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On a Schrödinger–Kirchhoff Type Equation

Involving the Fractional p-Laplacian without

the Ambrosetti–Rabinowitz Condition
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In this paper, we consider the existence and multiplicity of many weak
solutions for the following fractional Schrödinger–Kirchhoff type equation:(

a+ b

∫∫
R2N

|u(x)− u(y)|p

|x− y|N+ps
dxdy

)p−1

× (−∆)spu+ λV (x)|u|p−2u

= f(x, u) + h(x) in RN ,

where N > sp, a, b > 0 are constants, λ is a parameter, (−∆)sp is the frac-
tional p-Laplacian operator with 0 < s < 1 < p < ∞, nonlinearity f(x, u)
and potential function V (x) satisfy some suitable assumptions. Under those
conditions, some new results are obtained for λ > 0 large enough by applying
the variation methods.
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1. Introduction

In this paper, we are concerned with a class of fractional p-Laplacian equations
of Schrödinger–Kirchhoff type of the following form:(

a+ b

∫∫
R2N

|u(x)− u(y)|p

|x− y|N+ps
dxdy

)p−1

× (−∆)spu+ λV (x)|u|p−2u

= f(x, u) + h(x) in RN , (1.1)

where N > sp, 0 < s < 1 < p < ∞, a, b > 0 are constants, λ is a parameter,
f ∈ C(RN ,R), V : RN → R is a potential function and (−∆)sp is the fractional
p-Laplacian operator which, up to normalization factors, can be defined as

(−∆)spu(x) = lim
ε→0+

∫
RN\Bε(x)

|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|N+sp
dy,
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for x ∈ RN , where Bε(x) = {y ∈ RN : |x−y| < ε}, see [1–5]. In particular, (−∆)sp
becomes the fractional Laplacian (−∆)s as p = 2, and it is known that (−∆)sp re-
duces to the standard p-Laplacian as s→ 1−, see, for example, [6–8] and the refer-
ences therein. Fractional p-Laplacian equations have gained importance because
of their numerous applications in various fields such as phase transitions, tur-
bulent flows, chaotic dynamics of classical conservative systems, finances, quan-
tum mechanics, stratified materials, flame propagation, ultra-relativistic limits of
quantum mechanics, minimal surfaces and water waves, as they are the typical
outcome of stochastically stabilization of Lévy processes, see, for example, [9–14].
The body of literature on the fractional Sobolev space is quite large, we refer the
reader to [15–17]. Recently, many authors have studied the existence of solutions
for problems governed by the fractional p-Laplacian operator by using variational
methods and critical point theory, see [18–25]. For example, in [22], the authors
studied the following fractional p-Laplacian equations with perturbations:

(−∆)spu+ λV (x)|u|p−2u = f(x, u)− µg(x)|u|q−2u, u ∈ RN . (1.2)

Basing on the variant fountain theorems, they obtained the existence of infinitely
many solutions for equation (1.2), where µ, λ are two positive parameters p ≥ 2,
N ≥ 2, 0 < s < 1, the potentials V, g : RN → R and the nonlinearity f : R ×
RN → R. In particular, for λ = 1, g(x) ≡ 0, by using the Mountain pass theorem,
the researchers in [26] established a nontrivial solution for equation (1.2) without
a sign changing the potential V (x) and by some appropriate assumptions on the
nonlinearity f(x, u). As for Kirchhoff problems, there are several works that deal
with the existence and multiplicity of solutions. For example, in [24], the authors
considered the following related problem:

M

(∫∫
R2N

|u(x)− u(y)|p

|x− y|N+ps
dxdy

)
× (−∆)spu+ V (x)|u|p−2u

= f(x, u) + g(x) in RN , (1.3)

where 0 < s < 1 < p < ∞ and ps < N , the nonlinearity f : RN × R → R is
a Carathéodory function which satisfies the superlinear condition, that is, there
exists θ ∈ [1, N/(N − sp)) and µ > θp such that

µF (x, u) = µ

∫ u

0
f(x, s)ds ≤ f(x, u)u, x ∈ RN , u ∈ R, (1.4)

and V : RN → R+ is a potential function and g : RN → R is a perturbation
term. By using Ekeland’s variational principle and the Mountain pass theorem,
the authors obtained the existence and multiplicity of solutions for equation (1.3).
More recently, for M(t) = (a + bt)p−1 and g ≡ 0 in equation (1.3), the authors
studied in [23] the following fractional p-Laplacian Schrödinger–Kirchhoff type
equation with a parameter λ attached to the potential V (x):(

a+ b

∫∫
R2N

|u(x)− u(y)|p

|x− y|N+ps
dxdy

)p−1

× (−∆)spu+ λV (x)|u|p−2u
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= f(x, u) in RN , (1.5)

where 0 < s < 1, 2 ≤ p < ∞, a, b > 0. With some appropriate assumptions
on V (x) and f(x, u), in several main results they proved that equation (1.5)
has infinitely many nontrivial solutions. Finally, when λ 6= 1 and when the
nonlinearity f(x, u) satisfies the Ambrosetti–Rabinowitz condition, that is, there
exist µ > p2 such that

µF (x, u) ≤ f(x, u)u, x ∈ RN , u ∈ R, (1.6)

and the potential V (x) satisfies

(V1) V ∈ C(RN ,R) satisfies infx∈RN V (x) ≥ V0 > 0, where V0 > 0 is a constant,

(V2) there exists r > 0 such that lim
|y|→∞

meas({x ∈ Br(y) : V (x) ≤ ω}) = 0 for

any ω > 0, where BR(x) denotes the open ball of RN centered at x and of
radius R > 0,

the authors showed in [25] the existence and multiplicity of many nontrivial weak
solutions when λ > 0 is sufficiently large. Recently, in [23], the authors treated
problem (1.1) when the weight V (x) changes the sign and h(x) = 0. Not using
condition (1.6), they showed the existence and multiplicity of nontrivial solutions
for λ large enough. The novelty of our work is in studying problem (1.1) when
h(x) 6= 0 and eliminating the lemma used in [23] to verify the convergence of
Palais–Smale sequence [23, Lemma 3.2]. Also, we added other main results that
guarantee the existence of infinitely many solutions for problem (1.1) by using the
Fountain theorem. For the potential V (x), we impose the following hypotheses:

(V′1) V ∈ C(RN ,R) satisfies infx∈RN V (x) > −∞,

(V′2) there exists a constant ω > 0 such that

meas({x ∈ RN : V (x) ≤ ω}) <∞,

where meas(·) denotes the Lebesgue measure in RN .

Remark 1.1. The conditions like (V ′1) and (V ′2) were first introduced in [30],
but infx∈RN V (x) > 0 was required. In view of (V ′1) and (V ′2), one can see that
(V ′1) is much weaker than (V1) and (V2), also the potential V (x) is allowed to be
sign-changing.

Inspired by [31,32], from condition (V ′1), there exists a constant W0 > 0 such
that W (x) = V (x) + W0 ≥ 1 for all x ∈ RN and g(x, u) = f(x, u) + W0|u|p−2u
for all (x, u) ∈ RN × R. Hence, (1.1) is equivalent to the following equation:(

a+ b

∫∫
R2N

|u(x)− u(y)|p

|x− y|N+ps
dxdy

)p−1

× (−∆)spu+ λW (x)|u|p−2u

= g(x, u) + h(x) in RN . (1.7)

In this paper, for λ > 0 sufficiently large, we establish the existence and multi-
plicity of nontrivial weak solutions for (1.7) when the nonlinear term g(x, u) does
not satisfy condition (1.6). Observe that W (x) satisfies the following conditions
provided that conditions (V ′1), (V ′2) hold:
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(W1) W ∈ C(RN ,R) satisfies infx∈RN W (x) ≥ 1 and

meas({x ∈ RN : W (x) ≤ d}) <∞, d > 0;

(W2) there exists r > 0 such that

meas({x ∈ RN : W (x) ≤ d}\(Br ∩ {x ∈ RN : W (x) ≤ d})) = 0,

where Br = {x ∈ RN : |x| < r}.
After that we state the basic assumptions on the nonlinearity g(x, u) in (1.7),
which are weaker than those in the work [25]:

(H1) g ∈ C(RN × R) and there exist constants c1, c2 > 0 and q ∈ (p2, p∗s) such
that

|g(x, u)| ≤ c1|u|p−1 + c2|u|q−1, (x, u) ∈ RN × R,

where p∗s is the fractional Sobolev critical exponent defined by p∗s = ∞ if
N ≤ sp and p∗s = Np/(N − sp) if N > sp.

(H2) g(x, u) = o(|u|p−1) as |u| → 0 uniformly in x ∈ RN .
(H3) There exist µ > p2 and r0 > 0 such that

β = inf
x∈RN
|u|=r0

G(x, u) > 0

and
µG(x, u)− g(x, u)u ≤ C0|u|p, x ∈ RN , |u| ≥ r0,

where G(x, u) =
∫ u

0 g(x, t)dt and 0 < C0 <
β(µ− p)

rp0
.

(H4)
G(x, u)

|u|p2
→∞ as |u| → ∞ uniformly in x ∈ RN .

(H5) There exist r > 0 and C > 0 such that

p2G(x, u)− g(x, u)u ≤ C|u|p, x ∈ RN , |u| ≥ r.

(H6) g(x,−u) = −g(x, u) for all (x, u) ∈ RN × R.

(H7) h ∈ Lp′(RN ), where
1

p′
+

1

p
= 1.

The main results of this paper are stated as follows.

Theorem 1.2. Assume that (W1), (W2), (H1)–(H3), and (H7) hold and
suppose that h 6= 0. Then there exists a constant δ0 > 0 such that problem (1.7)
has at least one nontrivial weak solution whenever λ > 0 is sufficiently large,
provided that ‖h‖Lp′ (RN ) ≤ δ0.

Theorem 1.3. Assume that (W1), (W2), (H1), (H2), (H4), (H5), and (H7)
hold and suppose that h 6= 0. Then there exists a constant δ0 > 0 such that prob-
lem (1.7) has at least one nontrivial weak solution whenever λ > 0 is sufficiently
large, provided that ‖h‖Lp′ (RN ) ≤ δ0.
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Theorem 1.4. Assume that (W1), (W2), (H1), (H3), (H6), and (H7) hold
and suppose that h 6= 0. Then there exists a constant δ1 > 0 such that problem
(1.7) has infinitely many nontrivial weak solutions whenever λ > 0 is sufficiently
large, provided that ‖h‖Lp′ (RN ) ≤ δ1.

Theorem 1.5. Assume that (W1), (W2), (H1), (H4), and (H7) hold and
suppose that h 6= 0. Then there exists a constant δ1 > 0 such that problem (1.7)
has infinitely many nontrivial weak solutions whenever λ > 0 is sufficiently large,
provided that ‖h‖Lp′ (RN ) ≤ δ1.

Theorem 1.6. Assume that (W1), (W2), (H1)–(H4), (H6), and (H7) hold.
Then problem (1.7) has infinitely many nontrivial weak solutions whenever λ >
0 is sufficiently large.

Theorem 1.7. Assume that (W1), (W2), (H1), (H2), and (H4)–(H7) hold.
Then problem (1.7) has infinitely many nontrivial weak solutions whenever λ >
0 is sufficiently large.

Remark 1.8. Condition (1.6) plays an important role in checking the com-
pactness condition ((PS)-condition) of the functional energy. Moreover, there
are functions which are superlinear at infinity, but do not satisfy (1.6). For ex-
ample, the superlinear function f(x, u),

f(x, t) = ξ(x)|t|p−2t ln(1 + |t|),

where 0 < infx∈RN ξ(x) ≤ supx∈RN ξ(x) < ∞. Also, if we consider the following
function:

g(x, t) =

{
|t|θ−2t(θ ln |t|+ 1), t 6= 0,

0, t = 0.
(1.8)

By a straightforward computation, we obtain

G(x, t) =

{
|t|θ ln |t|, t 6= 0,

0, t = 0.
(1.9)

Hence, it is easy to verify that (1.8) satisfies (H1), (H2), (H4)–(H6) but it does
not satisfy (1.6) and (H3) for θ = p2. In addition, we can also verify that (1.8)
satisfies (H1)–(H6) and (1.6) for θ = µ > p2.

2. Preliminaries

In this section, we introduce some definitions and basic properties of the
fractional Sobolev space that will be used in proving the main results.

Let 0 < s < 1 < p < ∞ be real numbers. The fractional Sobolev space
W s,p(RN ) is given by

W s,p(RN ) =

{
u ∈ Lp(RN ) :

∫∫
R2N

|u(x)− u(y)|p

|x− y|N+ps
dxdy <∞

}
,



46 Mohamed Bouabdallah, Omar Chakrone, and Mohammed Chehabi

which can be equipped with the norm

‖u‖W s,p(RN ) =

(
‖u‖Lp(RN ) +

∫∫
R2N

|u(x)− u(y)|p

|x− y|N+ps
dxdy

) 1
p

,

where ‖u‖Lp(RN ) is the norm for the usual Lebesgue space Lp(RN ) denoted by

‖u‖Lp(RN ) =

(∫
RN
|u|pdx

) 1
p

.

We define the fractional Sobolev space with potential W (x) and the parameter
λ, which is large enough, by

Eλ =

{
u ∈W s,p(RN ) :

∫
RN

λW (x)|u|pdx <∞
}

with the norm

‖u‖Eλ =

(∫∫
R2N

ap−1 |u(x)− u(y)|p

|x− y|N+ps
dxdy +

∫
RN

λW (x)|u|pdx
) 1
p

.

In particular, we have the following result

Lemma 2.1. (Eλ, ‖ · ‖Eλ) is a uniformly convex Banach space.

Proof. The proof is similar to that of [24, Lemma 10] and hence omitted.

Lemma 2.2. Assume that (W1) holds. Then the embeddings Eλ ↪→
W s,p(RN ) ↪→ Lν(RN ) are continuous for ν ∈ [p, p∗s]. In particular, there exists a
constant Cν > 0 such that

‖u‖Lν(RN ) ≤ Cν‖u‖Eλ for all u ∈ Eλ. (2.1)

Moreover, for any R > 0 and ν ∈ [1, p∗s), the embedding Eλ ↪→ Lν(BR(0)) is
compact.

Proof. The proof is similar to that of [24, Lemma 1] and hence omitted.

Lemma 2.3. Assume that (W1) and (W2) hold. Let ν ∈ [p, p∗s) be a fixed
exponent and let {un}n be a bounded sequence in Eλ.
Then there exist u ∈ Eλ ∩ Lν(RN ) such that up to a subsequence

un → u strongly in Lν(RN ) as n→∞. (2.2)

Proof. The proof is similar to that of [24, Theorem 2.1] and hence omitted.
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Definition 2.4. A function u ∈ Eλ is said to be a weak solution of (1.7) if
for any ϕ ∈ Eλ we have(

a+ b

∫∫
R2N

|u(x)− u(y)|p

|x− y|N+ps
dxdy

)p−1

×
∫∫

R2N

|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|N+ps
(ϕ(x)− ϕ(y))dxdy

+

∫
RN

λW (x)|u|p−2uϕdx =

∫
RN

g(x, u)ϕdx+

∫
RN

h(x)ϕdx.

Let Iλ,W : Eλ → R be the energy functional associated with (1.7) defined by

Iλ,W (u) =
1

bp2

(
a+ b

∫∫
R2N

|u(x)− u(y)|p

|x− y|N+ps
dxdy

)p
+

1

p

∫
RN

λW (x)|u|pdx−
∫
RN

G(x, u)dx−
∫
RN

h(x)udx. (2.3)

Under the assumptions (W1) and (H1), the functional Iλ,W is of class C1(Eλ,R),
and

〈I ′λ,W (u), ϕ〉 =

(
a+ b

∫∫
R2N

|u(x)− u(y)|p

|x− y|N+ps
dxdy

)p−1

×
∫∫

R2N

|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|N+ps
(ϕ(x)− ϕ(y))dxdy

+

∫
RN

λW (x)|u|p−2uϕdx−
∫
RN

g(x, u)ϕdx−
∫
RN

h(x)ϕdx.

Then it is clear that the critical points of Iλ,W are weak solutions of problem
(1.7). In the next, we shall use the Mountain pass theorem, Symmetric mountain
pass theorem and Fountain theorem to prove our main results.

Theorem 2.5 ([27], Mountain pass theorem). Let X be a real Banach space
and let I ∈ C1(X,R) satisfying (PS)-condition. Suppose I(0) = 0 and

(i) there are constants ρ, α > 0 such that I|∂Bρ(0) ≥ α;

(ii) there is an e ∈ X\Bρ(0) such that I(e) ≤ 0.

Then I possesses a critical value c ≥ α. Moreover c can be characterized as

c = inf
γ∈Γ

max
s∈[0,1]

I(γ(s)),

where
Γ = {γ ∈ C([0, 1], X) : γ(0) = 0, γ(1) = e}.

Theorem 2.6 ([27], Symmetric mountain pass theorem). Let X be an infi-
nite dimensional Banach space and let I ∈ C1(X,R) be even, satisfying (PS)-
condition, and I(0) = 0. If X = Y ⊕ Z, where Y is finite dimensional and I
satisfies the conditions:
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(i) there exist constants ρ, α > 0 such that I|∂Bρ(0)∩Z ≥ α;

(ii) for any finite dimensional subspace X̃ ⊂ X, there is R = R(X̃) > 0 such
that I(u) ≤ 0 on X̃\BR,

then I possesses an unbounded sequence of critical values.

Theorem 2.7 ([28], Fountain theorem). Let X be a real Banach space, let an
even functional I ∈ C1(X,R) satisfy the Palais–Smale condition ((PS)c-condition
for short) for every c > 0, and let there be k0 > 0 such that for every k ≥ k0 there
exists ρk > rk > 0 such that the following properties hold:

(i) ak = max
u∈Yk
‖u‖X=ρk

I(u) ≤ 0;

(ii) bk = inf
u∈Zk
‖u‖X=γk

I(u)→∞ as k →∞.

Then I has a sequence of critical points {uk} such that I(uk)→∞.

Definition 2.8. Let X be a Banach space with its dual X∗ and I ∈ C1(X,R).
For any {un} ⊂ X, {un} has a convergent subsequence if I(un) is bounded or
I(un) → c, c ∈ R and I ′(un) → 0 as n → ∞. Then we say that I(u) satisfies
the Palais–Smale condition or the Palais–Smale condition at the level c ((PS)-
condition or (PS)c-condition for short).

3. Proof of main results

Lemma 3.1. Assume that (W1), (H1), and (H3) hold. Then Iλ,W satisfies
the (PS)c-condition for large λ > 0.

Proof. Let {un} ⊂ Eλ such that

Iλ,W (un)→ c and I ′λ,W (un)→ 0 as n→∞.

We first prove that {un} is a bounded sequence in Eλ for large λ > 0. We prove
this by contrary arguments. Suppose, by contradiction, that {un} is unbounded
in Eλ. We may assume that ‖un‖Eλ →∞ as n→∞. Let vn = un/‖un‖Eλ , then
{vn} is bounded in Eλ and ‖vn‖Eλ = 1, also ‖vn‖Lν(RN ) ≤ Cν‖vn‖Eλ = Cν for all

ν ∈ [p, p∗s]. For any (x, z) ∈ RN × R, set

k(t) = G(x, t−1z)tµ, t ∈ [1,∞).

For |z| > r0 and t ∈ [1, r−1
0 z], by (H3), we can get

k′(t) = g(x, t−1z)(− z
t2

)tµ + µtµ−1G(x, t−1z)

= tµ−1
[
µG(x, t−1z)− t−1zg(x, t−1z)

]
≤ C0t

µ−1−p|z|p.

Therefore,

k(r−1
0 z)− k(1) =

∫ r−1
0 z

1
k′(s)ds
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≤
∫ r−1

0 z

1
C0s

µ−1−p|z|pdx =
C0|z|µ

(µ− p)rµ−p0

− C0|z|p

µ− p
.

Consequently, we have

G(x, z) = k(1) ≥ k(r−1
0 z)− C0|z|µ

(µ− p)rµ−p0

≥

(
β

rµ0
− C0

(µ− p)rµ−p0

)
|z|µ.

Noting that C0 <
β(µ− p)

rp0
, we have

β

rµ0
− C0

(µ− p)rµ−p0

> 0. Since µ > p2, there

exists a constant p2 < θ < p∗s, and hence

lim
|u|→∞

G(x, u)

|u|θ
=∞. (3.1)

In particularly, we have

lim
|u|→∞

G(x, u)

|u|p2
=∞. (3.2)

Due to (H1), we have

|g(x, u)| ≤ c1|u|p−1 + c2|u|q−1 (3.3)

and

|G(x, u)| ≤ c1

p
|u|p +

c2

q
|u|q. (3.4)

By using (3.1) and (3.4), we know that for any M > 0 there is a constant C(M) >
0 such that

G(x, u) ≥M |u|θ − C(M)|u|p for all (x, u) ∈ RN × R. (3.5)

Moreover, we have

Iλ,W (un)

‖un‖Lθ(RN )

=
1

‖un‖Lθ(RN )

1

bp2

(
a+ b

∫∫
R2N

|un(x)− un(y)|p

|x− y|N+ps
dxdy

)p
+

1

p

1

‖un‖Lθ(RN )

∫
RN

λW (x)|un|pdx

−
∫
RN

G(x, un)

‖un‖Lθ(RN )

dx−
∫
RN

h(x)un
‖un‖Lθ(RN )

dx.

Since θ > p2, we can deduce that

lim
n→∞

∫
RN

G(x, un)

‖un‖Lθ(RN )

dx = 0.

Furthermore, as ‖vn‖Eλ = 1, passing to a subsequence, there exists v ∈ Eλ such
that vn ⇀ v in Eλ, vn → v in Lν(RN ) for p ≤ ν < p∗s and vn(x) → v(x) a.e. in
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RN . Set Ω = {x ∈ RN : v(x) 6= 0}. If meas(Ω) > 0, then
∫

Ω |v|
θdx > 0.

Thus, from (3.5), we have∫
RN

G(x, un)

‖un‖θEλ
dx ≥M‖vn‖θLθ(RN ) − C(M)

‖vn‖pLp(RN )

‖un‖θ−pEλ

.

Hence,

0 = lim inf
n→∞

(∫
RN

G(x, un)

‖un‖θEλ
dx+ C(M)

‖vn‖pLp(RN )

‖un‖θ−pEλ

)

≥ lim inf
n→∞

M‖vn‖θLθ(RN ) ≥M
∫

Ω
|v|θdx > 0.

This is also a contradiction. Thus, meas(Ω) = 0, and as a result v(x) = 0 a.e. in
RN . Therefore, by (W1), we have

‖vn‖pLp(RN )
=

∫
W (x)≥d

|vn|pdx+

∫
W (x)<d

|vn|pdx

≤ 1

λd
‖vn‖pEλ + o(1) ≤ 2

λd
,

for large n. From (H1) and (H3), we know that there is a constant c > 0 such
that

µG(x, u)− ug(x, u) ≤ c|u|p for all (x, u) ∈ RN × R.

Consequently, we have

0← 1

‖un‖pEλ

[
µIλ,W (un)− 〈I ′λ,W (un), un〉

]
=

1

‖un‖pEλ

[
µ

bp2

(
a+ b

∫∫
R2N

|un(x)− un(y)|p

|x− y|N+ps
dxdy

)p
+
µ

p

∫
RN

λW (x)|un|pdx

− µ

∫
RN

G(x, un)dx− µ
∫
RN

h(x)undx

−
(
a+ b

∫∫
R2N

|un(x)− un(y)|p

|x− y|N+ps
dxdy

)p−1 ∫∫
R2N

|un(x)− un(y)|p

|x− y|N+ps
dxdy

−
∫
RN

λW (x)|un|pdx+

∫
RN

ung(x, un)dx+

∫
RN

h(x)undx

]
=

1

‖un‖pEλ

[
aµ

bp2

(
a+ b

∫∫
R2N

|un(x)− un(y)|p

|x− y|N+ps
dxdy

)p−1

+
µ− p2

p2

(
a+ b

∫∫
R2N

|un(x)− un(y)|p

|x− y|N+ps
dxdy

)p−1∫∫
R2N

|un(x)− un(y)|p

|x− y|N+ps
dxdy

+
µ− p
p

∫
RN

λW (x)|un|pdx+

∫
RN

(g(x, un)un − µG(x, un))dx

− (µ− 1)

∫
RN

h(x)undx

]
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≥ 1

‖un‖pEλ

[
µ− p2

p2
ap−1

∫∫
R2N

|un(x)− un(y)|p

|x− y|N+ps
dxdy

+
µ− p
p

∫
RN

λW (x)|un|pdx− c
∫
RN
|un|pdx− (µ− 1)Cp‖h‖Lp′ (RN)‖un‖Eλ

]
≥ µ− p2

p2
− c

∫
RN
|vn|pdx− (µ− 1)Cp

‖h‖Lp′ (RN)

‖un‖p−1
Eλ

→ µ− p2

p2
− c

λd
,

as n→∞. Taking λ > 0 to be so large that the term
µ− p2

p2
− c

λd
is positive, we

get a contradiction. Hence {un} is bounded in Eλ for large λ. Going, if necessary
to a subsequence, we may assume that

un ⇀ u, weakly in Eλ,

un → u, strongly a.e. in RN ,
un → u, strongly a.e. in Lν(RN ), p ≤ ν < p∗s,

|un| ≤ l, a.e in RN and for some l ∈ Lp(RN ) ∩ Lq(RN ), (3.6)

and∫∫
R2N

|un(x)− un(y)|p

|x− y|N+ps
dxdy → %1 ≥ 0 and

∫
RN

λW (x)|un|pdx→ %2 ≥ 0.

We will prove the following equalities:∫∫
R2N

|u(x)− u(y)|p

|x− y|N+ps
dxdy = %1 and

∫
RN

λW (x)|u|pdx = %2.

Let ϕ ∈ Eλ be fixed and denote by Υϕ the linear functional on Eλ defined by

Υϕ(v) =

∫∫
R2N

|ϕ(x)− ϕ(y)|p−2(ϕ(x)− ϕ(y))

|x− y|N+ps
(v(x)− v(y))dxdy. (3.7)

We set

[ϕ]ps,p =

∫∫
R2N

|ϕ(x)− ϕ(y)|p

|x− y|N+ps
dxdy, (3.8)

for all v ∈ Eλ. By Hölder’s inequality and the definition of Υϕ, we have

〈I ′λ,W (un)− I ′λ,W (u), un − u〉 = (a+ b[un]ps,p)
p−1Υun(un − u)

− (a+ b[u]ps,p)
p−1Υu(un − u) +

∫
RN

λW (x)(|un|p−2un − |u|p−2u)(un − u)dx

−
∫
RN

(g(x, un)− g(x, u))(un − u)dx

≥ (a+ b[un]ps,p)
p−1[un]ps,p − (a+ b[un]ps,p)

p−1
(
[un]ps,p

) p−1
p
(
[u]ps,p

) 1
p

+ (a+ b[u]ps,p)
p−1[u]ps,p − (a+ b[u]ps,p)

p−1
(
[u]ps,p

) p−1
p
(
[un]ps,p

) 1
p
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+

∫
RN

λW (x)|un|pdx−
(∫

RN
λW (x)|un|pdx

) p−1
p
(∫

RN
W (x)|u|pdx

) 1
p

+

∫
RN

λW (x)|u|pdx−
(∫

RN
λW (x)|u|pdx

) p−1
p
(∫

RN
W (x)|un|pdx

) 1
p

−
∫
RN

(g(x, un)− g(x, u))(un − u)dx

= (a+ b[un]ps,p)
p−1

(
[un]ps,p

) p−1
p

[(
[un]ps,p

) 1
p −

(
[u]ps,p

) 1
p

]
+ (a+ b[u]ps,p)

p−1
(
[u]ps,p

) p−1
p

[(
[u]ps,p

) 1
p −

(
[un]ps,p

) 1
p

]
+

(∫
RN

λW (x)|un|pdx
) p−1

p

[(∫
RN

λW (x)|un|pdx
) 1
p

−
(∫

RN
λW (x)|u|pdx

) 1
p

]

+

(∫
RN

λW (x)|u|pdx
) p−1

p

[(∫
RN

λW (x)|u|pdx
) 1
p

−
(∫

RN
λW (x)|un|pdx

) 1
p

]

−
∫
RN

(g(x, un)− g(x, u))(un − u)dx

=
[(

[un]ps,p
) 1
p −

(
[u]ps,p

) 1
p

] [
(a+ b[un]ps,p)

p−1
(
[un]ps,p

) p−1
p

−(a+ b[u]ps,p)
p−1

(
[u]ps,p

) p−1
p

]
+

[(∫
RN

λW (x)|un|pdx
) 1
p

−
(∫

RN
λW (x)|u|pdx

) 1
p

]

×

[(∫
RN

λW (x)|un|pdx
) p−1

p

−
(∫

RN
λW (x)|u|pdx

) p−1
p

]

−
∫
RN

(g(x, un)− g(x, u))(un − u)dx. (3.9)

Since un ⇀ u in Eλ and I ′λ,W (un)→ 0 as n→∞ in (Eλ)∗, one has

〈I ′λ,W (un)− I ′λ,W (u), un − u〉 → 0 as n→∞.

Thus, by (H1) and Hölder’s inequality, we obtain∫
RN

(g(x, un)− g(x, u))(un − u)dx

≤
∫
RN
|c1(|un|p−1 + |u|p−1) + c2(|un|q−1 + |u|q−1)||un − u|dx

≤ c1(‖un‖p−1
Lp(RN )

+ ‖u‖p−1
Lp(RN )

)‖un − u‖Lp(RN )

+ c2(‖un‖q−1
Lq(RN )

+ ‖u‖q−1
Lq(RN )

)‖un − u‖Lq(RN ).

This latter implies by (3.6) that

lim
n→+∞

∫
RN

(g(x, un)− g(x, u))(un − u)dx = 0. (3.10)
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By the fact that un → u a.e. in RN and Fatou’s lemma, we have

[u]ps,p ≤ lim inf
n→+∞

[un]ps,p = %1, (3.11)∫
RN

λW (x)|u|pdx ≤ lim inf
n→+∞

∫
RN

λW (x)|u|pdx = %2. (3.12)

Notice that f(s) = (a+ bs)p−1s
p−1
p is a non-decreasing function for s ≥ 0. Then

we can get

[(%1)
1
p − ([u]ps,p)

1
p ][(a+ b%1)p−1(%1)

p−1
p − (a+ b[u]ps,p)

p−1([u]ps,p)
p−1
p ] ≥ 0 (3.13)

and[
(%2)

1
p −

(∫
RN

λW (x)|u|pdx
) 1
p

][
(%2)

p−1
p −

(∫
RN

λW (x)|u|pdx
) p−1

p

]
≥ 0.

(3.14)

Now, in view of 〈I ′λ,W (un)− I ′λ,W (u), un − u〉 → 0 as n→∞ and (3.9)− (3.11),
we have

0 ≥ lim inf
n→∞

{[
([un]ps,p)

1
p − ([u]ps,p)

1
p

]
[(a+ b[un]ps,p)

p−1([un]ps,p)
p−1
p

− (a+ b[u]ps,p)
p−1([u]ps,p)

p−1
p ]

+

[(∫
RN

λW (x)|un|pdx
) 1
p

−
(∫

RN
λW (x)|u|pdx

) 1
p

]

×

[(∫
RN

λW (x)|un|pdx
) p−1

p

−
(∫

RN
λW (x)|u|pdx

) p−1
p

]

−
∫
RN

(g(x, un)− g(x, u))(un − u)dx−
∫
RN

h(x)(un − u)dx

}
≥ lim

n→∞

{
[([un]ps,p)

1
p − ([u]ps,p)

1
p ][(a+ b[un]ps,p)

p−1([un]ps,p)
p−1
p

− (a+ b[u]ps,p)
p−1([u]ps,p)

p−1
p ]
}

+ lim
n→∞

{[(∫
RN

λW (x)|un|pdx
) 1
p

−
(∫

RN
λW (x)|u|pdx

) 1
p

]

×

[(∫
RN

λW (x)|un|pdx
) p−1

p

−
(∫

RN
λW (x)|u|pdx

) p−1
p

]}

− lim
n→+∞

∫
RN

(g(x, un)− g(x, u))(un − u)dx

≥
[
(%1)

1
p − ([u]ps,p)

1
p

] [
(a+ b%1)p−1(%1)

p−1
p − (a+ b[u]ps,p)

p−1([u]ps,p)
p−1
p

]
+

[
(%2)

1
p −

(∫
RN

λW (x)|u|pdx
) 1
p

]
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×

[
(%2)

p−1
p −

(∫
RN

λW (x)|u|pdx
) p−1

p

]
. (3.15)

Finally, by (3.13)− (3.15), it comes that∫∫
R2N

|u(x)− u(y)|p

|x− y|N+ps
dxdy = %1 and

∫
RN

λW (x)|u|pdx = %2.

Therefore, we get ‖un‖Eλ → ‖u‖Eλ . Since Eλ is a reflexive Banach space (see
Lemma 2.1), it is isomorphic to a locally uniformly convex space. So, the weak
convergence and convergence in norm imply the strong convergence. This com-
pletes the proof.

Proof of Theorem 1.2. It is clear that Iλ,W (0) = 0 and Iλ,W ∈ C1(Eλ,R)

satisfies the (PS)c-condition (see Lemma 3.1). For any 0 < ε <
1

Cpp
(Cp appears

in (2.1)), combining hypotheses (H1) and (H2), there is a constant C(ε) > 0 such
that

|G(x, u)| ≤ ε

p
|u|p +

C(ε)

q
|u|q.

Thus, for small ρ > 0, we can get

Iλ,W (u) =
1

bp2

(
a+ b[u]ps,p

)p
+

1

p

∫
RN

λW (x)|u|pdx

−
∫
RN

G(x, u)dx−
∫
RN

h(x)udx

≥ ap−1

p
[u]ps,p +

1

p

∫
RN

λW (x)|u|pdx−
∫
RN

G(x, u)dx−
∫
RN

h(x)udx

≥ 1

p
‖u‖pEλ − ε

Cpp
p
‖u‖pEλ − C(ε)

Cqq
q
‖u‖qEλ − Cp‖h‖Lp′ (RN)‖u‖Eλ

= ‖u‖Eλ
[(

1

p
− εC

p
p

p

)
‖u‖p−1

Eλ
− C(ε)

Cqq
q
‖u‖q−1

Eλ
− Cp‖h‖Lp′ (RN)

]
.

Take ε =
1

2Cpp
and set η1(t) =

1

2p
tp−1 − CC

q
q

q
tq−1 for all t ∈ R+

∗ .

Taking into consideration that q > p > 1, we can deduce that there exists ρ0 >
0 such that

max
t∈R+
∗

η1(t) = η1(ρ0) > 0.

Taking δ0 =
η1(ρ0)

2Cp
, and for all u ∈ Bρ0 , where Bρ0 = {u ∈ Eλ : ‖u‖Eλ < ρ0}, we

obtain that

Iλ,W |∂Bρ0
≥ α = ρ0

η1(ρ0)

2
> 0.

Next, let us consider

Iλ,W (tu) =
1

bp2

(
a+ btp[u]ps,p

)p
+

1

p

∫
RN

tpλW (x)|u|pdx
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−
∫
RN

G(x, tu)dx−
∫
RN

h(x)tudx for all t ∈ R.

Set 0 6= u ∈ Eλ. By (H1) and (H4), we know that for any κ >
bp−1([u]ps,p)p

p2
∫
RN |u|p

2dx
there is a constant Cκ > 0 such that

|G(x, u)| ≥ κ|u|p2 − Cκ|u|p for all (x, u) ∈ RN × R.

Then we have

Iλ,W (tu) =
1

bp2

(
a+ btp[u]ps,p

)p
+

1

p

∫
RN

tpλW (x)|u|pdx

−
∫
RN

G(x, tu)dx−
∫
RN

h(x)tudx

≤ 1

bp2

(
a+ btp[u]ps,p

)p
+
tp

p

∫
RN

λW (x)|u|pdx+ Cκt
p

∫
RN
|u|pdx

− κtp2
∫
RN
|u|p2dx− t

∫
RN

h(x)udx→ −∞ as t→∞.

Hence, there is a point e ∈ Eλ\Bρ such that Iλ,W (e) ≤ 0. By Theorem 2.5, Iλ,W
possesses a critical value c ≥ α > 0 given by

c = inf
γ∈Γ

max
s∈[0,1]

Iλ,W (γ(s)),

where
Γ = {γ ∈ C([0, 1], X) : γ(0) = 0, γ(1) = e}.

Therefore, there is u ∈ Eλ such that Iλ,W (u) = c and I ′λ,W (u) = 0, i.e., problem
(1.7) has a nontrivial weak solution in Eλ.

Proof of Theorem 1.3. From the proof of Theorem 1.2, we know that there
exist constants ρ > 0 and α > 0 such that Iλ,W |∂Bρ

≥ α > 0 and there is a

point e ∈ Eλ\Bρ such that Iλ,W (e) ≤ 0. Next, we prove that Iλ,W satisfies the
(PS)c-condition for large λ. Let {un} ⊂ Eλ such that

Iλ,W (un)→ c and I ′λ,W (un)→ 0 as n→∞.

We need to prove that {un} possesses a convergent subsequence. In the same way
as in Lemma 3.1, it is sufficient to prove that {un} is bounded in Eλ. If not, we
may assume that ‖un‖Eλ →∞ as n→∞. Let vn = un/‖un‖Eλ , then ‖vn‖Eλ =
1 and ‖vn‖Lν(RN ) ≤ Cν‖vn‖Eλ = Cν for ν ∈ [p, p∗s]. Since ‖vn‖Eλ = 1, passing

to a subsequence, there is v ∈ Eλ such that vn ⇀ v in Eλ, vn → v in Lν(RN )
for p ≤ ν < p∗s and vn(x) → v(x) a.e. in RN . Set Ω = {x ∈ RN : v(x) 6= 0}.
If meas(Ω) > 0, then

∫
Ω |v|

θdx > 0. From (H1) and (H4), we know that for any

M >
bp−1

p2ap(p−1)
∫

Ω |v|p
2dx

there is a constant C(M) > 0 such that

G(x, u) ≥M |u|p2 − C(M)|u|p2 . (3.16)
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On the other hand, we have

Iλ,W (un)

‖un‖p
2

Eλ

=
1

‖un‖p
2

Eλ

1

bp2

(
a+ b

∫∫
R2N

|un(x)− un(y)|p

|x− y|N+ps
dxdy

)p
+

1

p‖un‖p
2

Eλ

∫
RN

λW (x)|un|pdx

−
∫
RN

G(x, un)

‖un‖p
2

Eλ

dx−
∫
RN

h(x)
un

‖un‖p
2

Eλ

dx.

Since p2 > p, we deduce that

lim inf
n→∞

∫
RN

G(x, un)

‖un‖p
2

Eλ

dx ≤ 1

p2

bp−1

ap(p−1)
.

Moreover, from (3.16), it follows that∫
RN

G(x, un)

‖un‖p
2

Eλ

dx ≥M‖vn‖p
2

Lp
2 (RN )

− C(M)
‖vn‖pLp(RN )

‖un‖p
2−p
Eλ

,

which, by the last two inequalities, means that

1

p2

bp−1

ap(p−1)
≥ lim inf

n→∞

(∫
RN

G(x, un)

‖un‖p
2

Eλ

dx+ C(M)
‖vn‖pLp(RN )

‖un‖p
2−p
Eλ

)
≥M

∫
Ω
|v|p2dx.

This is a contradiction. Hence, meas(Ω) = 0 and, as a result, v(x) = 0 a.e. in
RN . Then, by (W1), we have

‖vn‖pLp(RN )
=

∫
W (x)≥d

|vn|pdx+

∫
W (x)<d

|vn|pdx ≤
1

λd
‖vn‖pEλ + o(1) ≤ 2

λd
,

for large n. By combining (H1) and (H5), we can find a constant C > 0 such
that

p2G(x, u)− g(x, u)u ≤ C|u|p for all (x, u) ∈ RN × R.

Notice that p ≥ 2. By a calculation, for large n, we get

0← 1

‖un‖pEλ

[
p2Iλ,W (un)− 〈I ′λ,W (un), un〉

]
=

1

‖un‖pEλ

[
1

b

(
a+ b

∫∫
R2N

|un(x)− un(y)|p

|x− y|N+ps
dxdy

)p
+ p

∫
RN

λW (x)|un|pdx− p2

∫
RN

G(x, un)dx− p2

∫
RN

h(x)undx

−
(
a+ b

∫∫
R2N

|un(x)− un(y)|p

|x− y|N+ps
dxdy

)p−1

×
∫∫

R2N

|un(x)− un(y)|p

|x− y|N+ps
dxdy −

∫
RN

λW (x)|un|pdx
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+

∫
RN

ung(x, un)dx+

∫
RN

h(x)undx

]
=

1

‖un‖pEλ

[
a

b

(
a+ b

∫∫
R2N

|un(x)− un(y)|p

|x− y|N+ps
dxdy

)p−1

+ (p− 1)

∫
RN

λW (x)|un|pdx

+

∫
RN

(ung(x, un)− p2G(x, un))dx− (p2 − 1)

∫
RN

h(x)undx

]
≥ 1

‖un‖pEλ

[
(p− 1)ap−1

∫∫
R2N

|un(x)− un(y)|p

|x− y|N+ps
dxdy

+(p− 1)

∫
RN

λW (x)|un|pdx+ C

∫
RN
|un|pdx− (p2 − 1)Cp‖h‖Lp′ (RN)‖un‖Eλ

]
≥ (p− 1)− C

∫
RN
|vn|pdx− (p2 − 1)Cp

‖h‖Lp′ (RN)

‖un‖p−1
Eλ

→ (p− 1)− C

λd
as n→∞.

Letting λ > 0 be so large that the term p − 1 − C

λd
is positive, we get a con-

tradiction. Hence, {un} is bounded in Eλ for large λ. Therefore, Iλ,W possesses
a critical value c ≥ α by Theorem 2.5, i.e., problem (1.7) has a nontrivial weak
solution in Eλ. This completes the proof.

Proof of Theorem 1.4. Let {ej} be a total orthonormal basis of L2(Br) (Br
appears in (V2)) and define Xj = Rej for j ∈ N,

Yk = ⊕kj=1Xj and Zk = ⊕∞j=k+1Xj for k ∈ N.

Set

Eλ(Br) =

{
u ∈W s,p(Br) :

∫
Br

λW (x)|u|pdx <∞
}

with the norm

‖u‖Eλ(Br) =

(∫∫
Br×Br

ap−1 |u(x)− u(y)|p

|x− y|N+ps
dxdy +

∫
Br

λW (x)|u|pdx
) 1
p

.

Lemma 3.2. Assume that (W1) holds. Then, for p < θ < p∗s,

βk = sup
u∈Zk

‖u‖Eλ(Br)=1

‖u‖Lθ(Br) → 0 as k →∞.

Proof. From Lemma 2.2, Eλ(Br) ↪→ Ls(Br) is compact for 1 ≤ s < p∗s.
Indeed, it is clear that βk+1 ≤ βk < ∞, so βk → β ≥ 0 as k → ∞. For every

k ≥ 1, there exists uk ∈ Zk such that ‖u‖Eλ(Br) = 1 and ‖u‖Ls(Br) >
βk
2

. By

the definition of Zk, uk ⇀ 0 in Eλ(Br). Then this implies that uk → 0 in Ls(Br)
and, as a result, β = 0. This completes the proof.
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In view of Lemma 3.2, we can choose an integer k ≥ 1 such that∫
Br

|u|pdx ≤ 1

2c1

(∫∫
Br×Br

ap−1 |u(x)− u(y)|p

|x− y|N+ps
dxdy +

∫
Br

λW (x)|u|pdx
)

(3.17)
for all u ∈ Zk ∩ Eλ(Br), where c1 appears in condition (H1). Take

ψ(x) =

{
1, x > r,

0, x ≤ r

and set
Y = {(1− ψ)u : u ∈ Eλ, (1− ψ)u ∈ Yk} (3.18)

and
Z = {(1− ψ)u : u ∈ Eλ, (1− ψ)u ∈ Zk}+ {ψv : v ∈ Eλ}. (3.19)

Hence, Y and Z are subspaces of Eλ, and Eλ = Y ⊕ Z.

Lemma 3.3. If the conditions (W1), (W2), and (H1) hold, then there exist
constants ρ, α > 0 such that Iλ,W |∂Bρ(0)∩Z ≥ α for large λ.

Proof. By (W2), (3.17) and (3.19), we have

‖u‖p
Lp(RN )

=

∫
|x|<h

|u|pdx+

∫
|x|≥h

|u|pdx

≤ 1

2c1
‖u‖pEλ(Bh) +

1

λd

∫
{x∈RN : W (x)≥d}

λW (x)|u|pdx

≤ 1

2c1
‖u‖pEλ +

1

λd
‖u‖pEλ , (3.20)

for all u ∈ Z. It follows from (2.1), (3.4) and (3.20) that

Iλ,W (u) =
1

bp2

(
a+ b[u]ps,p

)p
+

1

p

∫
RN

λW (x)|u|pdx

−
∫
RN

G(x, u)dx−
∫
RN

h(x)udx

≥ ap−1

p
[u]ps,p +

1

p

∫
RN

λW (x)|u|pdx−
∫
RN

G(x, u)dx−
∫
RN

h(x)udx

≥ 1

p
‖u‖pEλ −

c1

p
‖u‖p

Lp(RN )
− c2

q
‖u‖q

Lq(RN )
− Cp‖h‖Lp′ (RN)‖u‖Eλ

≥ 1

2p
‖u‖pEλ −

c1

dλp
‖u‖pEλ −

c2C
q
q

q
‖u‖qEλ − Cp‖h‖Lp′ (RN)‖u‖Eλ

= ‖u‖Eλ
[(

1

2p
− c1

dλp

)
‖u‖p−1

Eλ
− c2C

q
q

q
‖u‖q−1

Eλ
− Cp‖h‖Lp′ (RN)

]
.

For λ large enough such that λ >
2c1

d
, let

η2(t) =

(
1

2p
− c1

dλp

)
tp−1 − c2C

q
q

q
tq−1 for all t ∈ R+

∗ .
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Since q > p > 1, we can conclude that there exists ρ1 > 0 such that

max
t∈R+
∗

η2(t) = η2(ρ1) > 0.

Taking δ1 =
η2(ρ1)

2Cp
, we have Iλ,W |∂Bρ1 (0)∩Z ≥ α = ρ1

η2(ρ1)

2
> 0.

Lemma 3.4. Assume that (H1) and (H4) are satisfied. Then, for any finite
dimensional subspace Ẽλ ⊂ Eλ, there is R = R(Ẽλ) > 0 such that

Iλ,W (u) ≤ 0, u ∈ Ẽλ, ‖u‖Eλ ≥ R.

Proof. For any finite dimensional subspace Ẽλ ⊂ Eλ, by the equivalence of
norms in the finite dimensional space, there is a constant D > 0 such that

‖u‖
Lp2 (RN )

≥ D‖u‖Eλ , u ∈ Ẽλ.

Basing on (H1) and (H4), for any M >
bp−1

ap(p−1)p2Dp2
, we can find a constant

C(M) > 0 such that

G(x, u) ≥M |u|p2 − C(M)|u|p for all (x, u) ∈ RN × R.

Thus, we have

Iλ,W (u) =
1

bp2

(
a+ b

∫∫
R2N

|u(x)− u(y)|p

|x− y|N+ps
dxdy

)p
+

1

p

∫
RN

λW (x)|u|pdx−
∫
RN

G(x, u)dx−
∫
RN

h(x)udx

≤ 1

bp2

(
a+

b

ap−1
‖u‖pEλ

)p
+

1

p
‖u‖pEλ

+ C(M)‖u‖p
Lp(RN )

−M‖u‖p
2

Lp2 (RN )
+ ‖h‖Lp′ (RN)‖u‖Lp(RN)

≤ 1

bp2

(
a+

b

ap−1
‖u‖pEλ

)p
+

(
1

p
+ C(M)Cpp

)
‖u‖pEλ

−MDp2‖u‖p
2

Eλ
+ Cp‖h‖Lp′ (RN)‖u‖Eλ ,

for all u ∈ Ẽλ. It follows that there is a large R > 0 such that Iλ,W (u) ≤ 0 on
Ẽλ\BR.

Let X be a reflexive and separable Banach space. Then there are ej ∈ X and
e∗j ∈ X∗ such that

X = span{ej | j = 1, 2, . . . }, X∗ = span{e∗j | j = 1, 2, . . . },

and

〈e∗i , ej〉 =

{
1, i = j,

0, i 6= j.

For the convenience, we write Xj = span{ej}, Yk = ⊕kj=1Xj , Zk = ⊕∞j=kXj . Let
Bk = {u ∈ Yk : ‖u‖X ≤ ρk}, Nk = {u ∈ Zk : ‖u‖X = γk}, where ρk > γk > 0.
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Lemma 3.5. Assume that ν ∈ [p, p∗s) and let βν(k) = supu∈Zk, ‖u‖Eλ=1 ‖u‖ν .

Then βν(k)→ 0 as k →∞.

Proof. The proof of this lemma is similar to that of [29, Lemma 6] and we
omit the details.

To prove Theorem 1.6 and Theorem 1.7, we first prove the following two
lemmas.

Lemma 3.6. Assume that the assumptions (H1) and (H2) hold, then there
exist constants rk such that

bk = inf
u∈Zk

‖u‖Eλ=rk

Iλ,W (u)→∞ as k →∞. (3.21)

Proof. Notice that from (H1) and (H2) it follows that there is a constant
C(ε) > 0 such that

|G(x, u)| ≤ ε

p
|u|p +

C(ε)

q
|u|q. (3.22)

Also notice that by Young’s inequality we have

a+ b

∫∫
R2N

|u(x)− u(y)|p

|x− y|N+ps
dxdy

=
(
a
p−1
p

) p
p−1

+

((
b

∫∫
R2N

|u(x)− u(y)|p

|x− y|N+ps
dxdy

) 1
p

)p

=
p− 1

p

((
p

p− 1

) p−1
p

× a
p−1
p

) p
p−1

+
1

p

((
pb

∫∫
R2N

|u(x)− u(y)|p

|x− y|N+ps
dxdy

) 1
p

)p

≥
(

p

p− 1

) p−1
p

a
p−1
p

(
pb

∫∫
R2N

|u(x)− u(y)|p

|x− y|N+ps
dxdy

) 1
p

≥ a
p−1
p

(
pb

∫∫
R2N

|u(x)− u(y)|p

|x− y|N+ps
dxdy

) 1
p

.

Hence, we make the following conclusion:(
a+ b

∫∫
R2N

|u(x)− u(y)|p

|x− y|N+ps
dxdy

)p
≥ pbap−1

∫∫
R2N

|u(x)− u(y)|p

|x− y|N+ps
dxdy. (3.23)

According to (3.22), (3.23) and Lemma 3.5, we obtain that

Iλ,W (u) =
1

bp2

(
a+ b

∫∫
R2N

|u(x)− u(y)|p

|x− y|N+ps
dxdy

)p
+

1

p

∫
RN

λW (x)|u|pdx
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−
∫
RN

G(x, u(x))dx−
∫
RN

h(x)udx

≥ ap−1

p

∫∫
R2N

|u(x)− u(y)|p

|x− y|N+ps
dxdy +

1

p

∫
RN

λW (x)|u|pdx

−
∫
RN

G(x, u)dx−
∫
RN

h(x)udx

≥ 1

p
‖u‖pEλ −

ε

p

∫
RN
|u|pdx− C(ε)

q

∫
RN
|u|qdx− ‖h‖Lp′ (RN)

∫
RN
|u|pdx

≥ 1

p
‖u‖pEλ −

(
ε

p
+ ‖h‖Lp′ (RN)

)
βpp(k)‖u‖pEλ −

C(ε)

q
βqq (k)‖u‖qEλ .

Choose rk =
1

βp(k) + βq(k)
. Then rk → ∞ as k → ∞. For any u ∈ Zk with

‖u‖Eλ = rk, we know

Iλ,W (u) ≥ 1

p
rpk −

(
ε

p
+ ‖h‖Lp′ (RN)

)
βpp(k)

|βp(k) + βq(k)|p
− C(ε)

q

βqq (k)

|βp(k) + βq(k)|q

≥ 1

p
rpk −

(
ε

p
+ ‖h‖Lp′ (RN)

)
− C(ε)

q
> 0.

Therefore,

bk = inf
u∈Zk, ‖u‖Eλ=rk

Iλ,W (u)→∞ as k →∞.

Lemma 3.7. Assume that the assumptions (H1) and (H4) hold, then there
exist constants ρk > 0 such that

ak = max
u∈Yk

‖u‖Eλ=ρk

Iλ,W (u) ≤ 0. (3.24)

Proof. By (H1) and (H4), there exist η >
2p−1bp−1

Ckp2
, Cη > 0 such that

|G(x, u)| ≥ η|u|p2 − Cη|u|p for all x ∈ RN and u ∈ Eλ. (3.25)

Since all norms are equivalent on the finite dimensional Banach space Yk, there
exists a positive constant Ck > 0 such that ‖u‖

Lp2 (RN )
≥ Ck‖u‖Eλ . Then, for

‖u‖Eλ = ρk ≥ 1, from (3.25) and the inequality

(x+ y)p ≤ 2p−1(xp + yp) for all x, y ≥ 0, (3.26)

we have

Iλ,W (u) =
1

bp2

(
a+ b

∫∫
R2N

|u(x)− u(y)|p

|x− y|N+ps
dxdy

)p
+

1

p

∫
RN

λW (x)|u|pdx−
∫
RN

G(x, u)dx−
∫
RN

h(x)udx
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≤ 2p−1ap

bp2
+

2p−1bp−1

p2
‖u‖pEλ +

1

p
‖u‖p

2

Eλ
− η

∫
RN
|u|p2dx

+
(
Cη + Cp‖h‖Lp′ (RN)

)
‖u‖p

Lp(RN )

≤
(

2p−1bp−1

p2
− ηCk

)
ρp

2

k +
1

p
ρpk

+
(
Cη + Cp‖h‖Lp′ (RN)

)
‖u‖p

Lp(RN )
+

2p−1ap

bp2
.

Therefore, since p2 > p > 1, then there exists ρk > 1 large enough such that

ak = max
u∈Yk, ‖u‖Eλ=ρk

Iλ,W (u) ≤ 0.

This completes the proof.

Proof of Theorem 1.4. Take X = Eλ and Y , Z defined in (3.18), (3.19).
According to Lemma 3.1, Lemma 3.3 and Lemma 3.4 with (H6) and by the fact
that Iλ,W (0) = 0, we have that Iλ,W satisfies all assumptions of Theorem 2.6.
Hence, problem (1.7) has infinitely many nontrivial weak solutions, and thus the
proof of Theorem 1.4 is completed.

Proof of Theorem 1.5. Take X = Eλ and Y , Z defined in (3.18), (3.19). From
the proof of Theorem 1.3, especially in the passage where the (PS)c-condition
was checked, also with Theorem 1.4, we deduce that Iλ,W satisfies all assumptions
of Theorem 2.6. Therefore problem (1.7) has infinitely many nontrivial weak
solutions, which completes the proof of Theorem 1.5.

Proof of Theorem 1.6. Let X = Eλ be a Banach space and let the conditions
of Theorem 1.6 be verified. First, from Lemma 3.1, Iλ,W satisfies the (PS)c-
condition. Moreover, we have Iλ,W (0) = 0 and, according to the condition (H6),
Iλ,W is an even function. Finally, by Lemma 3.6 and Lemma 3.7, we deduce that
Iλ,W satisfies the conditions (i) and (ii) of Theorem 2.7. Therefore, Iλ,W satisfies
all conditions of Theorem 2.7 and we obtain that problem (1.7) has a sequence of
solutions {uk} with unbounded energy. In conclusion, by Theorem 2.7, problem
(1.7) has infinitely many nontrivial weak solutions. This completes the proof.

Proof of Theorem 1.7. Let X = Eλ be a Banach space and let the conditions
of Theorem 1.7 be verified. First, to show that the energy functional Iλ,W satisfies
the (PS)c-condition, we follow the same steps as in the proof of Theorem 1.3.
Moreover, we have Iλ,W (0) = 0 and, according to the condition (H6), Iλ,W is
an even function. Finally, by Lemma 3.6 and Lemma 3.7, we deduce that Iλ,W
satisfies the conditions (i) and (ii) of Theorem 2.7. Therefore, Iλ,W satisfies all
conditions of Theorem 2.7 and we obtain that problem (1.7) has a sequence of
solutions {uk} with unbounded energy. In conclusion, by Theorem 2.7, problem
(1.7) has infinitely many nontrivial weak solutions. This completes the proof.
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Про рiвняння типу Шредiнгера–Кiрхгофа з
дробовим p-лапласiаном без умови

Амброзеттi–Рабiновица
Mohamed Bouabdallah, Omar Chakrone, and Mohammed Chehabi

У цiй статтi ми розглядаємо iснування та множиннiсть багатьох слаб-
ких розв’язкiв для наступного дробового рiвняння типу Шредiнгера–
Кiрхгофа:(

a+ b

∫∫
R2N

|u(x)− u(y)|p

|x− y|N+ps
dxdy

)p−1

× (−∆)spu+ λV (x)|u|p−2u

= f(x, u) + h(x) in RN ,

де N > sp, a, b > 0 — константи, λ — параметр, (−∆)sp — дробовий
p-оператор Лапласа з 0 < s < 1 < p < ∞, нелiнiйнiсть f(x, u) i потен-
цiальна функцiя V (x) задовольняють деякi прийнятнi припущення. За
таких умов одержано деякi новi результати для достатньо великих λ >
0 шляхом застосування варiацiйних методiв.

Ключовi слова: p-оператор Лапласа, дробовий простiр Соболєва, рiв-
няння типу Шредiнгера–Кiрхгофа, умова Амброзеттi–Рабiновiца, варi-
ацiйнi методи
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