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On Some Weighted Classes of

m-Subharmonic Functions
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In this paper, we study the class Em(Ω) of m-subharmonic functions in-
troduced by Lu in [18]. We prove that the convergence of the Hessian mea-
sures is deduced from the convergence in m-capacity for the functions that
belong to Em(Ω) satisfying certain additional properties. Then we extend
those results to the class Em,χ(Ω) that depends on a given increasing real
function χ. A complete characterization of those classes using the Hessian
measure is given as well as a subextension theorem relative to Em,χ(Ω).
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1. Introduction

In complex analysis, the Monge–Ampère operator represents the objective of
several studies since Bedford and Taylor [1, 2] demonstrated that the operator
(ddc·)n is well defined in the set of locally bounded plurisubharmonic (psh) func-
tions defined on a hyperconvex domain Ω of Cn. This domain was extended by
Cegrell [7, 8] by introducing and investigating the classes E0(Ω), F(Ω) and E(Ω)
that contain unbounded psh functions. He proved that E(Ω) is the largest domain
of definition of the complex Monge–Ampère operator if we want the operator to
be continuous for decreasing sequences. These works were taken up by Lu [18,19]
to define the complex Hessian operator Hm on the set of m-subharmonic func-
tions which coincides with the set of psh functions in the case m = n. By giving
an analogy to Cegrell’s classes, Lu [18] studied some analogous classes denoted by
E0
m(Ω), Fm(Ω) and Em(Ω). One of the most well-known problems in this direc-

tion is the link between the convergence in capacity Capm and the convergence
of the complex Hessian operator. This problem was studied firstly by Xing [22]
in the case of plurisubharmonic function and then it was generalized in different
directions in several works [11, 13, 23] which aim essentially to give a connec-
tion between the convergence in capacity and the convergence of the associated
Hessian measure. In this work, we continue the study of the stated problem.
The paper is organized as follows. In Section 2, we recall some preliminaries
on the pluripotential theory for an m-subharmonic function as well as the dif-
ferent energy classes which will be studied throughout the paper. In section 3,
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we give a connection between the convergence in capacity Capm of a sequence
of m-subharmonic functions fj towards f , lim inf

j→+∞
Hm(fj) and Hm(f) when the

function f ∈ Em(Ω). We generalize the result established by Hiep [13] in the case
of plurisubharmonic functions to the general case of m-subharmonic functions.
More precisely, we prove the following theorem.

Theorem A. If (fj)j is a sequence of m-subharmonic functions that belong
to Em(Ω) and satisfies fj → f ∈ Em(Ω) in Capm-capacity, then

1{f>−∞}Hm(f) ≤ lim inf
j→+∞

Hm(fj).

As a consequence on Theorem A, we obtain several results of the convergence
and especially we prove that if we modify the sufficient condition in the previous
theorem, we may obtain the weak convergence of Hm(fj) to Hm(f).

In Section 4, we study the classes Em,χ(Ω) introduced by Hung [15] for a
given increasing function χ. These classes generalize the weighted pluricomplex
energy classes investigated by Benelkourchi, Guedj and Zeriahi [5] and studied
in [3,4,11]. First, we prove that the class Em,χ(Ω) is fully included in the Cegrell
class Em(Ω) and hence the Hessian operator Hm(f) is well defined for every f ∈
Em,χ(Ω). Then we give several results on the class Em,χ(Ω) depending on some
condition on the function χ. These results generalize the well-known works in [4]
and [5] it suffices to take m = n to recover them. The most important result that
we prove in this context is a complete characterization of functions that belong
to Em,χ(Ω) using the class Nm(Ω). In other words, we show that

Em,χ(Ω) =
{
f ∈ Nm(Ω) /χ(f) ∈ L1(Hm(f))

}
.

In the end, we extend Theorem A to the class Em,χ(Ω) by proving the following
result.

Theorem B. Let χ : R− → R− be a continuous increasing function such that
χ(−∞) > −∞ and f, fj ∈ Em(Ω) for all j ∈ N. Suppose that there is a function
g ∈ Em(Ω) satisfying fj ≥ g. Then:

1. If fj converges to f in Capm−1-capacity, then lim inf
j→+∞

−χ(fj)Hm(fj) ≥

−χ(f)Hm(f).

2. If fj converges to f in Capm-capacity, then −χ(fj)Hm(fj) converges weakly
to −χ(f)Hm(f).

2. Preliminaries

2.1. m-subharmonic functions. This section is aimed to recall some basic
properties of m-subharmonic functions introduced by Blocki [6]. These functions
are admissible for the complex Hessian equation. Throughout the paper, we
denote by d := ∂ + ∂ , dc := i(∂ − ∂) and by Λp(Ω), the set of (p, p)−forms in Ω.
The standard Kähler form defined on Cn is denoted by β := ddc|z|2.
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Definition 2.1 ([6]). Let ζ ∈ Λ1(Ω) and m ∈ N∩ [1, n]. The form ζ is called
m-positive if it satisfies

ζj ∧ βn−j ≥ 0, j = 1, . . . ,m,

at every point of Ω.

Definition 2.2 ([6]). Let ζ ∈ Λp(Ω) and m ∈ N ∩ [p, n]. The form ζ is said
to be m-positive on Ω if the measure

ζ ∧ βn−m ∧ ψ1 ∧ · · · ∧ ψm−p

is positive at every point of Ω, where ψ1, . . . , ψm−p ∈ Λ1(Ω).

We denote by Λmp (Ω) the set of all (p, p)-forms on Ω that are m-positive. In
2005, Blocki [6] introduced the notion of m-subharmonic functions and devel-
oped an analogous pluripotential theory. This notion is given in the following
definition.

Definition 2.3. Let f : Ω → R ∪ {−∞}. The function f is called m-
subharmonic (m-sh for short) if it satisfies the following conditions:

1. The function f is subharmonic.

2. For all ζ1, · · · , ζm−1 ∈ Λm1 (Ω), one has

ddcf ∧ βn−m ∧ ζ1 ∧ · · · ∧ ζm−1 ≥ 0.

We denote by SHm(Ω) the cone of m-subharmonic functions defined on Ω.

Remark 2.4. In the case m = n, we have the following:

1. The definition of m-positivity coincides with the classic definition of posi-
tivity given by Lelong for forms.

2. The set SHn(Ω) coincides with the set of psh functions on Ω.

One can refer to [6, 16, 18, 21] for more details about the properties of m-
subharmonicity.

Example 2.5.

1. If ζ := i(4.dz1 ∧ dz1 + 4.dz2 ∧ dz2 − dz3 ∧ dz3), then ζ ∈ Λ2
1(C3) \ Λ3

1(C3).

2. If f(z) := −|z1|2 + 2|z2|2 + 2|z3|, then f ∈ SH2(C3) \ SH3(C3). It is easy to
see that f ∈ SH2. However, the restriction of f on the line (z1, 0, 0) is not
subharmonic, and thus f is not plurisubharmonic.

Following Bedford and Taylor [2], by induction, one can define a closed non-
negative current when the m-sh function f is locally bounded,

ddcf1 ∧ . . . ∧ ddcfk ∧ βn−m := ddc(f1dd
cf2 ∧ . . . ∧ ddcfk ∧ βn−m),

where f1, . . . , fk ∈ SHm(Ω)∩L∞loc(Ω). In particular, for a given m-sh function f ∈
SHm(Ω) ∩ L∞loc(Ω), we define the nonnegative Hessian measure of f as follows:

Hm(f) = (ddcf)m ∧ βn−m.
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2.2. Cegrell’s classes of m-sh functions and m-capacity.

Definition 2.6.

1. A bounded domain Ω in Cn is said to be m-hyperconvex if the following
property holds for some continuous m-sh function ρ : Ω→ R−:

{ρ < c} b Ω

for every c < 0.

2. A set M ⊂ Ω is called m-polar if there exist u ∈ SHm(Ω) such that

M ⊂ {u = −∞}.

3. A positive measure µ defined on Ω is said to be absolutely continuous with
respect to the capacity Capm ( µ << Capm for short) on a Borel subset E
in Ω if

∀t > 0 ∃s > 0 ∀E1 ⊂ E Capm(E1) < s⇒ µ(E1) < t.

Throughout the rest of the paper, we denote by Ω an m-hyperconvex do-
main of Cn. In [18, 19], Lu introduced the following classes of m-sh functions to
generalize Cegrell’s classes. Below, we recall the definitions of these classes.

Definition 2.7. We denote:

E0
m(Ω) = {f ∈ SH−m(Ω) ∩ L∞(Ω) : ∀ξ ∈ ∂Ω lim

z→ξ
f(z) = 0 and

∫
Ω
Hm(f) < +∞},

Fm(Ω) = {f ∈ SH−m(Ω) : ∃(fj) ⊂ E0
m fj ↘ f in Ω and sup

j

∫
Ω
Hm(fj) < +∞}.

Em(Ω) = {f ∈ SH−m(Ω) : ∀U b Ω ∃ fU ∈ Fm(Ω) fU = f on U}.

Definition 2.8. A function f ∈ SHm(Ω) is said to be m-maximal if for every
g ∈ SHm(Ω) such that g ≤ f outside a compact subset of Ω, then g ≤ f in Ω.

The previous notion represents an essential tool in the study of the Hessian
operator since Blocki [6] showed that every m-maximal function f ∈ Em(Ω) sat-
isfies Hm(f) = 0. Take (Ωj)j , a sequence of strictly m-pseudoconvex subsets of
Ω such that Ωj b Ωj+1,

⋃∞
j=1 Ωj = Ω, and for every j there exists a smooth

strictly m-subharmonic function ϕ in a neighborhood V of Ωj such that Ωj :=
{z ∈ V/ϕ(z) < 0}.

Definition 2.9. Let f ∈ SH−m(Ω) and (Ωj)j be the sequence defined above.
Take f j , the function defined by

f j = sup
{
ψ ∈ SHm(Ω) : ψ|Ω\Ωj

≤ f
}
∈ SHm(Ω).

The function f̃ := ( lim
j→+∞

f j)∗ is called the smallest maximal m-subharmonic

majorant function of f .
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It is clear that f ≤ f j ≤ f j+1, so lim
j→+∞

f j exists on Ω except at an m-polar

set, we deduce that f̃ ∈ SHm(Ω). Moreover, if f ∈ Em(Ω), then by [19] and [6],
f̃ ∈ Em(Ω) and it is m-maximal on Ω. We denote by MSHm(Ω) the family of
m-maximal functions in SHm(Ω).

We cite below some useful properties of MSHm(Ω).

Proposition 2.10 ([6]). Let f, g ∈ Em(Ω) and α ∈ R, α ≥ 0, then we have:

1. f̃ + g ≥ f̃ + g̃.

2. α̃f = αf̃.

3. If f ≤ g, then f̃ ≤ g̃.
4. Em(Ω) ∩MSHm(Ω) = {f ∈ Em : f̃ = f}.

In [20], the author introduced a new Cegrell class Nm(Ω) := {f ∈ Em : f̃ =
0}. It is easy to check that Nm(Ω) is a convex cone satisfying

E0
m(Ω) ⊂ Fm(Ω) ⊂ Nm(Ω) ⊂ Em(Ω).

Definition 2.11. Let Lm ∈ {Fm,Nm, Em}. We define

Lam(Ω) := {f ∈ Lm : ∀P m-polar set Hm(f)(P ) = 0}.

Definition 2.12.

1. Let E be a Borel subset of Ω. The Caps-capacity of E with respect to Ω is
given as follows:

Caps(E) = Caps(E,Ω) = sup

{∫
E
Hs(f) : f ∈ SHm(Ω), −1 ≤ f ≤ 0

}
,

where 1 ≤ s ≤ m.

2. We say that a sequence (fj)j of real-valued Borel measurable functions,
defined on Ω, converges to f in Caps-capacity, when j → +∞, if for every
compact subset K of Ω and ε > 0 the following limit holds:

lim
j→+∞

Caps({z ∈ K : |fj(z)− f(z)| > ε}) = 0.

3. For a given Borel subset E ⊂ Ω, the outer s-capacity Cap?s of E is defined
as

Cap?s(E,Ω) := inf{Caps(F,Ω) : E ⊂ F and F is an open subset of Ω}.

Remark 2.13. For a given subset E of Ω, one can define hE,Ω as follows:

hE,Ω := sup{f(z) : f ∈ SH−(Ω), f ≤ −1 on E}.

Using the definitions above and Theorem 2.20 from [18], we have the following:

Cap?m(E,Ω) =

∫
Ω
Hm(h∗E,Ω),

where h∗E,Ω is the smallest upper semicontinuous majorant function of hE,Ω.
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The following results, due to V.V. Hung and N.V. Phu [16], will be used
frequently in our paper so we are to give some statements.

Theorem 2.14 ([16]). Let f, f1, . . . , fm−1 ∈ Em(Ω), g ∈ SH−m(Ω). Then

ddc max(f, g) ∧ ddcf1 ∧ · · · ∧ ddcfm−1 ∧ βn−m|{f>g}
= ddcf ∧ ddcf1 ∧ · · · ∧ ddcfm−1 ∧ βn−m|{f>g}

Theorem 2.15 ([16]). Let fj , gj , h ∈ Em(Ω) be such that fj , gj ≥ h for all
j ≥ 1. Assume that |fj − gj | → 0 in Capm-capacity. Then

lim
j→+∞

u[Hm(fj)−Hm(gj)] = 0

for all u ∈ SHm ∩ L∞loc(Ω).

3. Convergence in Capm-capacity

Proposition 3.1 ([16,17]).

1. For every f, g ∈ Em(Ω) such that g ≤ f , one has

1{f=−∞}Hm(f) ≤ 1{g=−∞}Hm(g).

2. If f ∈ Em(Ω) and g ∈ Eam(Ω), then

1{f+g=−∞}Hm(f + g) ≤ 1{f=−∞}Hm(f).

Proposition 3.2. For each of non-negative measures µ, ν on Ω, satisfying
(µ + ν)(Ω) < ∞ and

∫
Ω−fdµ ≥

∫
Ω−fdν for all f ∈ E0

m(Ω), one has µ(K) ≥
ν(K) for all complete m-polar subsets K in Ω.

Proof. Using Theorem 1.7.1 in [19], we get∫
Ω
−fdµ ≥

∫
Ω
−f dν, f ∈ SH−m(Ω) ∩ L∞(Ω).

Take g ∈ SH−m(Ω) such that K = {g = −∞}. Then, for all ε > 0, we have∫
Ω
−max(εg,−1) dµ ≥

∫
Ω
−max(εg,−1) dν.

The result follows by letting ε→ 0.

We consider the sets Pm(Ω) and Qm(Ω) defined as follows:

Pm(Ω) = {f ∈ Em(Ω) :

∃P1, . . . , Pn polar in C/1{f=−∞} Hm(f)(Ω\P1 × ...× Pn) = 0}.
Qm(Ω) = {(f, g) ∈ (Em(Ω))2 :

∀z ∈ Ω ∃V a neighborhood of z uV ∈ Eam(V )/f + uV ≤ g on V }.

We cite below some properties of the class Pm(Ω) that will be useful further.
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Proposition 3.3.

1. If f ∈ SH−m(Ω), g ∈ Pm(Ω) and f ≥ g, then f ∈ Pm(Ω).

2. If f, g ∈ Pm(Ω), then f + g ∈ Pm(Ω).

Proof. 1. Since g ∈ Em(Ω), so is f . Now assume that there exists P1, . . . , Pn
polar in C such that 1{g=−∞}Hm(g)(Ω\P1× · · ·×Pn) = 0. Then, by Proposition
3.1, we deduce that

1{f=−∞}Hm(f)(Ω\P1 × · · · × Pn) = 0.

It follows that f ∈ Pm(Ω). The proof of the first assertion is completed.
2. By [19], the set Em(Ω) is a convex cone. Hence, if f, g ∈ Em(Ω), so is f +

g. We have

Hm(f + g) =
m∑
k=0

(
m

k

)
(ddcf)k ∧ (ddcg)m−k ∧ βn−m.

If we fix k ∈ {1, . . . ,m− 1}, then

(ddcf)k ∧ (ddcg)m−k ∧ βn−m = µ+ 1{f=g=−∞}(dd
cf)k ∧ (ddcg)m−k ∧ βn−m,

where µ := (ddcf)k ∧ (ddcg)m−k ∧ βn−m|{f>−∞}∪{g>−∞}. The measure µ has no
mass on m-polar sets. Indeed, by Theorem 2.14, we have

(ddcf)k ∧ (ddcg)m−k ∧ βn−m|{f>−j}
= ddc max(f,−j) ∧ (ddcf)k−1 ∧ (ddcg)m−k ∧ βn−m|{f>−j}.

Using Proposition 3.4 from [16], we get that (ddcf)k ∧ (ddcg)m−k ∧
βn−m|{f>−j} << Capm. We deduce that µ << Capm in every B b Ω. So,
µ has no mass on all m-polar sets.

The same reason remains true for the cases k = 0 and k = m to obtain that

Hm(f) = µ1 + 1{f=−∞}Hm(f) and Hm(g) = µ2 + 1{g=−∞}Hm(g),

where µ1 and µ2 are two measures that have no mass on all m-polar sets. We
deduce that

1{f+g=−∞}Hm(f + g) =

m−1∑
k=1

(
m

k

)
1{f=g=−∞}(dd

cf)k ∧ (ddcg)m−k ∧ βn−m

+ 1{f=−∞}Hm(f) + 1{g=−∞}Hm(g).

Take P1, . . . , Pn and Q1, . . . , Qn, polar sets in C such that 1{f=−∞}Hm(f)(Ω\P1×
· · · × Pn) = 0 and 1{g=−∞}Hm(g)(Ω\Q1 × · · · × Qn) = 0. Now, by Lemma 5.6
from [16], we get∫

Ω\((P1∪Q1)×···×(Pn∪Qn))
1{f+g=−∞}Hm(f + g)
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=
m−1∑
k=1

(
m

k

)∫
Ω\((P1∪Q1)×···×(Pn∪Qn))

1{f=g=−∞}(dd
cf)k ∧ (ddcg)m−k ∧ βn−m

+

∫
Ω\((P1∪Q1)×···×(Pn∪Qn))

1{f=−∞}Hm(f) + 1{g=−∞}Hm(g)

≤
m−1∑
k=1

(
m

k

)(∫
Ω\(P1×···×Pn)∩{f=g=−∞}

Hm(f)

) k
m

×

(∫
Ω\(Q1×···×Qn)∩{f=g=−∞}

Hm(g)

)m−k
m

+

(∫
Ω\(P1×···×Pn)∩{f=−∞}

Hm(f)

)
+

(∫
Ω\(P1×···×Pn)∩{g=−∞}

Hm(g)

)
≤
([

1{f=−∞}Hm(f)(Ω\P1 × · · · × Pn)
] 1
m

+
[
1{g=−∞}Hm(g)(Ω\Q1 × · · · ×Qn)

] 1
m

)m
= 0.

We conclude that f + g ∈ Pm(Ω).

The following theorem represents the first main result of this paper.

Theorem 3.4. If fj is a sequence of m-subharmonic functions belonging to
Em(Ω) and it satisfies fj → f ∈ Em(Ω) in Capm-capacity, then

1{f>−∞}Hm(f) ≤ lim inf
j→+∞

Hm(fj).

Proof. Take 0 ≤ ϕ ∈ C∞0 (Ω) and Ω1 b Ω such that suppϕ b Ω1. It suffices
to show that

lim inf
j→+∞

∫
Ω
ϕHm(fj) ≥

∫
Ω

1{f>−∞}ϕHm(f).

For each a > 0, one has∫
Ω
ϕHm(fj)−

∫
Ω

1{f>−∞}ϕHm(f) = A1 +A2 +A3,

where

A1 =

∫
Ω
ϕ (Hm(fj)−Hm(max(fj ,−a))) +

∫
Ω

1{f=−∞}ϕHm(f),

A2 =

∫
Ω
ϕ (Hm(max(fj ,−a))−Hm(max(f,−a))) ,

A3 =

∫
Ω
ϕ (Hm(max(f,−a))−Hm(f)) .

Using Theorem 2.14, we obtain

A1 =

∫
{fj≤−a}

ϕ(Hm(fj)−Hm(max(fj ,−a))) +

∫
Ω

1{f=−∞}ϕHm(f)
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≥ −
∫
{fj≤−a}

ϕHm(max(fj ,−a)) +

∫
Ω

1{f=−∞}ϕHm(f)

≥ −
∫
{fj≤−a}∩{|fj−f |≤1}

ϕHm(max(fj ,−a))

−
∫
{|fj−f |>1}

ϕHm(max(fj ,−a)) +

∫
Ω

1{f=−∞}ϕHm(f)

≥ −
∫
{f<−a+2}

ϕHm(max(fj ,−a))

− an Capm({|fj − f | > 1} ∩ Ω1) +

∫
Ω

1{f=−∞}ϕHm(f)

≥
∫

Ω
h{f<−a+2}∩Ω1,ΩϕHm(max(fj ,−a))

− an Capm({|fj − f | > 1} ∩ Ω1) +

∫
Ω

1{f=−∞}ϕHm(f).

Letting j → +∞, by Theorem 2.15 we obtain

lim inf
j→+∞

A1 ≥
∫

Ω
h{f<−a+2}∩Ω1,ΩϕHm(max(f,−a)) +

∫
Ω

1{f=−∞}ϕHm(f).

By Theorem 2.15, for all s > 0, one has

lim inf
a→+∞

(lim inf
j→+∞

A1) ≥ lim inf
a→+∞

∫
Ω
h{f<−a+2}∩Ω1,ΩϕHm(max(f,−a))

+

∫
Ω

1{f=−∞}ϕHm(f)

≥ lim inf
a→+∞

∫
Ω
h{f<−s}∩Ω1,ΩϕHm(max(f,−a))

+

∫
Ω

1{f=−∞}ϕHm(f))

=

∫
Ω
h{f<−s}∩Ω1,ΩϕHm(f) +

∫
Ω

1{f=−∞}ϕHm(f).

Since lim
s→+∞

Capm({f < −s} ∩ Ω1) = 0, then there exists a subset A of Ω with

Capm(A) = 0 such that the function h{f<−s}∩Ω1,Ω increases to 0 as s→ +∞ on
Ω\A. Now, by a decomposition theorem from [19], we get that if s→ +∞, then

lim inf
a→+∞

(lim inf
j→+∞

A1) ≥
∫

Ω
−1AϕHm(f) +

∫
Ω

1{f=−∞}ϕHm(f) ≥ 0.

By Theorem 2.15, it follows that

lim inf
j→+∞

(∫
Ω
ϕHm(fj)−

∫
Ω

1{f>−∞}ϕHm(f)

)
≥ lim inf

a→+∞
lim inf
j→+∞

A1 + lim inf
a→+∞

A3 ≥ 0.

The theorem is proved.
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Corollary 3.5. Let (fj)j ⊂ Em(Ω) such that fj → f ∈ Em(Ω) in Capm-
capacity. If fj , f ∈ Qm(Ω) for all j ≥ 1, then

Hm(f) ≤ lim inf
j→+∞

Hm(fj).

Proof. By combining the definition of Qm(Ω) with Proposition 3.1, we get

1{f=−∞}Hm(f) ≤ 1{fj=−∞}Hm(fj) ≤ Hm(fj).

Using Theorem 3.4, we get the result.

Corollary 3.6. Let (fj)j ⊂ Fm(Ω) such that fj → f ∈ Fm(Ω) in Capm-
capacity. If fj , f ∈ Qm(Ω) for all j ≥ 1 and

lim
j→+∞

∫
Ω
Hm(fj) =

∫
Ω
Hm(f),

then Hm(fj)→ Hm(f) weakly as j → +∞.

Proof. Without loss of generality, one can assume that Hm(fj) → µ weakly
as j → +∞. Using Corollary 3.5, we obtain that µ ≥ Hm(f). On the other hand,

µ(Ω) ≤ lim inf
j→+∞

∫
Ω
Hm(fj) =

∫
Ω
Hm(f).

Hence µ = Hm(f).

Theorem 3.7. Let fj , g ∈ Em(Ω), f ∈ Pm(Ω), and D b Ω. Assume that

1. fj → f in Capm-capacity.

2. For all j ≥ 1, fj ≥ g on Ω\D.

Then Hm(fj)→ Hm(f) weakly as j →∞.

Proof. As f ∈ Pm(Ω), then there exist P1, . . . , Pn, m-polar subsets in C, such
that

1{f=−∞}Hm(f)(Ω\P1 × · · · × Pn) = 0.

Take
f̃j = max(fj , g), f̃ = max(f, g).

It is easy to check that f̃j , f ∈ Em(Ω) and f̃j → f̃ in Capm-capacity. Moreover,
f̃j |Ω\D = fj |Ω\D and f̃ |Ω\D = f |Ω\D. Using Theorem 2.15, we get that Hm(f̃j)→
Hm(f̃) weakly as j → ∞. Let Ω1 be an m-hyperconvex domain such that D b
Ω1 b Ω. By Stokes’ theorem, we have

lim sup
j→+∞

∫
Ω1

Hm(fj) = lim sup
j→+∞

∫
Ω1

Hm(f̃j) ≤
∫

Ω̄1

Hm(f̃) <∞.

Hence, without loss of generality, one may assume that there exists a positive
measure µ such that Hm(fj)→ µ weakly as j →∞. The proof will be completed
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if we show that µ = Hm(f) on Ω1. For this, we take u ∈ E0
m(Ω1). Further, by

Stokes’ theorem, we obtain∫
Ω1

−udµ = lim
j→+∞

∫
Ω1

−uHm(fj) ≥ lim
j→+∞

∫
Ω1

−uHm(f̃j) ≥ lim
j→+∞

∫
Ω1

−uHm(f̃).

Moreover, by Proposition 3.2 and [13], we get

Hm(f)(K) ≤ µ(K) (3.1)

for all compact subsets K of P1 × ... × Pn. Using (3.1) and the fact that f ∈
Pm(Ω), we deduce that µ ≥ 1{f=−∞}Hm(f). So, by Theorem 3.4, we obtain

Hm(f) ≤ µ on Ω1.

Now, let Ω2 be a domain satisfying D b Ω2 b Ω1. By Stokes’ theorem, we obtain

µ(Ω2) ≤ lim inf
j→+∞

∫
Ω2

Hm(fj) = lim inf
j→+∞

∫
Ω2

Hm(f̃j)

≤
∫

Ω̄2

Hm(f̃) ≤
∫

Ω1

Hm(f̃) =

∫
Ω1

Hm(f).

It follows that
µ(Ω1) ≤ Hm(f)(Ω1). (3.2)

Using (3.1) and (3.2), we deduce that µ = Hm(f) on Ω1.

Remark 3.8. The previous theorem is a different version of Theorems 3.8 and
3.10 in [16]. On the one hand, the assumption fj ≥ g is sufficient outside a
relatively compact set D, but in Theorem 3.8 [16] this assumption is required to
be true in the whole Ω. On the other hand, the function f taken in our result
belongs to Pm(Ω) which is not the case for Theorem 3.8 in [16] since f ∈ Em(Ω).

The following lemma will be useful in the proof of several results of this paper.

Lemma 3.9. Fix f ∈ Fm(Ω). Then, for all s > 0 and t > 0, one has

tm Capm(f < −s− t) ≤
∫
{f<−s}

Hm(f) ≤ sm Capm(f < −s). (3.3)

Proof. Let t, s > 0, and let K be a compact subset satisfying K ⊂ {f < −s−
t}. We have

Capm(K) =

∫
Ω
Hm(h∗K) =

∫
{f<−s−t}

Hm(h∗K)

=

∫
{f<−s+th∗K}

Hm(h∗K) =
1

tm

∫
{f<g}

Hm(g),

where g := −s+ th∗K . Using Theorem 2.14, we obtain

1

tm

∫
{f<g}

Hm(g) =
1

tm

∫
{f<max(f,g)}

Hm(max(f, g))
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≤ 1

tm

∫
{f<max(f,g)}

Hm(f) =
1

tm

∫
{f<−s+thK}

Hm(f) ≤ 1

tm

∫
{f<−s}

Hm(f).

The left-hand side of inequality (3.1) follows by taking the supremum over all
compact sets K ⊂ Ω.
For the right-hand side of inequality, we have∫

{f≤−s}
Hm(f) =

∫
Ω
Hm(f)−

∫
f>−s

Hm(f)

=

∫
Ω
Hm(max(f,−s))−

∫
f>−s

Hm(max(f,−s))

=

∫
f≤−s

Hm(max(f,−s)) ≤ sm Capm{f ≤ −s}.

The result follows.

Remark 3.10. Using the previous lemma, we deduce the following results:

1. f ∈ Fm(Ω) if and only if lim sups→0 s
m Capm({f < −s}) < +∞.

2. If f ∈ Fm(Ω), then∫
Ω
Hm(f) = lim

s→0
sm Capm({f < −s})

and ∫
{f=−∞}

Hm(f) = lim
s→+∞

sm Capm({f < −s}).

3. The function f ∈ Fam(Ω) if and only if lim
s→+∞

sn Capm({f < −s}) = 0.

Indeed, it is known that if f is an m−sh function on Ω, then Hm(f)(P ) =
0 for every m−polar set P ⊂ Ω if and only if Hm(f)({f = −∞}) = 0 which
follows directly from the previous assertion of this remark.

4. The class Em,χ(Ω)

Throughout this section, χ : R− → R− will be an increasing function. In [15],
Hung introduced the class Em,χ(Ω) to generalize the fundamental weighted energy
classes introduced firstly by Benelkourchi, Guedj, and Zeriahi [5]. Such a class is
defined as follows.

Definition 4.1. We say that f ∈ Em,χ(Ω) if there exits (fj)j ⊂ E0
m(Ω) such

that fj ↘ f in Ω and

sup
j∈N

∫
Ω

(−χ(fj))Hm(fj) < +∞.

Remark 4.2. It is clear that the class Em,χ(Ω) generalizes all analogous Cegrell
classes defined by Lu in [18] and [19]. Indeed,

1. Em,χ(Ω) = Fm(Ω) when χ(0) 6= 0 and χ is bounded.
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2. Em,χ(Ω) = Epm(Ω) in the case when χ(t) = −(−t)p.
3. Em,χ(Ω) = Fpm(Ω) in the case when χ(t) = −1− (−t)p.
Notice that if we take m = n for all previous cases, we recover the classic Cegrell
classes defined in [7] and [8].

Notice also that in the case χ(0) 6= 0 one has Em,χ(Ω) ⊂ Fm(Ω), and thus the
Hessian operator is well defined in Em,χ(Ω) and is with finite total mass on Ω.
So, in the rest of this paper, we will consider the case χ(0) = 0.

In the following theorem, we will prove that the Hessian operator is well
defined on Em,χ(Ω). Notice that this result was proved in [15] but with an extra
condition (χ(2t) ≤ a.χ(t)). Here we omit this condition and the proof of the
result is completely different.

Theorem 4.3. Assume that χ 6≡ 0. Then

Em,χ(Ω) ⊂ Em(Ω).

So, for every f ∈ Em,χ(Ω), Hm(f) is well defined and −χ(f) ∈ L1(Hm(f)).

Proof. Since χ 6≡ 0, then there exists t0 > 0 such that χ(−t0) < 0. Take an
increasing function χ1 satisfying χ′1 = χ′′1 = 0 on [−t0, 0], χ1 is convex on ] −
∞,−t0] and χ1 ≥ χ. Let g ∈ SH−m(Ω), then

ddcχ1(g) ∧ βn−m = χ′′1(g)dg ∧ dcg ∧ βn−m + χ′1(g)ddcχ1(g) ∧ βn−m ≥ 0.

Hence the function χ1(g) ∈ SH−m(Ω). Now consider f ∈ Em,χ(Ω). By the defini-
tion, there exists a sequence fj ∈ E0

m(Ω) that decreases to f and satisfies

sup
j∈N

∫
Ω
−χ(fj)Hm(fj) <∞.

By the definition of the class Em(Ω), it remains to prove that f coincides locally
with a function in Fm(Ω). For this, take G b Ω be a domain and consider the
function

fGj := sup{g ∈ SH−m(Ω) : g ≤ fj on G}.

We have fGj ∈ E0
m(Ω) and fGj ↘ f on G. Take ϕ ∈ E0

m(Ω) such that χ1(f1) ≤ ϕ.
Using integration by parts, we obtain

sup
j∈N

∫
Ω
−ϕHm(fGj ) ≤ sup

j∈N

∫
Ω
−ϕHm(fj) ≤ sup

j∈N

∫
Ω
−χ1(f1)Hm(fj)

≤ sup
j∈N

∫
Ω
−χ1(fj)Hm(fj) ≤ sup

j∈N

∫
Ω
−χ(fj)Hm(fj) <∞.

We deduce that

sup
j∈N

∫
Ω
Hm(fGj ) ≤ (− sup

G
ϕ)−1 sup

j∈N

∫
Ω
−ϕHm(fGj ) <∞.
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It follows that the limit lim
j→+∞

fGj ∈ Fm(Ω) and therefore f ∈ Em(Ω).

For the second assertion, we have that every f ∈ Em,χ(Ω) is upper semicon-
tinuous, so the sequence of measures µj := −χ(fj)Hm(fj) is bounded. Take µ,
a cluster point of µj , then −χ(f)Hm(f) ≤ µ. Hence,

∫
Ω−χ(f)Hm(f) < ∞ and

the desired result follows.

Proposition 4.4. Then the following statements are equivalent:

(1) χ(−∞) = −∞,

(2) Em,χ(Ω) ⊂ Eam(Ω).

Proof. We will prove that (1) ⇒ (2). For this, assume that χ(−∞) = −∞
and take f ∈ Em,χ(Ω). By the definition of the class Em,χ(Ω), there exists a
sequence {fj} ⊂ E0

m such that fj ↘ f and

sup
j

∫
Ω
−χ(fj)Hm(fj) < +∞.

Since χ is increasing, then for all t > 0,∫
{fj<−t}

Hm(fj) ≤
∫
{fj<−t}

χ(fj)

χ(−t)
Hm(fj) ≤ (χ(−t))−1 sup

j

∫
Ω
χ(fj)Hm(fj).

Since the sequence {fj < −t} is increasing to {f < −t}, then letting j →∞, we
get ∫

{f<−t}
Hm(f) ≤ (χ(−t))−1 sup

j

∫
Ω
χ(fj)Hm(fj).

Now, if we let t→ +∞, we can deduce that∫
{f=−∞}

Hm(f) = 0.

Hence f ∈ Eam(Ω).

(2) ⇒ (1). Assume that χ(−∞) > −∞, then Fm(Ω) ⊂ Em,χ(Ω). But it is
known that Fm(Ω) is not a subset of Eam(Ω). Then we deduce that Em,χ(Ω) 6⊂
Eam(Ω).

The rest of this section is devoted to giving a connection between the class
Em,χ(Ω) and the Capm-capacity of sublevels Capm({f < −t}). As a consequence,
we deduce a complete characterization of the class Epm(Ω) introduced by Lu [18]
in term of the Capm-capacity of sublevel. For this, we introduce the class Êm,χ(Ω)
as follows.

Definition 4.5. Denote

Êm,χ(Ω) :=

{
ϕ ∈ SH−m(Ω) :

∫ +∞

0
tmχ′(−t) Capm({ϕ < −t})dt < +∞

}
.
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The previous class coincides with the class Êχ(Ω) given by Benelkourchi,
Guedj, and Zeriahi [5], it suffices to take m = n to recover it. In the following
proposition, we cite some properties of Êm,χ(Ω) and give a relationship between
Em,χ(Ω) and Êm,χ(Ω):

Proposition 4.6.

1. The class Êm,χ(Ω) is convex.

2. For every f ∈ Êm,χ(Ω) and g ∈ SH−m(Ω), one has that max(f, g) ∈ Êm,χ(Ω).

3. Êm,χ(Ω) ⊂ Em,χ(Ω).

4. If we denote by χ̂(t) the function defined by χ̂(t) := χ(t/2), then

Em,χ(Ω) ⊂ Êm,χ̂(Ω).

Proof. 1. Let f, g ∈ Êm,χ(Ω) and 0 ≤ α ≤ 1. Since we have

{αf + (1− α)g < −t} ⊂ {f < −t} ∪ {g < −t} ,

then f + αg ∈ Êm,χ(Ω). The result follows.

2. The proof of this assertion is obvious.

3. Take f ∈ Êm,χ(Ω). It remains to construct a sequence fj ∈ E0
m(Ω) satisfying∫

Ω
−χ(fj)Hm(fj) <∞.

Without loss of generality, we may assume that f ≤ 0. If we set fj := max(f,−j),
then fj ∈ E0

m(Ω). Using Lemma 3.9, we get∫
Ω
−χ(fj)Hm(fj) =

∫ +∞

0
χ′(−t)Hm(fj)(fj < −t) dt

≤
∫ +∞

0
χ′(−t)tm Capm(f < −t) dt < +∞.

It follows that f ∈ Em,χ(Ω).

4. The proof of this assertion follows directly by using the same argument as
in 3 and the second inequality in Lemma 3.9 for t = s.

Proposition 4.7. Assume that for all t < 0 one has χ(t) < 0. Then, for all
f ∈ Em,χ(Ω), one has

lim sup
z→w

f(z) = 0, w ∈ ∂Ω.

Proof. Since by hypothesis we have for all t < 0; χ(t) < 0 so, without loss of
generality, we can assume that the length of the set {t > 0 : t < t0 and χ′(−t) 6=
0} is positive for all t0 > 0. By contradiction, we suppose that there is w0 ∈ ∂Ω
such that lim sup

z→w0

f(z) = c < 0. Then there is a ball B0 centered at w0 satisfying

B0∩Ω ⊂ {f < c
2}. If we consider (Kj)j to a sequence of regular compact subsets

such that for all j one has Kj ⊂ Kj+1 and B0 ∩ Ω = ∪Kj , then the extremal
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function hKj ,Ω belongs to E0
m(Ω) and decreases to hE,Ω. It is easy to check that

hE,Ω 6∈ Fm(Ω). By the definition of the class Fm(Ω), we obtain

sup
j

Capm(Kj) = sup
j

∫
Ω
Hm(fKj ,Ω) = +∞.

So,
Capm(B0 ∩ Ω) = +∞.

We deduce that
Capm({f < −s}) = +∞, s ≤ −c/2,

and hence ∫ +∞

0
tmχ′(−t) Capm({f < −t})dt = +∞.

We get a contradiction with the fact that Em,χ(Ω) ⊂ Êm,χ̂(Ω).

Proposition 4.8. Assume that χ 6≡ 0. If there exists a sequence (fk) ⊂
E0
m(Ω) such that

sup
k∈N

∫
Ω
−χ(fk)Hm(fk) <∞,

then the function f := limk→+∞ fk 6≡ −∞ and therefore f ∈ Em,χ(Ω).

Proof. Using the hypothesis, we observe that the length of the set {t > 0 :
t < t0 and χ′(−t) 6= 0} is positive. By Lemma 3.9, we get

sm Capm({fk < −2s}) ≤
∫
{fk<−s}

Hm(fk).

Then∫ +∞

0
tmχ′(−t) Capm({f < −t})dt = lim

k→∞

∫ +∞

0
tmχ′(−t) Capm({fk < −t})dt

≤ lim
k→∞

2m
∫ +∞

0
χ′(−t)

∫
{fk<−t}

Hm(fk)dt ≤ 2m sup
k∈N

∫
Ω
−χ(fk)Hm(fk) <∞.

Notice that in the previous inequality the convergence monotone theorem was
used. We conclude that f 6≡ −∞ and therefore f ∈ Em,χ(Ω).

Theorem 4.9. Assume that one has χ(t) < 0 for all t < 0. Then

Em,χ(Ω) ⊂ Nm(Ω).

Proof. By Proposition 4.6, it suffices to prove that every maximal function
f ∈ Em,χ(Ω) is identically equal to 0. Take a sequence fj ∈ E0

m(Ω) as in the
definition of the class Em,χ(Ω). By using Lemma 3.9, we obtain∫ +∞

0
χ′
(
−s
2

)
fm Capm({f < −s})ds
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= lim
j→∞

∫ +∞

0
χ′
(
−s
2

)
sm Capm({fj < −s})ds

≤ 2m lim
j→∞

∫ +∞

0
χ′(−s)

∫
(fj<−s)

Hm(fj)ds = 2m lim
j→∞

∫
Ω
−χ(fj)Hm(fj).

Since the maximality of f ∈ Em(Ω) is equivalent to Hm(f) = 0, we deduce that

lim
j→∞

∫
Ω
−χ(fj)Hm(fj) = 0.

Thus, Capm({f < −s}) = 0 for all s > 0. It follows that f ≡ 0. The proof of the
theorem is completed.

Now we give a complete characterization of Em,χ(Ω) in term of Nm(Ω). We
will prove essentially the following result.

Corollary 4.10. If for all t < 0, χ(t) < 0, then

Em,χ(Ω) =
{
f ∈ Nm(Ω) : χ(f) ∈ L1(Hm(f))

}
.

Proof. The first inclusion is a direct deduction from Theorem 4.3 and Theo-
rem 4.9. It suffices to prove the reverse inclusion{

f ∈ Nm(Ω) : χ(f) ∈ L1(Hm(f))
}
⊂ Em,χ(Ω).

Take f ∈ Nm(Ω) satisfying
∫

Ω−χ(f)Hm(f) < ∞. It suffices to construct the
sequence fj ∈ E0

m(Ω) that decreases to f and satisfies

sup
j

∫
Ω
−χ(fj)Hm(fj) <∞.

Let ρ be an exhaustion function for Ω (Ω = {ρ < 0}). Theorem 5.9 in [16]
guarantees that for all j ∈ N there is a function fj ∈ E0

m(Ω) satisfying Hm(fj) =
1{f>jρ}Hm(f). We have Hm(fj) ≤ Hm(fj+1) ≤ Hm(f), so we get that fj ≥ fj+1

using the comparison principle and the fact that (fj)j converges to a function

f̃ . It is easy to check that f̃ ≥ f . Now, following the proof of Theorem 4.3, we
deduce the existence of a negative m−sh function g satisfying

∫
Ω−gHm(f) <∞.

If follows by Theorem 2.10 of [17] that f̃ = f . Thus, the monotone convergence
theorem gives∫

Ω
−χ(fj)Hm(fj) =

∫
Ω
−χ(fj)1{f>jρ}Hm(f)→

∫
Ω
−χ(f)Hm(f) <∞.

Now we extend Theorem A to the class Em,χ(Ω).

Theorem 4.11. Assume that χ is continuous, χ(−∞) > −∞, and f, fj ∈
Em(Ω) for all j ∈ N. If there exists g ∈ Em(Ω) satisfying fj ≥ g on Ω, then:

1. If fj converges to f in Capm−1-capacity, then lim inf
j→+∞

−χ(fj)Hm(fj) ≥

−χ(f)Hm(f).
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2. If fj converges to f in Capm-capacity, then −χ(fj)Hm(fj) converges weakly
to −χ(f)Hm(f).

Proof. 1. Take a test function ϕ ∈ C∞0 (Ω) such that 0 ≤ ϕ ≤ 1. Using [19],
there exist ψk ∈ E0

m(Ω) ∩ C(Ω) with ψk ≥ f and ψk ↘ f in Ω. Following [14], for
a fixed integer k ≥ 1 there exists j0 ∈ N such that fj ≥ ψk on suppϕ for all j ≥
j0. So, by Theorem 3.10 from [16], we obtain that for all k ≥ 1 one has

lim inf
j→+∞

∫
Ω
−ϕχ(fj)Hm(fj) ≥ lim inf

j→+∞

∫
Ω
−ϕχ(ψk)Hm(fj) =

∫
Ω
−ϕχ(ψk)Hm(f).

Now, if we let k tend to +∞, then, by the Lebesgue monotone convergence
theorem, we get

lim inf
j→+∞

∫
Ω
−ϕχ(fj)Hm(fj) ≥

∫
Ω
−ϕχ(f)Hm(f).

The result follows.
2. Without loss of generality, one can assume that χ(−∞) = −1. Let ϕ ∈

C∞0 (Ω) such that 0 ≤ ϕ ≤ 1. We claim that

lim sup
j→+∞

∫
Ω
−ϕχ(fj)Hm(fj) ≤

∫
Ω
−ϕχ(f)Hm(f). (4.1)

Indeed, by the quasicontinuity of f and g with respect to the capacity Capm, we
obtain that for every k ∈ N there exists an open subset Ok of Ω and a function
f̃k ∈ C(Ω) such that Capm(Ok) ≤ 1

2k
and f̃k = f on Ω \ Ok and g ≥ −αk on

suppϕ \Ok for some αk > 0. Let ε > 0. Then, by Theorem 3.6 in [13], one has∫
Ω
−ϕχ(fj)Hm(fj) =

∫
Ω\Ok

−ϕχ(fj)Hm(fj) +

∫
Ok

−ϕχ(fj)Hm(fj)

≤
∫

Ω\Ok

−ϕχ(fj)Hm(fj) +

∫
Ok

−ϕHm(fj)

≤
∫
{fj≤f−ε}\Ok

−ϕχ(fj)Hm(fj)

+

∫
{fj>f−ε}\Ok

−ϕχ(fj)Hm(fj) +

∫
Ok

−ϕHm(fj)

≤
∫
{fj≤f−ε}\Ok

−ϕHm(fj)

+

∫
Ω\Ok

−ϕχ(f − ε)Hm(fj) +

∫
Ω
−ϕhOk,ΩHm(fj)

≤
∫
{fj<f−ε}\Ok

Hm(max(fj ,−αk))

+

∫
Ω\Ok

−ϕχ(f̃k − ε)Hm(fj) +

∫
Ω
−ϕhOk,ΩHm(fj)

≤ αmk Capm({fj < f − ε} ∩ suppϕ)
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+

∫
Ω\Ok

−ϕχ(f̃k − ε)Hm(fj) +

∫
Ω
−ϕhOk,ΩHm(fj).

If we let j go to +∞, then, by using Theorem 2.15, we get

lim sup
j→+∞

∫
Ω
−ϕχ(fj)Hm(fj) ≤

∫
Ω\Ok

−ϕχ(f̃k − ε)Hm(f) +

∫
Ω
−ϕhOk,ΩHm(f).

If we let ε→ 0, we obtain

lim sup
j→+∞

∫
Ω
−ϕχ(fj)Hm(fj) ≤

∫
Ω\Ok

−ϕχ(f̃k)Hm(f) +

∫
Ω
−ϕhOk,ΩHm(f)

≤
∫

Ω\{f=−∞}
−ϕχ(f)Hm(f) +

∫
Ω
−ϕh⋃∞

l=k Ol,ΩHm(f). (4.2)

Now, as
⋃∞
l=k Ol ↘ O when k → +∞, then

Capm(O) ≤ lim
k→∞

Capm

( ∞⋃
l=k

Ol

)
≤ lim

k→∞

∞∑
l=k

Capm(Ol) ≤ lim
k→∞

1

2k−1
.

So, there exists an m-polar set M such that h⋃∞
l=k Ol,Ω

↗ 0 when k → +∞ on
Ω \M . Thus, if we take k → +∞ in 4.2, we obtain

lim sup
j→+∞

∫
Ω
−ϕχ(fj)Hm(fj) ≤

∫
Ω\{f=−∞}

−ϕχ(f)Hm(f) +

∫
M
ϕHm(f)

≤
∫

Ω\{f=−∞}
−ϕχ(f)Hm(f) +

∫
{f=−∞}

−ϕχ(f)Hm(f)

=

∫
Ω
−ϕχ(f)Hm(f).

This proves the claim 4.1. Moreover, since fj converges in Capm-capacity, then
it converges in Capm−1-capacity. Using the assertion (a), we obtain

lim inf
j→+∞

∫
Ω
−ϕχ(fj)Hm(fj) ≥

∫
Ω
−ϕχ(f)Hm(f).

If we combine the last inequality with 4.2, we get

lim
j→+∞

∫
Ω
−ϕχ(fj)Hm(fj) =

∫
Ω
−ϕχ(f)Hm(f)

for every ϕ ∈ C∞0 (Ω) with 0 ≤ ϕ ≤ 1. Hence we get the desired result.

Notice that if we take m = n in the above theorem, we obtain the result
from [11] established for the particular case of plurisubharmonic functions.

Now we are interested in the problem of subextention in the class Em,χ(Ω).
For Ω b Ω̃ b Cn and f ∈ Em,χ(Ω), we say that f̃ ∈ Em,χ(Ω̃) is a subextention of
f if f̃ ≤ f on Ω.
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The problem of subextention in the case m = n and χ ≡ −1 was studied by
Cegrell and Zeriahi [9] in 2003 and it was investigated by Cegrell, Kolodziej, and
Zeriahi [5] for the case of plurisubharmonic functions with weak singularities.
Then this problem was studied for the class Eχ(Ω) (m = n) by Benelkourchi
in [3]. In this paper, we study the problem in the class Em,χ(Ω). In the following
theorem, we prove that every function f ∈ Em,χ(Ω) has a subextention.

Theorem 4.12. Let Ω̃ be an m−hyperconvex domain such that Ω b Ω̃ b Cn.
If χ(t) < 0 for all t < 0 and f ∈ Em,χ(Ω), then there is f̃ ∈ Em,χ(Ω̃) satisfying∫

Ω̃
−χ(f̃)Hm(f̃) ≤

∫
Ω
−χ(f)Hm(f)

and f̃ ≤ f on Ω.

Proof. Let f ∈ Em,χ(Ω) and fk ∈ E0
m(Ω) be the sequence as in the definition

of the class Em,χ(Ω). By using Lemma 3.2 from [12], we obtain that for every k ∈
N, there exists a subextension f̃k of fk. It follows that∫

Ω̃
−χ(f̃k)Hm(f̃k) =

∫
{f̃k=fk}∩Ω

−χ(f̃k)Hm(f̃k)

≤
∫
{f̃k=fk}∩Ω

−χ(fk)Hm(fk) ≤
∫

Ω
−χ(fk)Hm(fk).

So, we obtain

sup
k

∫
Ω̃
−χ(f̃k)Hm(f̃k) ≤

∫
Ω
−χ(f)Hm(f) <∞. (4.3)

Using Proposition 4.8, we get that the function f̃ = lim
k→∞

f̃k 6≡ −∞ and f̃ ∈

Em,χ(Ω̃). Then, by 4.3,∫
Ω̃
−χ(f̃)Hm(f̃) ≤

∫
Ω
−χ(f)Hm(f) <∞.

By the Comparison Principle, it follows that for all k ∈ N one has f̃k ≤ fk on Ω.
If we let k go to ∞, we deduce that f̃ ≤ f on Ω.
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Про деякi ваговi класи m-субгармонiчних функцiй
Mohamed Zaway and Jawhar Hbil

У цiй роботi ми вивчаємо клас Em(Ω) m-субгармонiчних функцiй,
введений Лю в [18]. Ми доводимо, що збiжнiсть мiр Гессе виводиться
зi збiжностi вiдносно m-ємностi для функцiй, що належать Em(Ω) та
задовольняють певнi додатковi умови. Далi ми розповсюджуємо цi ре-
зультати на клас Em,χ(Ω), який залежить вiд заданої дiйсної функцiї
χ. Дано повну характеризацiю цих класiв за допомогою мiри Гессе, а
також теорему пiдпродовження вiдносно Em,χ(Ω).

Ключовi слова: m-субгармонiчна функцiя, ємнiсть, оператор Гессе,
збiжнiсть вiдносно m-ємностi
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