we take into the consideration the connection between Vs

and
+
Vs (14) in these terms, then we obtain that Ñ1S(z) =

+
S∗ (z)N1 when s = 1,

and we obtain the intertwining condition 1) (36) again when s = 2. Really, from
(14) and from the form of the block K2,1

(z,w), we obtain that

qÑ
S(qz)− S(w̄)

w̄ − zq
N−1

1 (N2z + Γ) +N2S(z) =
(
Ñ2wq + Γ̃

) S(z)− S(wq)

wq − z

+Ñ1S(w̄)N−1
1 N2.

As a result of the elementary calculations, we obtain that

Ñ−1
1

(
Ñ2z + Γ̃

)
S(z)− S(zq)N−1

1 (N2z + Γ) = Ñ−1
1

(
Ñ2wq + Γ̃

)
S(wq)

−S(w̄)N−1
1 (N2wq + Γ) ,

so the expression Ñ−1
1

(
Ñ2z + Γ̃

)
S(z)−S(zq)N−1

1 (N2z + Γ) is a constant, which
obviously equals to zero if z →∞ by virtue of 4), 5) (9). Thus, all relations (36)
have the natural origin that results from the isometric property and from the

consistency of the expansion Vs,
+
Vs (8).

Theorem 8. Suppose that the operator-function S(z) mapping E into Ẽ is
such that there exist such operators σs, τs, Ns, Γ in the Hilbert space E, and,
correspondingly, the operators σ̃s, τ̃s, Ñs, Γ̃, s = 1, 2, exist in the space Ẽ, besides
the operators N1 and Ñ1 are invertible, and, moreover, the following conditions
are true:

1) the kernel K(z, w) (32) is positively defined, besides
+
S (z) = N∗−1

1 S∗(z)Ñ∗;
2) for the function S(z) and for the kernel blocks K(z, w) (32), relations (36)

are true;
3) the function S(z) and the kernel K(z, w) are analytical by z and by w̄ in

the region D = {z ∈ C : |z| ≥ R} for some R >> 1, besides S(∞) 6= 0 and
K(∞,∞) 6= 0.

Then there exist the Hilbert space H and the system of linear bounded operators

T1, T2 in H satisfying (7), such that for its isometric expansion
{
Vs,

+
Vs

}2

s=1

(8), relations 1)–5) (9), with operators {σs, τs, Ns,Γ} and
{
σ̃s, τ̃s, Ñs, Γ̃

}
defined

above, are true, besides the characteristic function of the expansion V1 of the
operator T1 coincides with S(z).

P r o o f. On the Cartesian product D× (E ⊕ Ẽ), define the vector-functions
ezh, the carrier of which is amassed at the point z, and hT = (u, v) where u ∈ E,
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v ∈ Ẽ. On the set of formal linear combinations
N∑
1

ezkhk (N < ∞), define the

nonnegative bilinear form with the use of the kernel K(z, w) (32),

〈ezh, ewg〉K = 〈K(z, w)h, g〉E⊕Ẽ .

After the closing and factorization by the kernel of the given metric, we obtain
the Hilbert space H. By HE and HẼ , define the subspaces in H generated by the
elements of the type ez(u, 0)T = ezu and ez(0, v)T = ezv correspondingly. First,
define the expansions V1 and V2 on HE ⊕ E in the following way:

V1

[
ezu
u

]
=

[
zezu
S(z)u

]
; V2

[
ezu
u

]
=

[
ezqqN

−1
1 (N2z + Γ)u
S(z)u

]
, (39)

where u ∈ E, and Vs (39), per se, have the form of (37). It is easy to see, that for
Vs (37) relations 1) (9) will take place by virtue of the form of the block K1,1

(z,w)

of the kernel K(z, w) (32) and by virtue of equality 2) (36). Similarly, define the

expansions
+
Vs on HẼ ⊕ Ẽ,

+
V1

[
ezv
v

]
=

[
zezv

+
S (z)v

]
;

+
V2

[
ezv
v

]
=

 ezqÑ
∗−1
1

(
Ñ∗2 zq + Γ̃∗

)
v

+
S (z)v

 , (40)

where
+
S (z) = N∗−1

1 S∗(z̄)Ñ∗1 and v ∈ Ẽ; it is obvious that formulas (40) and

(38) have the identical nature. For the operators
+
Vs (40), relations 2) (9) also

take place, this fact easily follows from the structure of the block K2,2
(z,w) of the

kernel K(z, w) (32) and from relation 3) (36). It is easy to prove that from the
intertwining relation 1) (36) it follows that〈[

I 0

0 Ñs

]
Vs

[
ezu
u

]
,

[
ezv
v

]〉
K

=

〈[
I 0
0 Ns

] [
ezu
u

]
;

+
Vs

[
ewv
v

]〉
K

.

(41)

This equality allows to continue Vs (39) (as well as
+
Vs (40)) onto the whole H⊕E

(correspondingly onto the H ⊕ Ẽ) correctly. Really, from (41) it follows that[
I 0

0 Ñs

]
Vs

∣∣∣∣
H⊕E

=
+

V ∗s

[
I 0
0 Ns

]∣∣∣∣
H⊕E

.

It is easy to test that 1) and 2) (9) take place as a result of such a continuation

for Vs (39) and for
+
Vs (40). It is easy to prove that the operators Ts, Φ, Ψ, K (by
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virtue of (39)–(41)), that are the block elements of Vs (39) and of
+
Vs (40), have

the form of

T1ezu = zezu− e0u; T1ezv =
1

z

{
ezv − e0τ1

+
S (z)v

}
;

T ∗1 ezv = zezv − e0v; T ∗2 ezv =
1

z
{ezu− e0σ̃1S(z)u} ;

T2ezu = ezqq
[
N−1

1 (N2z + Γ)
]
u− e0qN

−1
1 N2u;

T2ezq

[
Ñ∗−1

1

(
Ñ∗2 zq + Γ̃∗

)]
v = ezv − Φτ2

+
S (z)v;

T ∗2 ezv = ezq

[
Ñ∗−1

1

(
Ñ∗2 zq + Γ

)]
v − e0Ñ

∗−1
1 Ñ∗2 v;

T ∗2 ezq
[
qN−1

1 (N2z + Γ)
]
u = ezu− e0σ2S(z)u;

K = S(∞); Ψezu = [S(z)− S(∞)]u;

Ψezv =
1

z
Ñ∗−1

1

{
τ̃1 −Kτ1

+
S (z)

}
v; Ψ∗v = e0Ñ

∗−1
1 v;

Φu = e0N
−1
1 u; Φezv = [

+
S (z)−

+
S (∞)]v;

Φ∗ezu =
1

z
N∗−1

1 {σ1 −K∗σ̃1S(z)}u;

(42)

besides e0f = s − lim
z→∞

zezf ∈ H where fT = (u, v) ∈ E ⊕ Ẽ. It is easy to test
that this limit exists and belongs to the space H considering the analyticity of the
kernel K(z, w) (32) in D×D. Finally, the trivial testing proves that relations 3)–
5) (9) are true, and the characteristic function of the expansion V1 of the operator
T1 coincides with S(z) (for example, by virtue of (31)). �

O b s e r v a t i o n 5. From Theorems 7 and 8, it follows that, in the case
of the invertibility of the operators N1 and Ñ1, the totality{

S(z);σs; τs;Ns; Γ; σ̃s; τ̃s; Ñs; Γ̃
}
s=1,2

is the total set of the invariants of the quantum algebra of linear operators {T1, T2}
defined by the commutation relation (7).
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