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On a Schrodinger—Kirchhoff Type Equation
Involving the Fractional p-Laplacian without
the Ambrosetti—-Rabinowitz Condition
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In this paper, we consider the existence and multiplicity of many weak
solutions for the following fractional Schrédinger—Kirchhoff type equation:

p p—1
(a + b//RzN - y|N+p)s| dx dy) x (—A)ju+ AV () [ulP~2u
= f(z,u) + h(z) in RY,

where N > sp, a,b > 0 are constants, A is a parameter, (—A)fg is the frac-
tional p-Laplacian operator with 0 < s < 1 < p < oo, nonlinearity f(z,u)
and potential function V' (z) satisfy some suitable assumptions. Under those
conditions, some new results are obtained for A > 0 large enough by applying
the variation methods.
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1. Introduction

In this paper, we are concerned with a class of fractional p-Laplacian equations
of Schrodinger—Kirchhoff type of the following form:

p p—l
<a + b//RzN - ‘Nﬂ))s‘ dz dy> X (—A)Su + AV () [ulP~2u
= f(z,u) + h(z) in RV, (1.1)

where N > sp, 0 < s <1 < p < o0, a,b > 0 are constants, A\ is a parameter,
f e C(RN R), V:RY — R is a potential function and (—A); is the fractional
p-Laplacian operator which, up to normalization factors, can be defined as

AVl — T [u(@) = u(y) P2 (u(z) — u(y))
SSTCESTN Pl d,
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for z € RY, where Be(z) = {y € RV : [z —y| < e}, see [1-5]. In particular, (—A)3
becomes the fractional Laplacian (—A)® as p = 2, and it is known that (—A)7 re-
duces to the standard p-Laplacian as s — 17, see, for example, [6-8] and the refer-
ences therein. Fractional p-Laplacian equations have gained importance because
of their numerous applications in various fields such as phase transitions, tur-
bulent flows, chaotic dynamics of classical conservative systems, finances, quan-
tum mechanics, stratified materials, flame propagation, ultra-relativistic limits of
quantum mechanics, minimal surfaces and water waves, as they are the typical
outcome of stochastically stabilization of Lévy processes, see, for example, [9-14].
The body of literature on the fractional Sobolev space is quite large, we refer the
reader to [15-17]. Recently, many authors have studied the existence of solutions
for problems governed by the fractional p-Laplacian operator by using variational
methods and critical point theory, see [18-25]. For example, in [22], the authors
studied the following fractional p-Laplacian equations with perturbations:

(—A)pu+ AV (@) [ulP?u = f(z,u) — pg(x)|u)?u, uecRY. (1.2)

Basing on the variant fountain theorems, they obtained the existence of infinitely
many solutions for equation (1.2), where u, A are two positive parameters p > 2,
N > 2,0 < s < 1, the potentials V, g : RY — R and the nonlinearity f : R x
RN — R. In particular, for A = 1, g(x) = 0, by using the Mountain pass theorem,
the researchers in [26] established a nontrivial solution for equation (1.2) without
a sign changing the potential V' (z) and by some appropriate assumptions on the
nonlinearity f(x,u). As for Kirchhoff problems, there are several works that deal
with the existence and multiplicity of solutions. For example, in [24], the authors
considered the following related problem:

(//Rw |z — !N+p)s’pd”“’dy> x (=A)su+V(z)|ufu
= f(z,u) + g(z) in RY, (13)

where 0 < s < 1 < p < oo and ps < N, the nonlinearity f : RV x R — R is
a Carathéodory function which satisfies the superlinear condition, that is, there
exists 6 € [1, N/(N — sp)) and p > 6p such that

wF(x,u) = ,u/ou f(x,s)ds < f(z,u)u, zzecRY ueR, (1.4)

and V : RV — R* is a potential function and ¢ : RV — R is a perturbation
term. By using Ekeland’s variational principle and the Mountain pass theorem,
the authors obtained the existence and multiplicity of solutions for equation (1.3).
More recently, for M(t) = (a + bt)P~! and g = 0 in equation (1.3), the authors
studied in [23] the following fractional p-Laplacian Schrodinger—Kirchhoff type
equation with a parameter A\ attached to the potential V(x):

p p—1
<a + b//RQN T y’N+p)S| dxdy) x (—A)ju+ AV (2)|uP~2u
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= f(z,u) inRY, (1.5)

where 0 < s < 1, 2 < p < o0, a,b > 0. With some appropriate assumptions
on V(z) and f(x,u), in several main results they proved that equation (1.5)
has infinitely many nontrivial solutions. Finally, when A # 1 and when the
nonlinearity f(x,u) satisfies the Ambrosetti-Rabinowitz condition, that is, there
exist y > p? such that

pF(z,u) < flz,u)u, =R, ueR, (1.6)
and the potential V (z) satisfies

(V1) V € C(RNR) satisfies inf cpn V(x) > Vy > 0, where Vy > 0 is a constant,
(Vy) there exists 7 > 0 such that lim meas({z € B,(y) : V(z) < w}) =0 for

ly|—o00
any w > 0, where Bg(r) denotes the open ball of RY centered at x and of
radius R > 0,

the authors showed in [25] the existence and multiplicity of many nontrivial weak
solutions when A\ > 0 is sufficiently large. Recently, in [23], the authors treated
problem (1.1) when the weight V(x) changes the sign and h(x) = 0. Not using
condition (1.6), they showed the existence and multiplicity of nontrivial solutions
for A large enough. The novelty of our work is in studying problem (1.1) when
h(z) # 0 and eliminating the lemma used in [23] to verify the convergence of
Palais-Smale sequence [23, Lemma 3.2]. Also, we added other main results that
guarantee the existence of infinitely many solutions for problem (1.1) by using the
Fountain theorem. For the potential V (z), we impose the following hypotheses:

(V) V € C(RN,R) satisfies inf,cgn V(2) > —o0,
(V4) there exists a constant w > 0 such that

meas({z € RY : V(z) < w}) < oo,
where meas(-) denotes the Lebesgue measure in RY.

Remark 1.1. The conditions like (V]) and (V3) were first introduced in [30],
but inf, gy V() > 0 was required. In view of (V{) and (Vj), one can see that
(V/) is much weaker than (V7) and (V2), also the potential V (x) is allowed to be
sign-changing.

Inspired by [31,32], from condition (V7), there exists a constant Wy > 0 such
that W(z) = V(z) + Wy > 1 for all x € RN and g(z,u) = f(z,u) + Wolu|P~2u
for all (x,u) € RN x R. Hence, (1.1) is equivalent to the following equation:

p—1
<a 4 b//w = |N+p)5|pd dy) X (—A)gu+ AW (@) [ul?~u
=g(xz,u) + h(z) in RY. (1.7)

In this paper, for A > 0 sufficiently large, we establish the existence and multi-
plicity of nontrivial weak solutions for (1.7) when the nonlinear term g(x, u) does
not satisfy condition (1.6). Observe that W (z) satisfies the following conditions
provided that conditions (V), (V3) hold:
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(W1) W € C(RY,R) satisfies inf gy W(x) > 1 and
meas({z € RN : W(z) <d}) < oo, d>0;
(W3) there exists r > 0 such that
meas({z € RY : W(z) < d}\(B, N {z € RY : W(x) < d})) =0,

where B, = {z € RV : 2| < r}.

After that we state the basic assumptions on the nonlinearity g(z,u) in (1.7),
which are weaker than those in the work [25]:

(Hy) g € C(RN x R) and there exist constants c1, co > 0 and ¢ € (p?, p}) such
that
|g(x,u)| < Cl|u|p_1 + C2|u|q_1a (337“) € RY x R,

where pj is the fractional Sobolev critical exponent defined by p; = oo if
N < spand pf = Np/(N — sp) if N > sp.

(Hz) g(z,u) = o(|ulP~1) as |u| — 0 uniformly in 2 € RV.

(Hs) There exist p > p? and r¢ > 0 such that

g = inf G(z,u)>0
zeRN
[ul=ro
and
[LG(SC,U) - g(ZE,U)’LL < CO‘u|pa T e RNv |u| > 1o,
B(p —p)

D .

where G(z,u) = [, g(x,t)dt and 0 < Cp <
"o

(Ha) Gﬁ;g )

(Hs) There exist » > 0 and C' > 0 such that

— 00 as |u| — oo uniformly in z € RV,

pQG(ac,u) —g(z,u)u < ClulP, xe€ RV, lu| > r.

(He) g(z,—u) = —g(z,u) for all (z,u) € RY x R.
/ 1 1
(H7) he LV (RY), where — + — = 1.
p p
The main results of this paper are stated as follows.

Theorem 1.2. Assume that (W1), (Wa), (H1)—(Hs), and (H7) hold and
suppose that h # 0. Then there exists a constant 9 > 0 such that problem (1.7)
has at least one nontrivial weak solution whenever X > 0 is sufficiently large,
provided that HhHLP’(RN) < do.

Theorem 1.3. Assume that (Wy), (Wa), (H1), (Ha), (Ha), (Hs), and (Hy)
hold and suppose that h # 0. Then there exists a constant ég > 0 such that prob-
lem (1.7) has at least one nontrivial weak solution whenever A > 0 is sufficiently
large, provided that ||h|| . gxy < do.
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Theorem 1.4. Assume that (W), (Ws), (Hy), (Hs), (Hg), and (H7) hold
and suppose that h # 0. Then there exists a constant 61 > 0 such that problem
(1.7) has infinitely many nontrivial weak solutions whenever A > 0 is sufficiently
large, provided that ||h|| . gxy < 61.

Theorem 1.5. Assume that (W), (Wa), (H1), (Ha), and (H7) hold and
suppose that h # 0. Then there exists a constant ;1 > 0 such that problem (1.7)
has infinitely many nontrivial weak solutions whenever A > 0 is sufficiently large,
provided that Hh||Lp/(RN) < d;.

Theorem 1.6. Assume that (W), (W), (H1)—(Ha4), (Hg), and (H7) hold.
Then problem (1.7) has infinitely many nontrivial weak solutions whenever A >
0 is sufficiently large.

Theorem 1.7. Assume that (Wy), (Ws), (Hy), (Hs), and (Hy)—(H7) hold.
Then problem (1.7) has infinitely many nontrivial weak solutions whenever A >
0 is sufficiently large.

Remark 1.8. Condition (1.6) plays an important role in checking the com-
pactness condition ((PS)-condition) of the functional energy. Moreover, there
are functions which are superlinear at infinity, but do not satisfy (1.6). For ex-
ample, the superlinear function f(z,u),

fl@,t) = (@) [t~ In(1 + [¢]),

where 0 < inf, cpn &(z) < sup,cpny {(x) < co. Also, if we consider the following
function:

[t02t(@In [t| + 1), t#0,
z,t) = 1.8
e {07 o (1.9
By a straightforward computation, we obtain
1O e, ¢ £0,
G(x,t) = 1.9
(2,1) {07 o (19)

Hence, it is easy to verify that (1.8) satisfies (Hy), (H2), (H4)—(Hg) but it does
not satisfy (1.6) and (H3) for § = p?. In addition, we can also verify that (1.8)
satisfies (H1)—(Hg) and (1.6) for 6 = pu > p?.

2. Preliminaries

In this section, we introduce some definitions and basic properties of the
fractional Sobolev space that will be used in proving the main results.

Let 0 < s < 1 < p < oo be real numbers. The fractional Sobolev space
W*P(RY) is given by

p
weP (RN LP(RY) : // u(y)| e 2 dad
(RY) = {ue o ]a:—y]N+PS xdy < 0o p,
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which can be equipped with the norm

1
Wr, .\
folhgnoa) = (e + [ B 4z )

where [|ul|,»(r~y is the norm for the usual Lebesgue space LP (RY) denoted by

1
P
ol ey = ( / \u|pdw)
]RN

We define the fractional Sobolev space with potential W (x) and the parameter
A, which is large enough, by

E)\ = {u € WHP(RV) : / AW (z)|ulPdz < oo}
RN

with the norm

1
lullz, = // al” 1[ulz) — uly )‘pdxdy—l—/ AW () |u|Pdz .
Py ‘:L‘ _ y‘N—i-ps RN

In particular, we have the following result
Lemma 2.1. (Ey, || - ||g,) s a uniformly convex Banach space.

Proof. The proof is similar to that of [24, Lemma 10] and hence omitted. [

Lemma 2.2. Assume that (Wy) holds. Then the embeddings E) <
WeP(RN) < LY(RN) are continuous for v € [p,pt]. In particular, there exists a
constant C, > 0 such that

[l vy < Cullullg,  for allu € Ej. (2.1)

Moreover, for any R > 0 and v € [1,p}), the embedding Eyx — L"(Bgr(0)) is
compact.

Proof. The proof is similar to that of [24, Lemma 1] and hence omitted. [

Lemma 2.3. Assume that (W1) and (W2) hold. Let v € [p,p%) be a fized
exponent and let {uy}n, be a bounded sequence in E).
Then there exist u € Ey N LY(RY) such that up to a subsequence

up, —u  strongly in LY(RY) as n — oco. (2.2)

Proof. The proof is similar to that of [24, Theorem 2.1] and hence omitted.
O
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Definition 2.4. A function u € E) is said to be a weak solution of (1.7) if
for any ¢ € E) we have

(a + b//RQN — y|N+p)s|pd33dy)p_1
//RQN - u\x)—|py\215+§)f) — ) (p(z) — ¢(y))dzdy

—i—/ )\W(:B)]u\p_ngod:U:/ g(:r,u)god:n—i—/ h(z)edx.
RN RN RN

Let Iy w : Ex — R be the energy functional associated with (1.7) defined by

(w)” g
I)\,W() b2<a+b//R2N |:L‘— |N+ps ddy

+ / AW (z)|uPdx —/ G(z,u)dr — /]RN h(z)udz. (2.3)

b JrN

Under the assumptions (W7) and (Hj), the functional I yy is of class C1(E), R),
and

() 0} = (a+b//ﬂw z—y |N+p)s|pd dy>p1
//RQN lu(z) — u|x)_’py|21\(/+£»f) —u(y)) (@) — oly))dady

+ /\W(x)\u|p_2ug0dm—/ g(x,u)gpdx—/ h(zx)edx.
RN RN RN

Then it is clear that the critical points of Iy are weak solutions of problem
(1.7). In the next, we shall use the Mountain pass theorem, Symmetric mountain
pass theorem and Fountain theorem to prove our main results.

Theorem 2.5 ([27], Mountain pass theorem). Let X be a real Banach space
and let I € C1(X,R) satisfying (PS)-condition. Suppose I(0) =0 and

(i) there are constants p,a > 0 such that IlaB,,(o) >
(ii) there is an e € X\B,(0) such that I(e) < 0.

Then I possesses a critical value ¢ > o. Moreover ¢ can be characterized as

= inf I
c= %Iérfél[%}ﬁ (v(s)),

where
I'={yeC([0,1],X) : 7(0) = 0,7(1) = e}.

Theorem 2.6 ([27], Symmetric mountain pass theorem). Let X be an infi-
nite dimensional Banach space and let I € C1(X,R) be even, satisfying (PS)-
condition, and 1(0) = 0. If X =Y @& Z, where Y is finite dimensional and I
satisfies the conditions:
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(i) there exist constants p, a > 0 such that IlOBp(O)mZ > a;

(ii) for any finite dimensional subspace X C X, there is R = R(X) > 0 such
that I(u) <0 on X\Bg,

then I possesses an unbounded sequence of critical values.

Theorem 2.7 ([28], Fountain theorem). Let X be a real Banach space, let an
even functional I € C1(X,R) satisfy the Palais—Smale condition ((PS).-condition
for short) for every ¢ > 0, and let there be ko > 0 such that for every k > kg there
exists pr > ri > 0 such that the following properties hold:

. _ () < 0-
() ap= max I(u)<0;
llullx=px
(ii) by= inf I(u)—> o0 ask — oo.
uEZy,
llullx =k

Then I has a sequence of critical points {uy} such that I(uy) — oo.

Definition 2.8. Let X be a Banach space with its dual X* and I € C'(X,R).
For any {u,} C X, {u,} has a convergent subsequence if I(u,) is bounded or
I(up) = ¢, c € R and I'(u,) — 0 as n — oo. Then we say that I(u) satisfies
the Palais—Smale condition or the Palais—-Smale condition at the level ¢ ((PS)-
condition or (PS).-condition for short).

3. Proof of main results

Lemma 3.1. Assume that (W), (H1), and (Hs) hold. Then Iy w satisfies
the (PS).-condition for large A > 0.

Proof. Let {u,} C E) such that
Iw(up) = ¢ and If\,W(un) —0 as n — oo.

We first prove that {u,} is a bounded sequence in E) for large A > 0. We prove
this by contrary arguments. Suppose, by contradiction, that {u,} is unbounded
in Ey. We may assume that ||u,||g, — 0o as n — oo. Let v, = up/||uy||g,, then
{vn} is bounded in Ey and [jvy| g, = 1, also ||va]|pv@yy < Cullvnllg, = Cy for all
v € [p,pt]. For any (z,z) € RNV x R, set

k(t) = Gz, t7t2)t*, tel,00).

For |z| > g and t € [1,75'2], by (H3), we can get

K1) = gla.t 7 2)(

= th ! [uG(a, 7 2) =t zg(w,t 7 2)] < Cot' P2

4t rG (2, 1 2)

Therefore,

-1

k(rg'2) — k(1) :/1% "1 (s)ds
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Colz|* Coz|P
(w=—pyry™ pm—p

ralz
</ Cos" 1P zPdz =
1

Consequently, we have

Colz|* C
G(z,2) = k(1) > k(ry '2) - LZ’,H, > ﬁu =1 N EI
(1 —p)rg o (k—p)rg
— C
Noting that Cy < 5(#7])]9)7 we have —; — % > 0. Since p > p?, there
o o (k—p)rg
exists a constant p? < @ < p*, and hence
G(z,u)
3.1
ful—oo  Jul? (31)
In particularly, we have
G
lim G (3.2)
|u]—o00 |U’p
Due to (Hy), we have
l9(z, )] < exfulP~! + calul? (3:3)
and . c
G, u)] < —Hul” + ~CJul”. (34)

By using (3.1) and (3.4), we know that for any M > 0 there is a constant C' (M) >
0 such that

G(x,u) > Mu|? — C(M)|ulP for all (z,u) € RN x R. (3.5)

Moreover, we have

Inw (un 1 n P
aw (un) ( +b// il N+(s)| dz dy)
lunllzo@yy — llunllLo@yy bp R2N |z —y|NTP

41 / AW (@) n P
p||un||L9(RN) RN

_/ G(x,up) dx—/ h(z)up, Q.
RN ”Un”L@(RN) RN ||UnHL9(RN)

Since 6 > p?, we can deduce that

im [ Gl un)

n—00 Jpn [[unll Lo (RN)

dx = 0.

Furthermore, as ||v,|| g, = 1, passing to a subsequence, there exists v € E) such
that v, — v in E\, v, — v in LY(RY) for p < v < p* and v,(x) — v(z) a.e. in



50 Mohamed Bouabdallah, Omar Chakrone, and Mohammed Chehabi

RN, Set @ = {z € RN : v(z) # 0}. If meas(Q2) > 0, then [, [v|dz > 0.
Thus, from (3.5), we have

G(z, uy v nHLp RN)
/R gd > ManHL@ RN) C’(M)i

N i, [ o

Hence,

lvall;
0 = lim inf (/ G t) 4 4 o (ag) P EY)
R

n—oo \ Jer Jun %, [

> liminfManH%g(RN) > M/ lv|?dz > 0.
n—o0 o)

This is also a contradiction. Thus, meas(2) = 0, and as a result v(x) = 0 a.e. in
RYN. Therefore, by (W1), we have

- / o [Pda + / fvnlPda
LPERY) T Jiw(ayd W (2)<d

1 < 2
— )\d”UTLHE/\ +0(]‘) — m7

for large n. From (H;) and (Hs), we know that there is a constant ¢ > 0 such

that
pG(z,u) — ug(z,u) < clulP for all (z,u) € RN x R.

Consequently, we have

 Tunlly, nu (D (un) = <I&7w<un),un>]

1 [tn () — tn ()P P /
dzd = AW |Pd
Huan [ < //R?N ]x— |N+PS Yy +p N (z)|un|[Pdz

— i G(:U up)dz — / h(z)u,dz
RN

[n () = un(y) ! // [n () — un(y)[”
b d d dxd
<a+ //RQN \x—y\NJFPS y R2N ‘QL’ —y‘N"'pS rey

_/ )\W(x)]un|l’dx+/ ung(:n,un)dx—}—/ h(x)undx]
RN N RN

1 |un (@) — un(y)|” P
= dzd

lunll, [ ( //RN \x— e
|un (@) — un(y)|P - 1// |un (@) — un(y) P

b dzdy dzd

< " //R2N \:v—y!N“’S R2N Iw—leﬂ’s Y

I / AW (&) un [Pda + / (9, wn )t — 1 un) )
b RN RN

(- 1) /R ) h(m)undx]
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1 p
2 5 /’L p p 1// |u7'l = (y)’ dxdy
[[un|l, R2N \x— \ e

w—p

- )\ npd — npd — —10 h p’ n
e RNVWMWIafCANuw (1= DGyl oyl 2,

2 [P

p—Dp / » LY @®RY)  pH—p c
> —c vp|Pdx — (u —1)C, — — T

2 RN| | (n—=1)Cyp HunH%Al p2 Ad

p—p?

c
— — is positive, we
2 AP

get a contradiction. Hence {u,,} is bounded in F) for large A. Going, if necessary
to a subsequence, we may assume that

as n — oo. Taking A > 0 to be so large that the term

Up — U, weakly in Fjy,
Uy — U, strongly a.e. in RY,
Up —> U, strongly a.e. in LV(RY), p < v < p?,
luy,| <1, a.e in RY and for some I € LP(RY) N LY(RY), (3.6)
// [un () = un ()" dzdy — 01 >0 and / AW (2)|up|Pdz — 02 > 0.
RN |T— y\Nﬂ’S RN

We will prove the following equalities:

uy)l = Py —
//]Rzzv |z — ]N+ps T —gips @dy =01 and v AW (@) |ulPdz = oo.

Let ¢ € E) be fixed and denote by YT, the linear functional on Ey defined by

2(o(2) —
//RQN PWI2(0@) = W) () dady.  (3.7)

!w—y!Nﬂ’S

o(y)”
—————dad 3.8
to= [ o e 59

for all v € E. By Holder’s inequality and the definition of T, we have

We set

<I$\,W(un) - Ii,W(“)v up —u) = (a+ b[“n]g,p)pilfrun (un, — )
—«a+mmgykwywn—u»gévamxwu%%m—wmw%own—uMm
—/ (9, ) — g2, )) (e — 0

RN »
> (a+ bfunl? )P unl? ) — (a+ blunl?, )P ([unl?,) T (]2,

—1 1

+ (a+ buf?, )P (w2, — (a+blu? )P ([ul?,) F ([ual?,)?

hSA
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+/sz AW () un|Pda — (/RN AW (z) un]pdx> (/ W (x \u|de>
+/sz AW () |ulPda — </RN AW (2 |u]pdx> </ W (x \unpdx>

—14Nwmnm»—mau»wn—qu
= (W27 ((nl2y) 7 [((ual2y)? = ([l2,)7 ]

p—1

+ (a+bluls )" 1([U]é’ ) 7

(o ‘“n‘pdw) 10 <»unwdx)?’-(/M@dey]

)
X [</RN /\W(mun'pdx) 5 - (/RN AW(x)IuIPd%) ppl]

- /RN (9(z,up) — g(x,u))(uy — u)dz. (3.9)
Since u,, — w in Ey and I} y(us) — 0 as n — oo in (E))*, one has
<I§\7W(un) — If\7W(u),un —u)—0 asn— oo.
Thus, by (H;) and Holder’s inequality, we obtain
| ) = gl ), =)o
< /R Jer (un P+ JulP ™)+ ea(un] T 4 [ul 97| |up — ulde

< ex(lunll b + Nl = oy
o a(fun %z ary + eyt =l ey

This latter implies by (3.6) that

lim (9(z,un) — g(x,u))(uy — u)dax = 0. (3.10)

n—-+oo RN
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By the fact that u, — u a.e. in RV and Fatou’s lemma, we have

[ ]sp < %gﬁnf[un] sp — 01, (311)
/ AW (z)|u|Pdz < hmmf/ AW (2)|u|Pdz = gs. (3.12)
RN n—+0o JpN

1
Notice that f(s) = (a + bs)P~ 15" is a non- decreasing function for s > 0. Then
we can get

p—1

[(01)7 — ([WlZ,)7][(a + ber )P~ (e1) T — (a -+ bul?, )P~ (u],) 7 1> 0 (3.13)

and

[<92);_<RNAW<$)|U|W>;] [@w ([ >|u|pdx)p‘“1]zo.

(3.14)

Now, in view of (I} y(un) — I} iy (), un — u) — 0 as n — oo and (3.9) — (3.11),
we have

p—1

0> lim inf{ [([unl2,)? - ([u]z;p)ﬂ [(@+ blunl? )P ([unl2 ) 7

n—00

—1

— (a+ bl )P ([u]?,) 7]

( N /\W(x)\un]pd:r>; _ ( /R ) )\W(x)|u|pdx> ’17]

p—1

" [</RN /\W(m)‘“n’p@?) o (/RN AW(J:)|U\Pd33) ppl]

_ /RN (9(z,un) — g(@,u))(up — u)dz — / @) (un - u)dm}

RN
p—1

> lim {[(unl?,)7 = ([, ][0 + blunl? ) (funl?,) 5

n—o0

— (a+bluf2, PN (w]2,) 7 1

([ owanrar) - ([ wonrac)'

) [(/RN AW@)‘Un’pdx>T - (/RN AW($)|U\pda:) ]}

— lim (9(z,un) — g(x,u))(uy — u)de

n—-+o00 RN

_.I_

> [(e0)? — ([ul2,)%] [(a+ b ()5 — (a+ bulZ, )P ([ul2,) 5|

(@) = ([, w@lura) ’1’]

+
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X [(QQ)T _ (/RN )\W(a:)|upda:) ppl] . (3.15)

Finally, by (3.13) — (3.15), it comes that

u(y)[? B o
//RzN |z — ’N+p3 o iN+ps d@dy =01 and - AW (z)|ufPdz = 2.

Therefore, we get |luy||g, — ||ullE,. Since E) is a reflexive Banach space (see
Lemma 2.1), it is isomorphic to a locally uniformly convex space. So, the weak
convergence and convergence in norm imply the strong convergence. This com-
pletes the proof. O

Proof of Theorem 1.2. It is clear that Iy (0) = 0 and Iyw € Cl(Ey\,R)
1
C’p (Cp appears
n (2.1)), combining hypotheses (Hy) and (Hs), there is a constant C(s) > 0 such
that

satisfies the (PS).-condition (see Lemma 3.1). For any 0 < & <

Glavu) < Sjup + GE) e

Thus, for small p > 0, we can get

1 , 1
I)\7w(u) = bpﬁ (a + b[u}’;p) + 1; /]RN )\W(x)’u|pdl’
- G(z,u)dx —/ h(z)udx
RN RN
aP~—1 1
>, v / AV @)uPdz — [ Gla, u)de — / h(z)udz
p ’ P JRN RN RN
cr cu
7HUHEA —5?1)!!“”% —C(e) qq ullf, = Copllhll Lo v llull £,
| o
= ulles [ (5~ bt - 0@ Ll = Gl |-
Tak d L1 _ 001 fop all ¢ € RY
aee—TCpan set m1(t) = %t qt orallte

Taking into consuieratlon that ¢ > p > 1, we can deduce that there exists pg >
0 such that

max 7 (t) = 1m(po) > 0.
teRT

m(po)

Taking dg = 50
P

obtain that

and for all u € B, where B, = {u € E) : ||ul|g, < po}, we

~ m(po)
I)\,W|8BPO Za=p—p— > 0.

Next, let us consider

1 1
I w(tu) = e (a+ btp[u]gp)p + » /RN tPAW () |u|Pdx
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—/ G(z, tu)dx —/ h(z)tudx for all t € R.
RN RN

B ([uffp)?

Set 0 # u € Ey. By (Hi) and (Hy), we know that for any rk > ————27—
p fRN |u|P*dx

there is a constant C,, > 0 such that
Gz, u)| > klulP’ = CplulP for all (z,u) € RN x R.
Then we have

Iy (tu) = LQ (a+btP[ul? ))* + 1/ tPAW ()| ulPdz
P JrN

bp =P
—/ G(x,tu)d:r—/ h(z)tudx
RN RN
< 1 (a+ btP[u]? )p—i—tp/ )\W(fc)|u|pdx+0,itp/ |u|Pdz
= bp? P P JrN RN

_ ,QtPQ/ ]u|p2da: — t/ h(z)udx — —oco as t — oo.
RN RN

Hence, there is a point e € E\\B, such that I y(e) < 0. By Theorem 2.5, I w
possesses a critical value ¢ > a > 0 given by

= inf I
¢ = inf max aw (7(s)),

where

I'={y € C([0,1], X) : 7(0) = 0, (1) = e}.

Therefore, there is v € E) such that Iy w(u) = ¢ and I;\,W(u) =0, i.e., problem
(1.7) has a nontrivial weak solution in E}. O

Proof of Theorem 1.3. From the proof of Theorem 1.2, we know that there
exist constants p > 0 and o > 0 such that I)\’W‘Z)B > « > 0 and there is a
P

point e € E\\B, such that Iy w(e) < 0. Next, we prove that Iy satisfies the
(PS).-condition for large A. Let {u,} C E) such that

Dow(up) = ¢ and Iy y(u,) =0 asn — oo.

We need to prove that {u,} possesses a convergent subsequence. In the same way
as in Lemma 3.1, it is sufficient to prove that {u,} is bounded in E). If not, we
may assume that ||u,||g, — 0o as n — oco. Let v, = uy,/||un| E,, then |lv,| g, =
L and |lvn||pv@yy < Cullonllg, = Cy for v € [p,p;]. Since [|v,||g, = 1, passing
to a subsequence, there is v € FE) such that v, — v in Ej, v, — v in LY(RY)
for p < v < pf and v,(x) — v(z) a.e. in RY. Set Q@ = {x € RY : v(x) # 0}.
If meas(Q2) > 0, then [, |v|°d2 > 0. From (H;) and (Hy), we know that for any
-1

bP
M > s— there is a constant C'(M) > 0 such that
p2aP(p_1) fQ |U|P dx

G(z,u) > Mu[P* — C(M)ul". (3.16)
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On the other hand, we have

I n 1 . P
v (tn) _ < // [e: N+<S>r " dy>
luals Il bP? RN o —y[NEP

1
T / AW (2)|uy, |Pde
pllunlg, /&Y

~ / CJ(L;;;)M_ / ha) " d
RN |[un g, RN l[unllg,

Since p? > p, we deduce that

. G(x,up) 1 bt
lim inf / v o S e
RN |un||, b
Moreover, from (3.16), it follows that
G [0 o
[ e aonls o, - COD— D,
R [lun, [[unl[,

which, by the last two inequalities, means that

1 -l . [[onll;
L timin / Gl un) g o o) @) ) o gy / ol da.
p? qp(P—1) n—00 R p |p -p

N unlis, [

This is a contradiction. Hence, meas(f2) = 0 and, as a result, v(z) = 0 a.e. in
RYN. Then, by (W7), we have

1 2
vpl|® :/ vnpda:+/ vp[Pde < —||va]|5. +0(1) < —,
|| ||LP(]RN) W(2)>d ‘ ’ W (2)<d | | )\dH ||E)\ ( ) A

for large n. By combining (H;) and (Hs), we can find a constant C' > 0 such
that
p2G(z,u) — g(z,u)u < ClulP for all (z,u) € RY x R.

Notice that p > 2. By a calculation, for large n, we get

— HTjV)[pzlxyv(un)——<IQJV(un),un>]

- Tl (oo L e )

+p/ )\W(:r)]un|pdx—p2/ G(w,un)dw—pQ/ h(z)updz
RN

| (z un(y)|P Pl
<a+b//RzN \x— ‘N+ps dxdy

|un _Un( )’p /
dxdy — AW n|Pd
<[ ey [ AW @l
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—i—/RN ung(z, un)dac—i-/ h(z )undx}

~ Tl [ (oo [ e dy>p1

1) /RN AW () [ [Pz

[ ngte.w) —p2G<x,un>>da: 0o [ h(az)undx]
RN RN
1 i () — 11 (1) P
> 1)a?™ 1// dxd
lunll, [ Ron |x—y|N+ps Y

p—1) / AW (2)|un Pda + C / g Pl — (7 — 1>cpuhum/<m>uunm}
RN RN

HhHLp’([RN)
W%(p—l)—masn—)m
nll g,

>(p-1)-C [ Julds - 2= 1)G,
RN
. C . .
Letting A > 0 be so large that the term p — 1 — d is positive, we get a con-

tradiction. Hence, {u,} is bounded in E) for large A. Therefore, Iy 1 possesses
a critical value ¢ > a by Theorem 2.5, i.e., problem (1.7) has a nontrivial weak
solution in E). This completes the proof. O

Proof of Theorem 1.4. Let {e;} be a total orthonormal basis of L?(B,) (B,
appears in (13)) and define X; = Re; for j € N,

V=@ X; and Z,=¢%,,,X;, forkeNl.
Set

E(B,) = {u €W (B,) : /B AW () [ulPdz < oo}

with the norm

1
1]ulz) —u(y)l v
lull £y (B,) = <//prr al~ P ————dady + . AW (z)|uPdz ) . O

Lemma 3.2. Assume that (Wy) holds. Then, for p < 6 < p?,

Br= sup |lullpep,y) =0 as k— oo
UEZy,
lullzy (By=1

Proof. From Lemma 2.2, E)\(B,) — L*(B,) is compact for 1 < s < pi.
Indeed, it is clear that Bry1 < B < 00,80 B — 8 > 0 as k — oo. For every
k > 1, there exists uy € Zj such that |lu|g,(p,) = 1 and ||Jul|psp,) > & By

2
the definition of Z, up — 0 in Ex(B;). Then this implies that uy — 0 in L*(B,)

and, as a result, § = 0. This completes the proof. ]
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In view of Lemma 3.2, we can choose an integer k > 1 such that

/ upde < o (// -1 @) — vl dy+/ )\W(x)|UIpdx>
B X By |z — y|NHps B,

(3.17)
for all u € Z N Ex(B,), where ¢; appears in condition (H;). Take
1, z>nr
xTr) =
o= 4y 27
and set
Y={1-¢)u:ueE\,(1—-v¢)uecYy} (3.18)
and
Z={1—-Yu:ue E\(1—v)ueZy}+{Yv:ve E\}. (3.19)

Hence, Y and Z are subspaces of Fy, and Ey =Y & Z.

Lemma 3.3. If the conditions (W1), (Wa2), and (Hy) hold, then there exist
constants p, a > 0 such that I/\,W\aspm)ﬂz > « for large \.

Proof. By (W3), (3.17) and (3.19), we have

ull? :/ upd:z+/ ulPdzx
HHMM)|KII m

1/
g — AW () |uPdx
k5 + g L
P P
< sl + 5l (3.20)

for all u € Z. It follows from (2.1), (3.4) and (3.20) that
1 , 1

— /RN G(z,u)dx — /]RN h(z)udz
[ulf , + 1/R AW (2)|ulPde — /RN G(z,u)dz — /RN h(z)udx

aP—1

Y

b

| \/

lull, mewy»mmmm Cyllh] o eyl 2,

> %HUH%A - T/\pHUH%A H I, CthHLp'(RN)HuHEA

1 g c2Cq
JM&K%—MJM% Ll = Gyl oo |

2
For A large enough such that A > %, let

1 C1 —1 CQCg -1
t)==——— |t - =L forallt € R}.
m2(t) <2p d)\p> p or a, N
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Since ¢ > p > 1, we can conclude that there exists p; > 0 such that

max n3(t) = n2(p1) > 0.
teRT
n2(p1)

. O
2>0

: n2(p1
Taking §; = 2(Cp)7 we have I)\7W|8Bp1 0Nz = Q= p1

Lemma 3.4. Assume that (Hy) and (Hy) are satisfied. Then, for any finite
dimensional subspace Ex C E\, there is R = R(EA) > 0 such that

Low(u) <0, ué€ By, |ulg, >R

Proof. For any finite dimensional subspace Ey C Ej, by the equivalence of
norms in the finite dimensional space, there is a constant D > 0 such that

||uHLP2(RN) > DHUHE)J u € Ej.
bp—l
Basing on (H;) and (Hy), for any M > DD we can find a constant
C(M) > 0 such that
G(z,u) > M]u\pQ — C(M)[ulP for all (z,u) € RN x R.

Thus, we have

o (u) = — (a / / Jut@) = ulI” )"

aw (u 2 . |33— |N+ps Y

1/ AW u|pdx—/ G(z u)dx—/ h(z)udz
p RN RN

p
< oz (0 gealull, )+ S,

CD[ull} g —MHUIIP 2@y I o ey el o vy

1 p
< oz (0 ol )+ (5 + caneg) i,

2 2
— MDY |ull, + Cpllbl 1o vy llull 2y
A (RN)

-

+~§

S)

for all u € Ej. Tt follows that there is a large R > 0 such that Iy j(u) < 0 on
E\\Bg. O

Let X be a reflexive and separable Banach space. Then there are e; € X and
e; € X* such that

X =span{e; | j=1,2,...}, X*:span{e;‘f li=1,2,...}

o
<ez:ej>={’ e

and

0, i+#j.

For the convenience, we write X; = span{e;}, ¥, = @ 1 X5, Zy = D32, X Let
B ={ueY;:|ulx <pr}, Np ={u € Zy: ||lul|x = fyk} where Pk > ’yk > 0
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Lemma 3.5. Assume that v € [p,ps) and let B, (k) = sup,cyz, lull s, =1 [lwll -
Then B,(k) — 0 as k — oo.

Proof. The proof of this lemma is similar to that of [29, Lemma 6] and we
omit the details. O

To prove Theorem 1.6 and Theorem 1.7, we first prove the following two
lemmas.

Lemma 3.6. Assume that the assumptions (Hy) and (Hz) hold, then there
exist constants ry, such that

by = inf Iyw(u) =00 ask — oo (3.21)

Proof. Notice that from (H;) and (Hsz) it follows that there is a constant
C(e) > 0 such that

G, )| < ]§|uyp v Cé(le)\uyq. (3.22)

Also notice that by Young’s inequality we have

a—l—b// )‘pd dy
R2N ‘ﬂf* ‘Ners
1\ P
:(app // )|pdxdy ’
v |x— \N+ps
_p-1 <<p 1>p xapzf)pl
p p—
1\ P
1 ()P v
= (pb ) = 2N 4ad
p<<p //R |x— PR y) )
1
p \7* u(y)|” »
. b 2 dad
( —1> o (p //RN o= “’)
1
pb// [u@) =@l 4 4,
= R2N \x— yN+ps

Hence, we make the following conclusion:

a+b )‘pd d ’
R2N |ZL‘— |N+ps 4
> pba?~! // )|pd:cdy. (3.23)
R2N |CC— |N+ps

According to (3.22), (3.23) and Lemma 3.5, we obtain that

P grgy) L
1 b ——————dzd — AW Pd
vl = o (avo [ O S0 nay) ) [ v

v

\/
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—/ G(x,u(z ))d:c—/RN h(z)udz
> O [ L [ s

— | Gz, u)dz — / h(z)udz

RN RN

1
> el — = [ tupde = S [ juptde = e [ P

— 3

€ Cle
> 2l = (& + bl ) B3O, - S @l
p p q
1
Choose r, = ———————. Then ry — oo as k — oco. For any u € Z; with
Bp(k) + By(k)
l|ul|g, = 7%, Wwe know
1 € Bp (k) C(e) Bq (k)
I > — (= 4+ ||k, ) P _ q
aar(6) 2 = (4 Willavie) [y e S0P ™ o o) 5 AT
1 Cle
> 207 (£ 4 Wil ) - S >0
Therefore,

by = inf Iyw(u) =00 as k — oo. O
u€Zy, |lullgy=rk

Lemma 3.7. Assume that the assumptions (Hy) and (Hy) hold, then there
exist constants pr > 0 such that

ap = max I)\ W( ) <0. (3.24)
u€Yy
llull 2y =px
2p—1bp—l
Proof. By (H;) and (Hy), there exist n > o Cy, > 0 such that
kP
G(z,u)| = nluf’’ — Cylul? for all z € RN and u € E). (3.25)

Since all norms are equivalent on the finite dimensional Banach space Y}, there
exists a positive constant Cj > 0 such that HUHLI’Q(RN) > Ck|lul|g,. Then, for

llul|z, = pr > 1, from (3.25) and the inequality
(x+y)P < 2p*1(zp +yP) forall z,y >0, (3.26)

we have

Iyw(u) = 02 ( //R2N |z — |N+p)s|pdxdy>p

1
+/ )\W(x)|u|pdx—/ G(a:,u)dx—/ h(z)udx
P JrN RN RN
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2pr—lgp  op—lpr—l » 1,2 2
e lull, + Sl < [l s
+ (Cn + CPHhHLP'(RN)> 1l ey

op—1pp—1 2 1
(Z2 ) o + 20k
p p

2P~ Lqp
2

+ (o + ol asy) Il ey + =5

Therefore, since p?> > p > 1, then there exists p, > 1 large enough such that

ar = max I
u€Yy, ||lulle, =pk

(u) <0.

)

This completes the proof. O

Proof of Theorem 1.4. Take X = E) and Y, Z defined in (3.18), (3.19).
According to Lemma 3.1, Lemma 3.3 and Lemma 3.4 with (Hg) and by the fact
that Iy (0) = 0, we have that Iy satisfies all assumptions of Theorem 2.6.
Hence, problem (1.7) has infinitely many nontrivial weak solutions, and thus the
proof of Theorem 1.4 is completed. ]

Proof of Theorem 1.5. Take X = E) and Y, Z defined in (3.18), (3.19). From
the proof of Theorem 1.3, especially in the passage where the (PS).-condition
was checked, also with Theorem 1.4, we deduce that I y satisfies all assumptions
of Theorem 2.6. Therefore problem (1.7) has infinitely many nontrivial weak
solutions, which completes the proof of Theorem 1.5. O

Proof of Theorem 1.6. Let X = E) be a Banach space and let the conditions
of Theorem 1.6 be verified. First, from Lemma 3.1, Iy satisfies the (PS).-
condition. Moreover, we have I y(0) = 0 and, according to the condition (Hg),
I w is an even function. Finally, by Lemma 3.6 and Lemma 3.7, we deduce that
I w satisfies the conditions (i) and (ii) of Theorem 2.7. Therefore, I y satisfies
all conditions of Theorem 2.7 and we obtain that problem (1.7) has a sequence of
solutions {ug} with unbounded energy. In conclusion, by Theorem 2.7, problem
(1.7) has infinitely many nontrivial weak solutions. This completes the proof. [

Proof of Theorem 1.7. Let X = E) be a Banach space and let the conditions
of Theorem 1.7 be verified. First, to show that the energy functional I - satisfies
the (PS).-condition, we follow the same steps as in the proof of Theorem 1.3.
Moreover, we have Iy (0) = 0 and, according to the condition (Hg), I w is
an even function. Finally, by Lemma 3.6 and Lemma 3.7, we deduce that Iy w
satisfies the conditions (i) and (ii) of Theorem 2.7. Therefore, Iy satisfies all
conditions of Theorem 2.7 and we obtain that problem (1.7) has a sequence of
solutions {ug} with unbounded energy. In conclusion, by Theorem 2.7, problem
(1.7) has infinitely many nontrivial weak solutions. This completes the proof. [
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IIpo piBuauus tumy Illpeainrepa—Kipxroda 3
JapoOOBUM p-JlamjiaciaHomM 0e3 yMoBU
Amb6po3zerri—PabinoBuna

Mohamed Bouabdallah, Omar Chakrone, and Mohammed Chehabi

VY 1iit crarTi MU PO3IVISIIAEMO ICHYBAHHS Ta MHOXKUHHICTB 6araThox cJiab-
KIX PO3B’SI3KIB JjIs HACTYIIHOTO JIpoboBoro piBHsinHg TuIy [llpemiarepa—
Kipxroda:

p—1
(a + b//RzN = |N(+p)8|pdxdy) X (=A)su+ AV (2)[ulPu
= f(z,u) + h(z) inRY,

ne N > sp, a,b > 0 — koncranru, A — mapamerp, (—A); — apoboBmit
p-oueparop Jlamiaca 3 0 < s < 1 < p < oo, Heiniituicts f(x,u) i noTen-
niaabHa GyHKIist V() 3a70BONBHAIOT JlesKi TPUIHATHI IpUIyIeHHs. 3a
TAKUX YMOB OZIE€PXKAHO JedKl HOBI PE3y/JIbTaTH JJIs JOCTATHBO BEJIMKUX A >
0 muraxoM 3acTOCYyBaHHS BapialifHUX METOJIiB.

Kutrouosi ciioBa: p-onieparop Jlamiaca, apobosuii poctip CoboJiesa, pis-
usinast tuiy [l peninrepa—Kipxroda, ymosa AM6poszerri—Pabinosina, Bapi-
ariitHi MeTo U
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