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In this paper, we study the class &,,(€2) of m-subharmonic functions in-
troduced by Lu in [18]. We prove that the convergence of the Hessian mea-
sures is deduced from the convergence in m-capacity for the functions that
belong to &,,(2) satisfying certain additional properties. Then we extend
those results to the class &, (€2) that depends on a given increasing real
function x. A complete characterization of those classes using the Hessian
measure is given as well as a subextension theorem relative to &, , (2).
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1. Introduction

In complex analysis, the Monge—Ampere operator represents the objective of
several studies since Bedford and Taylor [1,2] demonstrated that the operator
(dd®-)™ is well defined in the set of locally bounded plurisubharmonic (psh) func-
tions defined on a hyperconvex domain €2 of C". This domain was extended by
Cegrell [7,8] by introducing and investigating the classes (), F(2) and ()
that contain unbounded psh functions. He proved that £(€2) is the largest domain
of definition of the complex Monge—Ampeére operator if we want the operator to
be continuous for decreasing sequences. These works were taken up by Lu [18,19]
to define the complex Hessian operator H,, on the set of m-subharmonic func-
tions which coincides with the set of psh functions in the case m = n. By giving
an analogy to Cegrell’s classes, Lu [18] studied some analogous classes denoted by
EY(Q), Fn(Q) and &,(£2). One of the most well-known problems in this direc-
tion is the link between the convergence in capacity Cap,, and the convergence
of the complex Hessian operator. This problem was studied firstly by Xing [22]
in the case of plurisubharmonic function and then it was generalized in different
directions in several works [11, 13, 23] which aim essentially to give a connec-
tion between the convergence in capacity and the convergence of the associated
Hessian measure. In this work, we continue the study of the stated problem.
The paper is organized as follows. In Section 2, we recall some preliminaries
on the pluripotential theory for an m-subharmonic function as well as the dif-
ferent energy classes which will be studied throughout the paper. In section 3,
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we give a connection between the convergence in capacity Cap,, of a sequence
of m-subharmonic functions f; towards f, lim Jinf H,(f;) and Hy,(f) when the
Jj—+oo

function f € &,(€2). We generalize the result established by Hiep [13] in the case
of plurisubharmonic functions to the general case of m-subharmonic functions.
More precisely, we prove the following theorem.

Theorem A. If (f;); is a sequence of m-subharmonic functions that belong
to Em(Q) and satisfies fj — f € £, () in Cap,,-capacity, then

Lifs—ooyHm(f) < liminf Hp, (f;).

J—+o00

As a consequence on Theorem A, we obtain several results of the convergence
and especially we prove that if we modify the sufficient condition in the previous
theorem, we may obtain the weak convergence of H,,(f;) to Hy,(f).

In Section 4, we study the classes &, ,(Q2) introduced by Hung [15] for a
given increasing function y. These classes generalize the weighted pluricomplex
energy classes investigated by Benelkourchi, Guedj and Zeriahi [5] and studied
in [3,4,11]. First, we prove that the class &, () is fully included in the Cegrell
class &, (€2) and hence the Hessian operator H,,(f) is well defined for every f €
Em (). Then we give several results on the class &, ,(€2) depending on some
condition on the function x. These results generalize the well-known works in [4]
and [5] it suffices to take m = n to recover them. The most important result that
we prove in this context is a complete characterization of functions that belong
t0 Em () using the class Ny, (©2). In other words, we show that

Emnx(Q) = {f € Nu(Q) / x(f) € L' (Hm(f))} -

In the end, we extend Theorem A to the class &, (£2) by proving the following
result.

Theorem B. Let x : R~ — R~ be a continuous increasing function such that
X(—00) > —o0 and f, f; € £,(Q) for all j € N. Suppose that there is a function
g € En(QQ) satisfying f; > g. Then:

1. If f; converges to f in Cap,,_-capacity, then limlnf—x(fj)Hm(fj) >
j*} o0

—x(f)Hm(f)-
2. If fj converges to f in Cap,,-capacity, then —x(f;)Hm/(f;) converges weakly

to —x(f)Hm(f)-

2. Preliminaries

2.1. m-subharmonic functions. This section is aimed to recall some basic
properties of m-subharmonic functions introduced by Blocki [6]. These functions
are admissible for the complex Hessian equation. Throughout the paper, we
denote by d := 9+ , d° :=i(0 — 9) and by A,(Q), the set of (p, p)—forms in Q.
The standard Kéhler form defined on C" is denoted by /3 := dd®|z|?.
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Definition 2.1 ([6]). Let ¢ € A1(Q2) and m € NN [1,n]. The form ¢ is called
m-positive if it satisfies

GAB >0, j=1,....,m,
at every point of (2.

Definition 2.2 ([6]). Let ( € A,(2) and m € NN [p,n]. The form ¢ is said
to be m-positive on € if the measure

C./\/BnimAwl /\"'/\wm—p
is positive at every point of 2, where 1, ..., ¥m—p € A1(Q).

We denote by AJ'(€2) the set of all (p,p)-forms on € that are m-positive. In
2005, Blocki [6] introduced the notion of m-subharmonic functions and devel-
oped an analogous pluripotential theory. This notion is given in the following
definition.

Definition 2.3. Let f : @ — R U {—oc0}. The function f is called m-
subharmonic (m-sh for short) if it satisfies the following conditions:

1.  The function f is subharmonic.
2. Forall (1, - ,Gn-1 € AT'(Q2), one has
dd°f ANB" NG A A G-t 2 0.
We denote by SH,,(2) the cone of m-subharmonic functions defined on .

Remark 2.4. In the case m = n, we have the following:

1. The definition of m-positivity coincides with the classic definition of posi-
tivity given by Lelong for forms.
2. The set SH, () coincides with the set of psh functions on €.

One can refer to [6, 16, 18,21] for more details about the properties of m-
subharmonicity.

Example 2.5.
1. If¢:= i(4.d2’1 ANdz1 + 4.dzo N dzZy — dzz N d?g), then ¢ € A%((Cg) \A:{’((C?’)
2. If f(2) := —|z1|% + 2|22|? + 2|23], then f € SHo(C3)\ SH3(C?). It is easy to

see that f € SHo. However, the restriction of f on the line (z1,0,0) is not
subharmonic, and thus f is not plurisubharmonic.

Following Bedford and Taylor [2], by induction, one can define a closed non-
negative current when the m-sh function f is locally bounded,

AdCfi A .. Addefi A BY™ = dd(frddCfo A ... A ddEfi A BT,

where f1,..., fk € SH,(Q)NLS.(S2). In particular, for a given m-sh function f €

loc
SH.m(2) N LE.(S2), we define the nonnegative Hessian measure of f as follows:

Ho(f) = (dd°f)™ A B,
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2.2. Cegrell’s classes of m-sh functions and m-capacity.

Definition 2.6.

1. A bounded domain €2 in C" is said to be m-hyperconvex if the following
property holds for some continuous m-sh function p: 2 — R™:

{p<c} e

for every ¢ < 0.
2. Aset M C Qis called m-polar if there exist u € SH,,(2) such that

M C {u=—o0}.

3. A positive measure i defined on €2 is said to be absolutely continuous with
respect to the capacity Cap,, ( u << Cap,, for short) on a Borel subset F
in Q if

Vt>03ds>0VE, CE Cap,,(E1) <s= u(E) <t

Throughout the rest of the paper, we denote by €2 an m-hyperconvex do-
main of C". In [18,19], Lu introduced the following classes of m-sh functions to
generalize Cegrell’s classes. Below, we recall the definitions of these classes.

Definition 2.7. We denote:
E2(Q) = {f € SH,,(Q)NLXQ):VE €N lirréf(z) =0 and/ Hp,(f) < 400},
zZ—r 9]

Fn(Q) = {f € SH,(Q):3(f;) C &), fj N\ [ in Q and Sup/QHm(fj) < +oo}.
J
En(Q) = {f € SHL(Q) VU € Q3 fir € Fun(Q) fur = f on U}.

Definition 2.8. A function f € SH,, (1) is said to be m-maximal if for every
g € SH.,n () such that g < f outside a compact subset of €2, then g < f in Q.

The previous notion represents an essential tool in the study of the Hessian
operator since Blocki [6] showed that every m-maximal function f € &,,(Q) sat-
isfies Hp,(f) = 0. Take (£2;);, a sequence of strictly m-pseudoconvex subsets of
2 such that Q; € Qj41, U;‘;l ; = Q, and for every j there exists a smooth
strictly m-subharmonic function ¢ in a neighborhood V' of €1; such that ; :=

{z € V/p(z) < 0}.
Definition 2.9. Let f € SH,,(2) and (€;); be the sequence defined above.
Take f7, the function defined by
J7=sup {vr € SHu(Q) ¥y, < [} € SHR(9).

The function f := (‘lirf f9)* is called the smallest maximal m-subharmonic
J—+00

majorant function of f.
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It is clear that f < f7 < fitl so 'lilll f7 exists on £ except at an m-polar
Jj—+oo

set, we deduce that F € SHum(Q). Moreover, if f € &,(Q), then by [19] and [6],
f € En(Q) and it is m-maximal on . We denote by MSH,,,(Q2) the family of
m-maximal functions in SH,, ().

We cite below some useful properties of MSH,, ().

Proposition 2.10 ([6]). Let f,g € £,(R2) and a € R, a > 0, then we have:
f+y Zer g
af =af.
If f <g, then f <g.
En() N MSHu () = {f € €+ [ = f1

In [20], the author introduced a new Cegrell class N, () := {f € En : f =
0}. It is easy to check that N, (f2) is a convex cone satisfying

EX(Q) C Fn() € Nin(Q) C En(9).
Definition 2.11. Let £,, € {Fpn, Nin,Em}. We define

Ll

Ly () :={f € Ly, : VP m-polar set H,,(f)(P)=0}.
Definition 2.12.

1. Let E be a Borel subset of 2. The Cap,-capacity of E with respect to € is
given as follows:

Cap,(E) = Cap,(F, Q) = sup {/E Hy(f): feSHm(Q), -1<f< 0} ,

where 1 < s < m.

2. We say that a sequence (f;); of real-valued Borel measurable functions,
defined on €2, converges to f in Cap,-capacity, when j — +o0, if for every
compact subset K of 2 and € > 0 the following limit holds:

lim Cap,({z € K :|fj(2) — f(2)| >¢€}) =0.

J—+oo

3. For a given Borel subset E C €, the outer s-capacity Capj of F is defined
as

Cap;(E, Q) :=inf{Cap,(F,Q) : E C F and F is an open subset of 2}.
Remark 2.13. For a given subset E of (2, one can define hg o as follows:
hgq:=sup{f(z): fe SH (Q), f < —1on E}.

Using the definitions above and Theorem 2.20 from [18], we have the following:

Cap?, (B, Q) = /Q Hon(l ),

where h*E?Q is the smallest upper semicontinuous majorant function of hg q.
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The following results, due to V.V. Hung and N.V. Phu [16], will be used
frequently in our paper so we are to give some statements.

Theorem 2.14 ([16]). Let f, fi,..., fm-1 € Em(Q), g € SH,,(Q). Then
dd®max(f,g) Ndd fr A+ ANddfr—1 A B" " g3
=ddf Nddfy A+ NS fr1 A B (fog)

Theorem 2.15 ([16]). Let fj,g;,h € En(Q) be such that fj,g; > h for all
j > 1. Assume that |f; — gj| — 0 in Cap,,-capacity. Then

im u[Hy(f;) — Hm(g5)] =0

Jj—+oo

for allu € SHy, N L§2.(Q).

loc

3. Convergence in Cap,,-capacity
Proposition 3.1 ([16,17]).
1. For every f,g € £,(Q) such that g < f, one has
L pm—oot Him(f) < 1gg——oc} Hm(9)-
2. Iffe&u() and g € EL(RY), then
1{f+g:—oo}Hm(f +9) < 1{f:—oo}Hm(f)

Proposition 3.2. For each of non-negative measures u, v on §2, satisfying
(n+v)(Q) < oo and [o,—fdp > [o—fdv for all f € E)(Q), one has p(K) >
v(K) for all complete m-polar subsets K in €.

Proof. Using Theorem 1.7.1 in [19], we get
/ —fdu > / —fdv, feSH, (Q)NL>(Q).
Q Q
Take g € SH,,(2) such that K = {g = —oo}. Then, for all € > 0, we have

/ —max(eg,—1)dp > / —max(eg, —1) dv.

Q Q

The result follows by letting € — 0. 0
We consider the sets Pp,(Q2) and 9,,,(€2) defined as follows:

Pm(Q) ={f € En(Q) -

3Py, ..., Py polar in C/1y—_ oy Hp(f)(Q\P1 X ... X P,) = 0}.
Qn () = {(f,9) € (En()?:

Vz € Q 3V a neighborhood of z uy € E5,(V)/f +uy < gon V}.

We cite below some properties of the class P, (2) that will be useful further.
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Proposition 3.3.

1. IffeSH,(Q), g€ Pn() and f > g, then f € P ().
2. If f,g € Pn(Q), then f+ g € Pn(R).

Proof. 1. Since g € £,,(f2), so is f. Now assume that there exists Py, ..., P,
polar in C such that 11,y Hin(g)(Q\P1 X -+ x P,) = 0. Then, by Proposition
3.1, we deduce that

1{f:—oo}Hm(f)(Q\P1 X oo X Pn) = 0.

It follows that f € Pp,(2). The proof of the first assertion is completed.
2. By [19], the set &,,(f) is a convex cone. Hence, if f,g € £,(2), so is f +
g. We have

m

Holf +9) =3 (1) @ n @t .

k
k=0
If we fix k € {1,...,m — 1}, then
(ddf)* A (ddCg)™ 8 A B = 4 Loy ooy (ddCf)F A (ddg)™ A BT,

where g1 := (dd®f)* A (dd°g)™ % A B" ™ |( 5 _ootufg>—oo}- The measure p has no
mass on m-polar sets. Indeed, by Theorem 2.14, we have

(ddf)* A (ddeg)™ " A B (pomiy
= dd“max(f,—j) A (dd°f)F~1 A (dd°g)™F A BT sy

Using Proposition 3.4 from [16], we get that (dd°f)* A (dd°g)™ % A
B i f>—jy << Cap,,. We deduce that p << Cap,, in every B € Q. So,
4 has no mass on all m-polar sets.

The same reason remains true for the cases £ = 0 and £ = m to obtain that

Hy(f) = 1 + 1= —ooy Hin(f) and Hp(9) = p2 + Lig= ooy Hm(9)

where 11 and po are two measures that have no mass on all m-polar sets. We
deduce that

m—1

Yrg——oct Hm(f +9) = Z (Z) i WY (dd°f)* A (ddeg)™* A g™
k=1

+ 15— ooy Hin(f) + 1ig=—ocy Him(9)-

Take P, ..., P, and Q1, ..., Qy, polar sets in C such that 1y _ .y Hp(f)(Q\P1 ¥
coxX Pp) =0 and 1y oy Hin(g)(Q\Q1 x -+ x Q) = 0. Now, by Lemma 5.6
from [16], we get

1 =} Hm(f + 9)
/Q\((Plqu)X“-X(PnUQn)) {f+g }
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m—1

m - n—m
< ) / L fmgm—oo} (dd°F)* A (dd°g)™ A B
N ((PLUQ1) -+ (PalUQn))

l{f:—oo}Hm(f) + 1{gz—oo}Hm(g)

+
\m

Q\( P1UQ1 X X PnUQn))

i=

m—1

S i )
= ; <k /Q\(Plx“'xpn)ﬁ{f—g——oo} (f)

X
(/Q\<Q1X-~xQn)m{f=g=_oo} )
OQ\(Py XX Pp)N{ f=—00} Q\(Py x-+x Pp)N{g=—00}

< ([1mmoap Hn( PPy 5 % Pnn%
)m —0.

3=

+ [Lgmoo) Him(9) (N\Q1 X -+ x Qn)]
We conclude that f + g € P, (Q). O
The following theorem represents the first main result of this paper.

Theorem 3.4. If f; is a sequence of m-subharmonic functions belonging to
Em(Q) and it satisfies fj — f € En(Q) in Cap,,-capacity, then

Lips—o} Hm(f) < lj@ﬁ&f Hy(f5)-

Proof. Take 0 < ¢ € C§°(Q2) and Q; € Q such that supp ¢ € ;. It suffices
to show that

hmlnf/ m(f5) Z/Ql{f>—oo}90Hm(f)~

Jj—+oo

For each a > 0, one has

/Q oHolf;) — /Q L foo 0 Hm(f) = Ay + Ag + As,

where
A= /Q (Hon(f;) — Hon(max(fj, —a))) + /Q 1oy Hon(£),
Ay = /Q o (H(max(f;, —a)) — Hp(max(f, —a)).
A = /Q o (Hon(max(f, —a)) — Hu(f)).

Using Theorem 2.14, we obtain

A= /{fj<—a} ( (f]) (max(fj’ ))) + /Q 1{f=—oo}90Hm(f)
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m X _ Hm
= /{fg wx(f5: - ))+/Ql{f— oo} P Hm (f)
== / ©H,,(max(fj, —a))
{fi<=a}n{|f;—fI<1}
_ Hm X\ Jiy — oo Hm
/{fjf>1}¢ (max(f; a))+/91{f 19 Hm(f)
>

- / o Hy(max(f;, —a))
{f<—a+2}

—a Cap (I — f1 > 1} ) + /Q L jeooyoH(f)

A\

/Qh{f<—a+2}ﬂQ1,QS@Hm(max(fja_a))

— " Capn({If; — f1 > 1} Q) + /Q Loy o Hm(f).

Letting j — 400, by Theorem 2.15 we obtain

liminf A7 > /Qh{f<a+2}mQI,Q(PHm(maX<f7 —a))—i—/ﬂl{fzoo}apHm(f).

Jj—+o0

By Theorem 2.15, for all s > 0, one has
i inf (i A1) > Hmint | < aszynn, 0fmax(f, —a)
+ /Q L= —ocypHm(f)

zliglinf/ hir<—sinos 0P Hm(max(f, —a))
a e.9] 9]
+/Ql{f:oo}<pHm(f))

:/Qh{f<—s}ml,n<PHm(f)+/Ql{f—oo}cpHm(f)-

Since liIJlra Cap,,({f < —s} N Q) = 0, then there exists a subset A of Q with
S—+00

Cap,,(A4) = 0 such that the function h{s._gng, o increases to 0 as s — 400 on
O\ A. Now, by a decomposition theorem from [19], we get that if s — 400, then

liminf(hmianl)Z/—lAgon(f)—i—/ L f——ocypHm(f) = 0.
Q Q

a—+00  j—+o00

By Theorem 2.15, it follows that

ljlgigof (/Q ©oHpy(f;) —/ 1{f>oo}‘PHm(f)>

> liminf lim inf A + hrn mf Az > 0.
a—+00 j—+4o00

The theorem is proved. ]
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Corollary 3.5. Let (fj); C En(Q) such that f; — f € E,(Q) in Cap,,-
capacity. If fj, f € Qm(Q) for all j > 1, then

Hp,(f) < liminf Hy,(f;).

j—+oo
Proof. By combining the definition of Q,,(€2) with Proposition 3.1, we get

1{f:foo}Hm(f) < 1{szfoo}Hm(fj) < Hm(f])
Using Theorem 3.4, we get the result. O

Corollary 3.6. Let (f;); C Fm(2) such that f; — f € Fn(Q2) in Cap,,-
capacity. If fj, f € Qm(Q) for all j > 1 and

lim H (f5) / H,,

Jj—+oo
then Hy,(fj) = Hpm(f) weakly as j — +o0.

Proof. Without loss of generality, one can assume that H,,(f;) — p weakly
as j — +oo. Using Corollary 3.5, we obtain that p > H,,(f). On the other hand,

) <li f | Hn H,,
imint | o) = [ Fin
Hence u = Hy,(f). O

Theorem 3.7. Let fj,g € En(Q), f € Pn(Q), and D € Q. Assume that
1. fj — f in Cap,,-capacity.
2. Forallj>1, fj >g onQ\D.

Then Hy,(fj) = Hm(f) weakly as j — oo.

Proof. As f € P,,,(Q2), then there exist Py, ..., P,, m-polar subsets in C, such
that
L e oo} Hin(f)(Q\PL X - x P,) = 0.
Take } }
fi =max(fj,g), f=max(f g).
It is easy to check that f], f € &n) and f] — f in Cap,,-capacity. Moreover,
fJ|Q\D = fjlo\p and f|Q\D = flo\p- Using Theorem 2.15, we get that Hp, (f])

H,,(f) weakly as j — oo. Let € be an m-hyperconvex domain such that D &
Q1 € . By Stokes’ theorem, we have

lim sup H.,,(f;) = limsup (fj) (f) < 0.
Jj—=4oo JO j—+oo JOq Q

Hence, without loss of generality, one may assume that there exists a positive
measure 4 such that H,,(f;) — p weakly as j — oco. The proof will be completed
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if we show that u = H,,(f) on ;. For this, we take u € £2,(€21). Further, by
Stokes’ theorem, we obtain

/ —udp = lim —uH,,(f;) > lim —uH,,(f;) > lim —uHp,(f).
0 J—+too Jo, J—=+oo Jo, J—=+too Jo,

Moreover, by Proposition 3.2 and [13], we get
Hp(f)(K) < p(K) (3.1)

for all compact subsets K of P; x ... X P,. Using (3.1) and the fact that f €
Pm (), we deduce that u > 1¢r—_ oy Hpm(f). So, by Theorem 3.4, we obtain

Hp(f) < pon Q.

Now, let 25 be a domain satisfying D € €29 € 2. By Stokes’ theorem, we obtain

w(Q2) <liminf [ H,(f;) = liminf [ H,(f;)

J—=+too Jq, J=+ Jo,
< B Hm(f) < Hm(f) = Hm(f)
Qs Q1 Q1
It follows that
(1) < Hi(f)(E1). (3.2)
Using (3.1) and (3.2), we deduce that p = H,,(f) on €. O

Remark 3.8. The previous theorem is a different version of Theorems 3.8 and
3.10 in [16]. On the one hand, the assumption f; > ¢ is sufficient outside a
relatively compact set D, but in Theorem 3.8 [16] this assumption is required to
be true in the whole 2. On the other hand, the function f taken in our result
belongs to Pp,(§2) which is not the case for Theorem 3.8 in [16] since f € &,(Q2).

The following lemma will be useful in the proof of several results of this paper.
Lemma 3.9. Fiz f € F,(2). Then, for all s >0 and t > 0, one has
M Cap, (f < —s—1) < / H(f) < s™ Cap, (f < —s). (3.3)
{f<=s}

Proof. Let t,s > 0, and let K be a compact subset satisfying K C {f < —s—
t}. We have

Co () = [ Hathi = [ Halhi)

. 1
- [ Hahi) = 1 [ Hulo)
{f<—stthi} {f<g}

where g := —s + th}.. Using Theorem 2.14, we obtain

1 1

i | o) =4 Hun(max(f,9))
{f<g} {f<max(f,9)}



On Some Weighted Classes of m-Subharmonic Functions 123

1 1 1
</ Halh) =5 | Haf) < [ Ha),
{f<max(f,9)} {f<—s+thi} {f<—s}

The left-hand side of inequality (3.1) follows by taking the supremum over all
compact sets K C €.
For the right-hand side of inequality, we have

/{f< S}H f) —/H f>sH m(f)
/ H, (max(f, —s)) — /f _ Hnfmax(f, )

= /f<_ Hp,(max(f,—s)) < s" Cap,,{f < —s}.

The result follows. O

Remark 3.10. Using the previous lemma, we deduce the following results:

1. f € Fn(Q) if and only if limsup,_,, s™ Cap,,({f < —s}) < +o0.
2. If feFn(f2), then

[ Hi() = i ™ Capy (f < —s})
Q 5—

and

/ Hy(f) = lim_s™ Cap,,({f < —s)).
{f=—o0} s

3. The function f € F2(Q) if and only if lim s"Cap,,({f < —s}) =
s§—+o0

Indeed, it is known that if f is an m—sh function on Q, then H,,(f)(P) =
0 for every m—polar set P C Q if and only if Hy,(f)({f = —o0}) = 0 which
follows directly from the previous assertion of this remark.

4. The class &,,,(Q)

Throughout this section, x : R~ — R~ will be an increasing function. In [15],
Hung introduced the class &,  (€2) to generalize the fundamental weighted energy
classes introduced firstly by Benelkourchi, Guedj, and Zeriahi [5]. Such a class is
defined as follows.

Definition 4.1. We say that f € &, (Q) if there exits (f;); C £2,(Q) such
that f; \, f in € and

sup /Q (X)) H(f5) < 400,

Remark 4.2. Tt is clear that the class £, , (£2) generalizes all analogous Cegrell
classes defined by Lu in [18] and [19]. Indeed,

1. Eny(Q) = Fp(©2) when x(0) # 0 and x is bounded.
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2. Eny() = ER(Q) in the case when x(t) = —(—t)P.
3. Eny(Q) = FL(Q) in the case when x(t) = —1 — (—t)?.

Notice that if we take m = n for all previous cases, we recover the classic Cegrell
classes defined in [7] and [8].

Notice also that in the case x(0) # 0 one has &, ,(2) C Fp,(2), and thus the
Hessian operator is well defined in &, ,(€2) and is with finite total mass on €.
So, in the rest of this paper, we will consider the case x(0) = 0.

In the following theorem, we will prove that the Hessian operator is well
defined on &, ,(2). Notice that this result was proved in [15] but with an extra
condition (x(2t) < a.x(t)). Here we omit this condition and the proof of the
result is completely different.

Theorem 4.3. Assume that x £ 0. Then
Emx () T ER(Q).
So, for every f € Eny(Q), Him(f) is well defined and —x(f) € LY (Hn(f)).

Proof. Since x # 0, then there exists tg > 0 such that x(—tg) < 0. Take an
increasing function x; satisfying x} = x{ = 0 on [—#o,0], x1 is convex on | —
00, —tg] and x1 > x. Let g € SH,,(2), then

ddx1(g) A B" ™ = x{(g9)dg A d°g A B + X1 (g9)ddx1(g) A B"™ > 0.

Hence the function x1(g) € SH,,(22). Now consider f € &,,,(£2). By the defini-
tion, there exists a sequence f; € £2,(£2) that decreases to f and satisfies

sup/ —x(f)Hm(fj) < oo.
JENJQ

By the definition of the class &,(£2), it remains to prove that f coincides locally
with a function in F,,(€2). For this, take G € Q be a domain and consider the
function

ij =sup{g € SH,,(Q) : g < fj on G}.

We have ij € &Y (Q) and ij N\ f on G. Take ¢ € £9(Q) such that y1(f1) < ¢.
Using integration by parts, we obtain

sup [ ot (1) < sup [ () <5 [ (i) Ha(5)

jEN jEN je
< sup/ —x1(fi)Hm(fj) < sup/ —x(f3)Hm(f;) < oo.
JEN JQ JEN JQ

We deduce that

sup / Hyn(£€) < (—sup i) sup / o H(f€) < 0.
JjEN JQ G JEN JQ
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It follows that the limit lim ij € Fn(Q) and therefore f € &,(Q).
J—+oo

For the second assertion, we have that every f € &, ,(Q) is upper semicon-

tinuous, so the sequence of measures p; := —x(f;)Hm(f;) is bounded. Take ,
a cluster point of pj, then —x(f)Hp(f) < p. Hence, [ —x(f)Hm(f) < oo and
the desired result follows. O

Proposition 4.4. Then the following statements are equivalent:
(1) x(—00) = —o0,
(2) Emx() CEL(Q).

Proof. We will prove that (1) = (2). For this, assume that y(—o0) = —o0
and take f € &£,,(Q2). By the definition of the class &, (), there exists a
sequence {f;} C &Y such that f; \, f and

sup/g—x(fj)Hm(fj) < +o0.

J

Since x is increasing, then for all ¢t > 0,

4 x(f5) ‘ -l | |
/{fj<_t} Hy(f5) < /{fj<_t} ar Hp(f5) < (x(—1)) jp[)X(fj)Hm(fg).

Since the sequence {f; < —t} is increasing to {f < —t}, then letting j — oo, we
get
[ Ha() < d0) s [ X Hah)
{f<-t} Q

J

Now, if we let t — 400, we can deduce that

/{f=—oo} Hnl ) =0

Hence f € £%(Q).

(2) = (1). Assume that x(—o0) > —oo, then Fp,(Q) C Epm (). But it is
known that F,,,(€2) is not a subset of £%(€2). Then we deduce that &, () &
&2 (Q). O

The rest of this section is devoted to giving a connection between the class
Em,x(Q) and the Cap,,-capacity of sublevels Cap,,({f < —t}). As a consequence,
we deduce a complete characterization of the class £F,(2) introduced by Lu [18]
in term of the Cap,,-capacity of sublevel. For this, we introduce the class &, , ()
as follows.

Definition 4.5. Denote

~

400
Emn(Q) = {90 €SH,, () : /0 t"™x'(—t) Cap,,{p < —t})dt < —i—oo} :



126 Mohamed Zaway and Jawhar Hbil

The previous class coincides with the class éX(Q) given by Benelkourchi,
Guedj, and Zeriahi [5], it suffices to take m = n to recover it. In the following
proposition, we cite some properties of £, ,(2) and give a relationship between

Em(Q) and &, (Q):

Proposition 4.6.

The class € (Q) is conve.

For every f € é’mX(Q) and g € SH,, (), one has that max(f,g) € é’mX(Q)
Emn() C En ().

If we denote by x(t) the function defined by x(t) := x(t/2), then

e

Emx(Q) C Em ().
Proof. 1. Let f,g € £n(Q) and 0 < o < 1. Since we have

{af+(1-a)g< -t} C{f <—-tfu{g<—t},

then f+ ag € émX(Q) The result follows.
2. The proof of this assertion is obvious.
3. Take f € & (Q). It remains to construct a sequence f; € EJ,() satisfying

/ —x(fj) Hm(f;) < oo.
Q

Without loss of generality, we may assume that f < 0. If we set f; := max(f, —j),
then f; € £2,(€). Using Lemma 3.9, we get

+oo
/—MMHMMZ/ (O Ho(f5)(f; < —t) dt
Q 0

+oo
< / X' (=t)t™ Cap,, (f < —t) dt < +oo.
0
It follows that f € &y, ().
4. The proof of this assertion follows directly by using the same argument as
in 3 and the second inequality in Lemma 3.9 for ¢t = s. O

Proposition 4.7. Assume that for all t < 0 one has x(t) < 0. Then, for all

f € Eny(Q), one has
limsup f(z) =0, w € IN.
zZ—w

Proof. Since by hypothesis we have for all ¢ < 0; x(¢) < 0 so, without loss of
generality, we can assume that the length of the set {t > 0: ¢ < to and x/(—t) #
0} is positive for all ¢y > 0. By contradiction, we suppose that there is wy € 952
such that limsup f(z) = ¢ < 0. Then there is a ball By centered at wy satisfying

Z—wo

BonQ c {f < §}. If we consider (Kj); to a sequence of regular compact subsets
such that for all j one has K; C Kji11 and By N Q) = UK}, then the extremal
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function hg;, o belongs to EY () and decreases to hg . It is easy to check that
heqo & Fm(Q). By the definition of the class F,,(§2), we obtain

sup Cap,, (K;) = Sup/ Hu(fk;,0) = +o0.
i i Ja

So,
Cap,,,(ByN Q) = +oo.

We deduce that
Capm({f < _S}) = +OO7 S S _0/27

and hence
+o00
|t Co (i <~ = 4.
0
We get a contradiction with the fact that &, () C é’mx(Q) 0

Proposition 4.8. Assume that x # 0. If there exists a sequence (fy) C
EY(Q) such that

keN

Sup/ﬂ —X(fi) Hm (fx) < o0,

then the function f :=limy_, o fr # —00 and therefore f € £, (£2).

Proof. Using the hypothesis, we observe that the length of the set {t > 0 :
t < to and x'(—t) # 0} is positive. By Lemma 3.9, we get

o™ Capy ({fi < —25}) < /{ L Tl

+00 +oo
/ 7' (1) Cap, ({f < ~#})dt = lim / £ (—t) Caapy({fie < —t})dt
0 — J0

“+oo
< lim 2 /0 X (—t) /{Mt} Hp(fr)dt <2 ilelg/Q_X(fk)Hm(fk) < oo0.

Notice that in the previous inequality the convergence monotone theorem was
used. We conclude that f # —oo and therefore f € &£,, (). O

Theorem 4.9. Assume that one has x(t) <0 for allt < 0. Then
Emn(Q) T Ny ().

Proof. By Proposition 4.6, it suffices to prove that every maximal function
[ € Eny(Q) is identically equal to 0. Take a sequence f; € EJ(f) as in the
definition of the class &, (£2). By using Lemma 3.9, we obtain

/O+OOX’ <_28) f™ Cap,,({f < —s})ds
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+oo _
—tim [ (5) 5 Copn((ss < —shas
0

j—00
“+oo
<omlim [ (os) / Hon(f)ds = 27 Tim | —x(f;)Honl;).
j=00 Jo (fi<—s) = Jo

Since the maximality of f € &,,(€) is equivalent to Hy,(f) = 0, we deduce that
lim [ =x(f;)Hm(f;) =
J— JO

Thus, Cap,,({f < —s}) =0 for all s > 0. It follows that f = 0. The proof of the

theorem is completed. ]

Now we give a complete characterization of &, ,(2) in term of N, (2). We
will prove essentially the following result.

Corollary 4.10. If for allt <0, x(t) <0, then

Emx(Q) = {f € Non(Q) : x(f) € L' (Hn(f))} -

Proof. The first inclusion is a direct deduction from Theorem 4.3 and Theo-
rem 4.9. It suffices to prove the reverse inclusion

{f € Nn() : X(f) € L"(Hin ()} C Emn ().

Take f € Npu(Q) satisfying [ —x(f)Hm(f) < oo. It suffices to construct the
sequence f; € £2,() that decreases to f and satisfies

sup / () Hn (1) <

J

Let p be an exhaustion function for Q (2 = {p < 0}). Theorem 5.9 in [16]
guarantees that for all j € N there is a function f; € £ (Q) satisfying H,(fj) =
1{f>]p}H (f). We have Hy,(fj) < Hp(fj+1) < Hn(f), so we get that f; > fj11
using the comparison pr1nc1ple and the fact that (f;); converges to a function

f It is easy to check that f > f. Now, following the proof of Theorem 4.3, we
deduce the existence of a negative m—sh function g satisfying fQ —gHp(f) < 0.

If follows by Theorem 2.10 of [17] that f: f. Thus, the monotone convergence
theorem gives

/Q XU H(f) = /Q XU poip Hon () — /Q (D Hn(f) < 0. O

Now we extend Theorem A to the class &, (£2).

Theorem 4.11. Assume that x is continuous, x(—o0) > —oo, and f, f; €
Em(Q) for all j € N. If there exists g € E,,(2) satisfying f; > g on Q, then:

1. If f; converges to f in Cap,,_i-capacity, then hmlnf —x(fi))Hm(f;) >
—X(/) Hm(f)-
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2. If fj converges to f in Cap,,-capacity, then —x(f;)Hm(fj) converges weakly
to =x(f)Hm(f)-

Proof. 1. Take a test function ¢ € C§°(2) such that 0 < ¢ < 1. Using [19],
there exist 1y, € E2,(Q) NC(Q) with 1y, > f and 9y, \, f in Q. Following [14], for
a fixed integer k£ > 1 there exists jp € N such that f; > v, on supp ¢ for all j >
Jo- So, by Theorem 3.10 from [16], we obtain that for all k& > 1 one has

1iminf/g—<px(fj)Hm(fj) leigljg/gz—wx(%)ffm(fj)Z/Q—sox(wk)Hm(f)-

j—+o0

Now, if we let k tend to 400, then, by the Lebesgue monotone convergence
theorem, we get

lim in /Q o) H(fy) = /Q —ox (P Hn(]).

j—+oo

The result follows.
2. Without loss of generality, one can assume that y(—oo) = —1. Let ¢ €
C§5°(€2) such that 0 < ¢ < 1. We claim that

lim sup /Q o (F) Hinlfy) < /Q —ox(F) Hu(f). (4.1)

j—+o0

Indeed, by the quasicontinuity of f and g with respect to the capacity Cap,,, we
obtain that for every k& € N there exists an open subset Oy of €2 and a function

fr € C(9) such that Cap,,(O) < 5 and fr = f on 2\ Oy, and g > —ay on

supp ¢ \ Oy, for some a, > 0. Let € > 0. Then, by Theorem 3.6 in [13], one has

/ X () Hon(f5) = / X () Honlf5) + / —oxX(f) Hon ()
Q Q\Oy,

O

< /Q o, XU HR () + /O ()
S/ —x(f3) Hm(f5)
{f;<f—eN\Ox
+/{fj>f_5}\ok _SOX(fj)Hm(fj)+/Ok —pHn(f5)
< —oH,,(f;
B /{ijfs}\ok PHmlfs)
+/Q\O —sox(f—a)Hm(fj)+/Q—90hok,QHm(fj)

</ Ho(max(fj, )
{fi<f—e\Oy

4 /Q o o Hn (£ + /Q —ohopoHn(f;)

< ol Cap,,({f; < f — e} Nsupp )
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[ (- O + [ ~ehoatin(f).
Q\Op Q
If we let j go to +00, then, by using Theorem 2.15, we get

—ox(Fo — ) Hulf) + / —oho 0 Hm(f).

Q

limsup/wa(fj)Hm(fj)S/

Jj—r+oo Q\Ox

If we let £ — 0, we obtain

lim sup /Q —ox () Hn(f;) < / X (F) Hn(f) + / —ohoy 0 Hm(f)

j—+o00 Q\Ox 0

/Q\{f:oo} —wx(f)Hm(f)+/Q—gohufikol’QHm(f). (4.2)

IN

Now, as ;2 Or \ O when k — +00, then

[o¢] (o]
. . . 1
Cap,(0) < lim Cap,, (zL—Jk Ol) < klggogcapm(ol) < lim o7
So, there exists an m-polar set M such that hUi’ik 0,4 /" 0 when k — +o00 on
Q\ M. Thus, if we take k — 400 in 4.2, we obtain

X (D) Hulf) + / oHon(f)

M

limSUP/Q—cpx(fj)Hm(fj) S/

j—roo Q\{f=—o0}

—ox(f) Hnm —ox(f)Hn
< [ D [ o)

- / o (D Hn(f).
Q

This proves the claim 4.1. Moreover, since f; converges in Cap,,-capacity, then
it converges in Cap,,_;-capacity. Using the assertion (a), we obtain

liminf/ﬂ—gox(fj)Hm(fj) Z/Q—wx(fwm(f)-

Jj—+oo

If we combine the last inequality with 4.2, we get

i [ —oxUDHallp) = [ —ox () Hn(h
Q Q

Jj—+oo
for every ¢ € C3°(£2) with 0 < ¢ < 1. Hence we get the desired result. O

Notice that if we take m = n in the above theorem, we obtain the result
from [11] established for the particular case of plurisubharmonic functions.

Now we are interested in the problem of subextention in the class &, (€2).
For Q € Q € C" and f € &,,(Q), we say that f € E,,(Q) is a subextention of
fif f<fonQ.
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The problem of subextention in the case m = n and x = —1 was studied by
Cegrell and Zeriahi [9] in 2003 and it was investigated by Cegrell, Kolodziej, and
Zeriahi [5] for the case of plurisubharmonic functions with weak singularities.
Then this problem was studied for the class £, () (m = n) by Benelkourchi
in [3]. In this paper, we study the problem in the class &, (€2). In the following
theorem, we prove that every function f € &,,,(2) has a subextention.

Theorem 4.12. Let Q be an m—hyperconvex domain such that ) € QecCr.
If x(t) <0 for allt <0 and f € £y (), then there is f € £y, () satisfying

[ (P Hn(f) < / (D Hn()
Q Q

andfgfonQ.

Proof. Let f € &y (Q) and fi € £9,(Q) be the sequence as in the definition
of the class &,y (€2). By using Lemma 3.2 from [12], we obtain that for every k €
N, there exists a subextension fi of fi. It follows that

/ ~x(fr)Hun(fr) = /{f e ~x(fr) Hum(fr)
< /{ XU < /Q XU Hn(fi).

So, we obtain

sup / X Hm(fi) < /Q X)) Hon(f) < 0. (4.3)

k JQ

Using Proposition 4.8, we get that the function f = klim fk #% —oo and f €
—00

Em (). Then, by 4.3,

[ -xDtnh < [ (Dt <.

Q

By the Comparison Principle, it follows that for all k£ € N one has fe < fr on Q.
If we let k go to oo, we deduce that f < f on Q. O
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IIpo pesiki BaroBi KJjiacu m-cyorapMoHIiYHUX QyHKITii
Mohamed Zaway and Jawhar Hbil

VY 1iit pobori Mu Bubdaemo kiaac &, () m-cybrapmonivHux byHKIIH,
seenennii JIro B [18]. Mu moogumo, mo 36ixkuicTs Mip Tecce BuBOIUTHCS
31 361KHOCTI BiHOCHO M-eMHOCTI myist dyHKIN, 1m0 Hagexkarb &, () Ta
3aJI0BOJIbHSIIOTH IIE€BHI JOMATKOBI yMoBHU. Jlaji Mu pPO3IOBCIOMZKYEMO Iii pe-
3yJIbTaTU Ha KJjac 5m,x(Q)v AKWH 3aJIeKUTh Bif 3aaH01 ificHol yHKITIT
X lano moBHy xapakKTepu3alliio X KJaciB 3a jomomoroio Mmipu lecce, a
TaKOXK TeOPeMy MiIIPOIOBIKEHHSI BITHOCHO &y, 1 (€2).

KimrogoBi ciioBa: m-cybrapmoniuaa yHKINsS, éMHICTB, oneparop lecce,
3012KHICTDH BIJIHOCHO 71M-€MHOCTI
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