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Radial Positive Solutions for Problems

Involving φ-Laplacian Operators with

Weights

Sywar Belkahla, Bilel Khamessi, and Zagharide Zine
El Abidine

Using the potential theory, we establish the existence and the asypmtotic
behavior of radial solutions for the following boundary value problem:

− 1

A
(Aφ(| u′ |)u′)′ = a(t)uσ on (0, 1),

Aφ(| u′ |)u′(0) = 0,

u(1) = 0,

where σ > 0, A is a positive differentiable function on (0, 1) and the nonneg-
ative function φ is continuously differentiable on [0,∞) such that for each
t > 0,

k1 6
(tφ(t))′

φ(t)
6 k2,

where k1 > 0 and k2 > 0. The nonnegative nonlinearity a is required
to satisfy some appropriate assumptions related to the Karamata regular
variation theory. We end this paper by giving applications.
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1. Introduction

In order to explain many physical problems which arise from nonlinear elas-
ticity, plasticity and both Newtonian and Non-Newtonian fluids, a particular
attention was paid to problems driving the φ-Laplacian operator u 7→ −(φ(u′))′,
where φ is an increasing homeomorphism [1, 3, 6, 8, 12–14, 16]. Particular cases
of the φ-Laplacian are the p-Laplacian and the curvature operators in Euclidean
and Minkowski space :

1. φ : (−∞,∞)→ (−∞,∞), u 7→ u | u |p−2, p > 1;
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2. φ : (−∞,∞)→ (−1, 1), u 7→ u√
1 + u2

;

3. φ : (−1, 1)→ (−∞,∞), u 7→ u√
1− u2

.

On the other hand, many researchers investigated the existence of positive solu-
tions for boundary value problems of second order ordinary differentiable equa-
tions involving the p-Laplacian operator with a positive function weight given
by

Lpu = − 1

A
(A|u′|p−2u′)′,

where p > 1 and the weight function A is positive satisfying some appropriate
assumptions [2, 4, 5, 11, 17, 18]. For instance, in [18] Reichel and Walter studied
the equation

− 1

A

(
A|u′|p−2u′

)′
= f(t, u),

where p > 1 and A(t) = tα, α > 0. For the case where f is increasing in u, a
sharp comparison theorem is proved. It leads to maximal solutions, uniqueness
and nonuniqueness results and so on. Using these results, a strong comparison
principle for the boundary value problem as well as a variety of properties of blow-
up solutions are settled under weak assumptions on the nonlinearity f . In [17],
Pucci et al. generalized this result and established some uniqueness results for
the particular case A(t) = tα−1r(t), α > 1, r ∈ C1([0,∞)) and f(t, u) = uσ,
σ > −1.

Later, in [4], Ben Othman et al. studied the existence of radial solutions for
the p-Laplacian problem given as follows:

− 1

A
(AΦp(u

′))′ = a(t)uσ on (0, 1),

AΦp(u
′)(0) = 0,

u(1) = 0,

(1.1)

where p > 1, Φp(t) = t|t|p−2 for t ∈ R, A is a positive differentiable function
on (0, 1) and σ < p − 1. Applying Karamata regular variation theory and using
some potential theory tools, the authors proved in [4] that (1.1) has a unique
positive continuous solution and gave sharp estimates on this solution. The p-
Laplacian operator was also studied in the vicinity of infinity [5], where the
authors established a result of the existence of a positive radial solution. They
proved that such a solution verifies a certain asymptotic behavior similar to that
of the source function. Dhifli et al. [10] generalized this result to the so-called
φ-Laplacian problem.

Motivated by the above works, our main purpose is to improve the result
given in [4] in the sense that we enlarge the class of the nonlinearity of a and
extend the class of operators to the following problem :

− 1

A
(Aφ(|u′|)u′)′ = a(t)uσ, on (0, 1),

Aφ(|u′|)u′(0) = 0,

u(1) = 0,

(1.2)
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where the function a satisfies appropriate assumptions related to the Karamata
class K, the set of all Karamata functions L defined on [0, η) by

L(t) := c exp

(∫ η

t

z(x)

x
dx

)
for some η > 0, c > 0 and z ∈ C([0, η]) such that limx→0 z(x) = 0.

Throughout the paper, the function φ is in C1 ([0,∞), [0,∞)) and it satisfies
the condition:

(φ) There exist k1, k2 > 0 such that for t > 0,

k1 6
(tφ(t))′

φ(t)
6 k2.

A large class of nonhomogenous differentiable φ-Laplacian operators with various
types of nonlinearity of the function φ, satisfying the condition (φ), arises in
several physical applications. For the case φ(t) = (1+ |t|2)p−1, t ∈ R, p > 1

2 , then
k1 = min(1, 2p− 1) and k2 = max(1, 2p− 1). This operator appears in nonlinear
elasticity problems [12]. If φ(t) = |t|p−2 + |t|q−2, t ∈ R and 1 < p < q, then k1 =
p− 1 and k2 = q− 1. This operator is called the (p, q)-Laplacian operator and it
models the phenomena of quantum physics [3].

By means of fixed point methods, potential theory tools and Karamata regular
variation theory, we obtain the existence of positive continuous radial solutions
of (1.2) for 0 < σ < k1 and give estimates on such solutions. To simplify our
statements, we need to fix some notations. Let f and h be two nonnegative
functions defined on a set S. We write f(t) ≈ h(t), t ∈ S, if there exists a
constant c > 1 such that c−1h(t) 6 f(t) 6 ch(t) for all t ∈ S. It should be noticed
that c denotes a generic positive constant which may vary from line to line.

For φ ∈ C1([0,∞), [0,∞)) satisfying (φ), we put Φ(t) = tφ(|t|) for t ∈ R. It
follows from (φ) that Φ : R→ R is an odd C1-increasing homeomorphism.

We refer to GΦf for a nonnegative measurable function f on (0, 1) as the
function defined on (0, 1) by

GΦf(t) :=

∫ 1

t
Φ−1

(
1

A(s)

∫ s

0
A(r)f(r) dr

)
ds, (1.3)

where Φ−1 is the inverse of Φ. For the special case φ(t) = |t|p−2, t ∈ R with p >

1, we have for t ∈ R, Φ(t) = t|t|p−2 and Φ−1(t) = t|t|
2−p
p−1 . Then we shall denote

GΦ by Gp. That is, for a nonnegative measurable function f on (0, 1), Gpf is
given by

Gpf(t) :=

∫ 1

t

(
1

A(s)

∫ s

0
A(r)f(r) dr

) 1
p−1

ds, t ∈ (0, 1). (1.4)

Remark 1.1. For a nonnegative continuous function f defined on (0, 1) such
that the mapping x 7→ A(x)f(x) is integrable in a neighborhood of 0, GΦf is the
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solution of the problem
LΦu =

1

A
(AΦ(u′))′ = −f on (0, 1),

AΦ(u′)(0) = 0,

u(1) = 0.

In what follows, we will define a function that plays a crucial role in this work.
Let p > 1, µ < 0 and β 6 p. For L ∈ K, defined on (0, η], η > 1, such that∫ η

0
t
1−β
p−1 (L(t))

1
p−1 dt <∞,

we denote by ψp,β,L the function defined on (0, 1] by

ψp,β,L(t) =



1 if β < µ+ 1,(∫ η

t

L(s)

s
ds

) 1
p−1

if β = µ+ 1,

(L(t))
1
p−1 if µ+ 1 < β < p,∫ t

0

(L(s))
1
p−1

s
ds if β = p.

(1.5)

Our main objective is to study the existence of solutions for problem (1.2).
To this end, let us introduce our hypotheses:

(H1) A is a positive differentiable function on (0, 1) verifying the following:

A(t) ≈ tλ(1− t)µ, λ > 0 and µ < 0.

(H2) a is a positive continuous function on [0, 1) such that there exists a constant
c > 1 satisfying for t ∈ [0, 1),

L1(1− t)
c(1− t)β1

6 a(t) 6 c
L2(1− t)
(1− t)β2

,

where Li ∈ K with β1 6 β2 < 1 for i ∈ {1, 2} or

β1 = k2 + 1 = β2 = k1 + 1 and∫ 1

0

(L1(s))
1
k2

s
ds <∞,

∫ 1

0

(L2(s))
1
k1

s
ds <∞.

(H3) β1 − k1 6 β2 − k2.

Now we are ready to state our main results.

Theorem 1.2. Assume (φ), (H1), (H2) hold.
If β1 6 β2 < 1, then there exists c > 0 such that for t ∈ (0, 1),

1

c
(1− t)ν1ψk1+1,β1,L1(1− t) 6 GΦa(t) 6 c(1− t)ν2ψk2+1,β2,L2(1− t),



Radial Positive Solutions for Problems Involving φ-Laplacian Operators 157

where νi = min(ki+1−βi
ki

, ki−µki
) and ψki+1,βi,Li is the function given by (1.5) for

i ∈ {1, 2}.
If β1 = β2 = k1 + 1 = k2 + 1, then there exists c > 0 such that

1

c

∫ 1−t

0

(L1(s))
1
k2

s
ds 6 GΦa(t) 6 c

∫ 1−t

0

(L2(s))
1
k1

s
ds.

Theorem 1.3. Assume (φ), (H1)–(H3) hold. Then for 0 < σ < k1, problem
(1.2) has a positive continuous solution u such that there exists c > 1 satisfying

1

c
θ1(t) 6 u(t) 6 c θ2(t), t ∈ (0, 1), (1.6)

where for i ∈ {1, 2}, θi is defined on (0, 1) by

θi(t) := (1− t)δiψ̃i(1− t), (1.7)

where δi = min(ki+1−βi
ki−σ , ki−µki

) and ψ̃i is defined on (0, 1] by

ψ̃i(t) =



1 if βi <
ki(µ+ 1) + σ(ki − µ)

ki
,(∫ η

t

Li(s)ds

s

) 1
ki−σ

if βi =
ki(µ+ 1) + σ(ki − µ)

ki
,

L
1

ki−σ
i (t) if

ki(µ+ 1) + σ(ki − µ)

ki
< βi < ki + 1

(1.8)

for β1 6 β2 < 1 or by

ψ̃1(t) =

(∫ t

0

(L1(s))
1
k2

s

) k2
k2−σ

and ψ̃2(t) =

(∫ t

0

(L2(s))
1
k1

s

) k1
k1−σ

(1.9)

for β1 = k2 + 1 = β2 = k1 + 1.

The outline of this paper is as follows. Some preliminary results on the Kara-
mata class are stated in Section 2. Section 3 is devoted to proving Theorems 1.2
and 1.3 involving some technical lemmas. The last section contains an example
illustrating our results.

2. Karamata class

In this section, we quote some fundamental properties of functions belonging
to the class K taken from [7,15,20].

Lemma 2.1. Let L ∈ K and ε > 0. Then we have

lim
t→0+

tεL(t) = 0.
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Proposition 2.2. A function L is a Karamata function if and only if there
exists η > 0 such that L is a positive function in C1((0, η]) satisfying

lim
t→0+

tL′(t)

L(t)
= 0.

Lemma 2.3.

1. Let L1, L2 ∈ K, and let p ∈ R. Then the functions L1L2, L1 + L2 and Lp1
are in K.

2. Let L ∈ K be defined on (0, η], η > 0. Then we have

lim
t→0+

L(t)∫ η

t

L(x)

x
dx

= 0.

In particular,

t 7→
∫ η

t

L(x)

x
dx ∈ K.

If further

∫ η

0

L(x)

x
dx converges, then we have

lim
t→0+

L(t)∫ t
0

L(x)

x
dx

= 0.

In particular,

t 7→
∫ t

0

L(x)

x
dx ∈ K.

Lemma 2.4. Let γ ∈ R, and let L be a function in K defined on (0, η], η >
0. We have

1. If γ > −1, then

∫ η

0
xγL(x) dx converges and

∫ t

0
xγL(x) dx ∼

t→0+

t1+γL(t)

1 + γ
.

2. If γ < −1, then

∫ η

0
xγL(x) dx diverges and

∫ η

t
xγL(x) dx ∼

t→0+
− t

1+γL(t)

1 + γ
.

Remark 2.5. We point out that, due to Lemmas 2.3 and 2.4, the functions
ψp,β,L and ψ̃i, i ∈ {1, 2}, given respectively by (1.5), (1.8) and (1.9), are in K.

3. Proofs of theorems

3.1. Technical lemmas. The purpose of this paragraph is to provide some
technical lemmas which will be useful in the proof of our main results. We notice
that if φ ∈ C1([0,∞), [0,∞)) satisfies the condition (φ), then for each t > 0,
(tφ(t))′ > 0. We recall that Φ(t) = tφ(|t|), t ∈ R.
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Lemma 3.1 ([19]). Assume (φ) holds. Then for s, t > 0,

min(tk1 , tk2)Φ(s) 6 Φ(st) 6 max(tk1 , tk2)Φ(s)

and
min(t

1
k1 , t

1
k2 )Φ−1(s) 6 Φ−1(st) 6 max(t

1
k1 , t

1
k2 )Φ−1(s).

Remark 3.2.

1. There exists a positive constant c0 such that for 0 < t 6 1,

1

c0
t

1
k1 6 Φ−1(t) 6 c0 t

1
k2 . (3.1)

2. There exists a positive constant c1 such that for t > 1,

1

c1
t

1
k2 6 Φ−1(t) 6 c1 t

1
k1 . (3.2)

Lemma 3.3 ([4, Proposition 2.4]). Let p > 1 and β 6 p. We suppose that A
is continuous on [0, 1), differentiable and positive on (0, 1) such that

A(t) ≈ tλ(1− t)µ,

where λ > 0 and µ < p− 1. Let q be the function defined on [0, 1) by

q(t) = (1− t)−βL(1− t)

such that L ∈ K is defined on (0, η], η > 1, and let it satisfy∫ η

0
t
1−β
p−1 (L(t))

1
p−1 dt <∞.

Then we have

Gpq(t) ≈ (1− t)
β̃
p−1ψp,β,L(1− t), t ∈ [0, 1), (3.3)

where ψp,β,L is the function given by (1.5) and β̃ = min(p− β, p− 1− µ).

Lemma 3.4. Let θ1, θ2 be the functions given by (1.7). Assume (φ) and
(H1)–(H3) hold. Then the function θ1

θ2
is bounded above. That is, there exists

c > 0 such that for t ∈ [0, 1),
θ1(t)

θ2(t)
6 c.

Proof. We divide the proof into two cases.
Case 1: If β1 6 β2 < 1. For i ∈ {1, 2} and t ∈ [0, 1), we consider

θi(t) = (1− t)δiψ̃i(1− t),

where δi = min
(
ki−µ
ki

, ki+1−βi
ki−σ

)
and ψ̃i is the function given by (1.8). One can

easily see that
k2 − µ
k2

6
k1 − µ
k1

, (3.4)
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and we deduce from (H3) that

k2 + 1− β2

k2 − σ
6
k2 + 1− β2

k1 − σ
6
k1 + 1− β1

k1 − σ
. (3.5)

Equations (3.4) and (3.5) imply that δ2 6 δ1.

For δ2 < δ1, by using Lemma 2.1, we get that the function ψ̃1

ψ̃2
is in K and

that

lim
t→1−

(
θ1

θ2

)
(t) = lim

t→1−
(1− t)δ1−δ2

(
ψ̃1

ψ̃2

)
(1− t) = 0.

Since θ1
θ2
∈ C([0, 1]), we obtain that θ1

θ2
is bounded above on (0, 1). It only remains

to prove the result when δ1 = δ2. We split the proof into the following subcases:
Subcase 1. Assume k1−µ

k1
= k2−µ

k2
< k2+1−β2

k2−σ . Therefore we obtain that k1 =

k2, β1 <
k1(µ+1)+σ(k1−µ)

k1
and β2 <

k2(µ+1)+σ(k2−µ)
k2

. It follows that for t ∈ (0, 1),
we have

θ1(t)

θ2(t)
= 1.

Subcase 2. Assume k1−µ
k1

= k2−µ
k2

= k2+1−β2
k2−σ < k1+1−β1

k1−σ . This implies that

k1 = k2, β1 <
k1(µ+1)+σ(k1−µ)

k1
and β2 = k2(µ+1)+σ(k2−µ)

k2
. We have

θ1(t)

θ2(t)
=

(∫ η

1−t

L2(s)

s
ds

) −1
k2−σ

.

Since 0 < σ < k1 = k2, we obtain that

lim
t→1−

(
θ1

θ2

)
(t) <∞.

This implies that
θ1

θ2
is bounded on (0, 1).

Subcase 3. Assume k1−µ
k1

= k2−µ
k2

= k2+1−β2
k2−σ = k1+1−β1

k1−σ . In this case, we

conclude that k1 = k2 and β1 = β2 = k1(µ+1)+σ(k1−µ)
k1

. Thus, from (H2), we have
L1 6 L2 and for t ∈ [0, 1),

θ1(t)

θ2(t)
=


∫ η

1−t

L1(s)

s
ds∫ η

1−t

L2(s)

s
ds


1

k1−σ

6 1.

Subcase 4. Assume k1+1−β1
k1−σ = k2+1−β2

k2−σ < k2−µ
k2

. Then for i ∈ {1, 2}, βi >
ki(µ+1)+σ(ki−µ)

ki
. We deduce from (3.5) that k1 = k2 and β1 = β2. It follows from

(H2) that L1 6 L2. Therefore, for t ∈ [0, 1), we have

θ1(t)

θ2(t)
=

(
L1(1− t)
L2(1− t)

) 1
k1−σ

6 1.
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Case 2: If β1 = k2 + 1, β2 = k1 + 1, then L1 6 L2 and k1 = k2. This implies
that for t ∈ [0, 1],

θ1(t)

θ2(t)
=

(∫ 1−t

0

(L1(s))
1
k2

s ds

) k2
k2−σ

(∫ 1−t

0

(L2(s))
1
k1

s ds

) k1
k1−σ

=


∫ 1−t

0

(L1(s))
1
k1

s ds∫ 1−t

0

(L2(s))
1
k1

s ds


k1

k1−σ

6 1,

which ends the proof.

3.2. Proof of Theorem 1.2. We distinguish two cases.
Case 1: Assume β1 6 β2 < 1. For t ∈ (0, 1), we have

GΦa(t) =

∫ 1

t
Φ−1

(
1

A(s)

∫ s

0
A(r)a(r) dr

)
ds.

Put

h(s) =
1

A(s)

∫ s

0
A(r)a(r) dr, s ∈ (0, 1).

We claim that lim
s→1−

h(s) = 0. Using (H1) and (H2), we have for s ∈ (1
2 , 1),

h(s) 6 c s−λ(1− s)−µ
∫ s

0
rλ(1− r)µ−β2L2(1− r) dr

6 c(1− s)−µ
(∫ 1

1
2

(1− r)λ dr +

∫ 1
2

1−s
rµ−β2L2(r) dr

)

6 c(1− s)−µ
(

1 +

∫ 1
2

1−s
rµ−β2L2(r) dr

)
.

We distinguish the following subcases:
Subcase 1: Let β2 < µ+ 1. Then, using Lemma 2.4, we get that∫ 1

2

0
rµ−β2L2(r) dr <∞.

Thus we have

h(s) 6 c (1− s)−µ
(

1 +

∫ 1
2

1−s
rµ−β2L2(r) dr

)
6 c (1− s)−µ.

Since µ < 0, we obtain that lims→1− h(s) = 0.
Subcase 2: Let β2 = µ+ 1. We have

h(s) 6 c (1− s)−µ
(

1 +

∫ 1
2

1−s

L2(r)

r
dr

)
.
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By Lemma 2.3, we obtain that

s 7→ 1 +

∫ 1
2

1−s

L2(r)

r
dr ∈ K.

By Lemma 2.1, it implies that lim
s→1−

h(s) = 0.

Subcase 3: Let µ+ 1 < β2 < 1. By Lemma 2.4, for s ∈ (1
2 , 1), we have

h(s) 6 c (1− s)−µ
(

1 + (1− s)1+µ−β2L2(1− s)
)

6 c (1− s)1−β2L2(1− s)
(

1 +
(1− s)β2−1−µ

L2(1− s)

)
.

By Lemma 2.3, we obtain that 1
L2
∈ K. Using the fact that β2 − 1 − µ > 0,

Lemma 2.1 implies that

h(s) 6 c (1− s)1−β2L2(1− s).

Finally, applying again Lemma 2.1, we deduce that lim
s→1−

h(s) = 0.

The claim is proved. So, there exists 0 < δ0 < 1 such that h(s) 6 1 for s ∈
[δ0, 1). By (3.1), for t ∈ [δ0, 1), we have

GΦa(t) =

∫ 1

t
Φ−1(h(s)) ds 6 c

∫ 1

t
(h(s))

1
k2 ds.

Hence, from (1.4), it follows that

GΦa(t) 6 cGk2+1a(t), t ∈ [δ0, 1).

By Lemma 3.3, using the fact that β2 < 1 < k2 + 1, we can deduce that for t ∈
[δ0, 1),

Gk2+1a(t) 6 c(1− t)ν2ψk2+1,β2,L2(1− t),

where ν2 = min
(
k2−1−β2

k2
, k2−µk2

)
and ψk2+1,β2,L2 is the function given by (1.5).

This implies that

GΦa(t) 6 c (1− t)ν2ψk2+1,β2,L2(1− t), t ∈ [δ0, 1). (3.6)

Now, since the functions GΦa and t 7→ ψk2+1,β2,L2(1 − t) are positive and con-
tinuous in [0, δ0], then inequality (3.6) remains true for t ∈ [0, δ0]. Hence, for t ∈
(0, 1), we conclude that

GΦa(t) 6 c (1− t)ν2ψk2+1,β2,L2(1− t).

The same arguments are used to prove the lower estimates:

1

c
(1− t)ν1ψk1+1,β1,L1(1− t) 6 GΦa(t), t ∈ (0, 1).
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Case 2: Assume β1 = k2 + 1 = β2 = k1 + 1. Using (H1) and (H2), we have
for s ∈ (1

2 , 1),

h(s) >
1

c
(1− s)−µ

∫ s

1
2

(1− t)µ−β1L1(1− t) dt > 1

c
(1− s)−µ

∫ 1
2

1−s
rµ−β1L1(r) dr.

Since µ− β1 < −1, by Lemma 2.4, we obtain

h(s) >
1

c
(1− s)1−β1L1(1− s).

This implies by Lemmas 2.1, 2.3 and the fact that β1 − 1 > 0 and

lim
s→1−

h(s) = lim
s→1−

(1− s)1−β1L1(1− s) = lim
s→1−

1

(1− s)β1−1
1

L1(1− s)

=∞.

So, there exists 0 < δ0 < 1 such that h(s) > 1 for s ∈ [δ0, 1). By (3.2), we have
for t ∈ [δ0, 1),

GΦa(t) 6 c

∫ 1

t
(h(s))

1
k1 ds.

From (1.4), we have

GΦa(t) 6 cGk1+1a(t), t ∈ [δ0, 1).

Using (H2) and the fact that β2 = k1 + 1, we can deduce by Lemma 3.3 that for
t ∈ [δ0, 1),

Gk1+1a(t) 6 c

∫ 1−t

0

(L2(s))
1
k1

s
ds.

This implies that

GΦa(t) 6 c

∫ 1−t

0

(L2(s))
1
k1

s
ds, t ∈ [δ0, 1). (3.7)

Now, since the functions GΦa and

t 7→
∫ 1−t

0

(L2(s))
1
k1

s
ds

are positive and continuous on [0, δ0], then inequality (3.7) remains true for t ∈
[0, δ0]. Hence, for t ∈ (0, 1), we conclude that

GΦa(t) 6 c

∫ 1−t

0

(L2(s))
1
k1

s
ds.

The same arguments are used to prove the lower estimates:

1

c

∫ 1−t

0

(L1(s))
1
k2

s
ds 6 GΦa(t), t ∈ (0, 1).

This leads to the following.



164 Sywar Belkahla, Bilel Khamessi, and Zagharide Zine El Abidine

Corollary 3.5. Assume (φ), (H1) and (H2) hold. Let θ1 and θ2 be the
functions given by (1.7). Then there exists c > 0 such that for t ∈ (0, 1),

1

c
θ1(t) 6 GΦ(aθσ1 )(t) (3.8)

and
GΦ(aθσ2 )(t) 6 c θ2(t). (3.9)

Proof. Using (H2), we obtain that for t ∈ (0, 1),

(1− t)−β̃1L̃1(1− t) 6 c (aθσ1 )(t)

and
1

c
(aθσ2 )(t) 6 (1− t)−β̃2L̃2(1− t),

where for i ∈ {1, 2}, β̃i = βi − σδi and L̃i = Liψ̃
σ
i such that ψ̃i are the functions

given by (1.8) and (1.9).
In what follows, we distinguish two cases :
Case 1: If β1 6 β2 < 1, then it follows from Theorem 1.2 that there exists

c > 1 such that for t ∈ (0, 1),

GΦ(aθσ1 )(t) >
1

c
(1− t)ν̃1ψk1+1,β̃1,L̃1

(1− t) (3.10)

and
GΦ(aθσ2 )(t) 6 c (1− t)ν̃2ψk2+1,β̃2,L̃2

(1− t) (3.11)

such that for i ∈ {1, 2}, ψki+1,β̃i,L̃i
is the function given by (1.5), and ν̃i =

min
(
ki+1−β̃i

ki
, ki−µki

)
. By simple calculus, we get that ψki+1,β̃i,L̃i

= ψ̃i and ν̃i =

δi. Finally, (1.7) leads to (3.8) and (3.9).
Case 2: Let β1 = k2 + 1 = β2 = k1 + 1. From Theorem 1.2, there exists c >

1 such that for t ∈ (0, 1),

GΦ(aθσ1 )(t) >
1

c

(∫ t

0

(L̃1(s))
1
k2

s
ds

)
(3.12)

and

GΦ(aθσ2 )(t) 6 c

(∫ t

0

(L̃2(s))
1
k1

s
ds

)
. (3.13)

By simple calculus, we get (3.8) and (3.9).

3.3. Proof of Theorem 1.3. Let θ1 and θ2 be the functions defined by
(1.7) and let a be a function satisfying (H2). By Corollary 3.5, there exists m >
1 such that for t ∈ (0, 1),

1

m
θ1(t) 6 GΦ(aθσ1 )(t), (3.14)
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GΦ(aθσ2 )(t) 6 mθ2(t). (3.15)

Besides, Lemma 3.4 implies that there exists M > 1 satisfying on (0, 1),

θ1 6Mθ2.

Now we look at the existence of positive solution of problem (1.2) satisfying
(1.6). We consider the following closed convex:

Y =

{
u ∈ C([0, 1])

∣∣∣∣ 1

c
θ1 6 u 6 c θ2

}
,

where c = max

(
M,m

k1
k1−σ

)
. Using Proposition 2.3 and Lemma 2.1, we get that

θ1 ∈ C([0, 1]). Moreover, the fact that

1

c
θ1 6 θ1 6Mθ2 6 c θ2

implies that θ1 ∈ Y . Then Y is non empty. On Y , we define the integral operator
T by

Tu := GΦ(auσ).

In order to prove that T has a fixed point in Y , we should first show that T leaves
invariant the convex Y . Let u be a function in Y . Since GΦ is nondecreasing, we
obtain that

Tu > GΦ(c−σaθσ1 ) (3.16)

and
Tu 6 GΦ(cσaθσ2 ). (3.17)

By Lemma 3.1, using the fact that c−σ 6 1, we conclude that on (0, 1),

GΦ(c−σaθσ1 )(t) =

∫ 1

t
Φ−1

(
c−σ

1

A(s)

∫ s

0
A(r)(aθσ1 )(r) dr

)
ds (3.18)

> c
− σ
k1GΦ(aθσ1 ). (3.19)

Using the same arguments as above, we obtain

GΦ(cσaθσ2 ) =

∫ 1

t
Φ−1

(
cσ

1

A(s)

∫ s

0
A(r)(aθσ2 )(r)dr

)
ds 6 c

σ
k1GΦ(aθσ2 ). (3.20)

Combining (3.16), (3.18) with (3.14) and (3.17), (3.20) with (3.15), we conclude
the following:

Tu > c
− σ
k1GΦ(aθσ1 ) > c

− σ
k1

1

m
θ1 >

1

c
θ1 (3.21)

and
Tu 6 c

σ
k1GΦ(aθσ2 ) 6 c

σ
k1 m θ2 6 c θ2. (3.22)

This yields
1

c
θ1 6 Tu 6 c θ2.
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With the fact that TY ⊂ C([0, 1]), we conclude that TY ⊂ Y. Now, let (un)n∈N
be a sequence of functions in C([0, 1]) defined byu0 =

1

c
θ1,

un+1 = Tun for n ∈ N.

Moreover, since σ > 0, the operator T is nondecreasing on Y . This implies that

u0 6 u1 6 · · · 6 un 6 un+1 6 cθ2.

It follows from the monotone convergence theorem that the sequence (un)n∈N
converges to a function u ∈ Y which satisfies

u(t) = Tu(t) = GΦ(auσ)(t), t ∈ [0, 1].

Thus, we deduce that problem (1.2) has a positive continuous solution u verifying
(1.6).

4. Example

Let 1 < p < q, 0 < σ < p − 1 and φ(t) = tp−2 + tq−2, t > 0. Consider the
φ−Laplacian problem

− 1

A

(
A (|u′|p−2 + |u′|q−2)u′

)′
= a(t)uσ on (0, 1),(

A (|u′|p−2 + |u′|q−2)u′
)

(0) = 0,

u(1) = 0,

(4.1)

where
A(t) = t

1
2 (1− t)

−1
2 , t ∈ [0, 1),

and a is a continuous function on [0, 1) such that for t ∈ [0, 1),

log−1( 3
1−t)

c(1− t)β1
6 a(t) 6 c

log( 3
1−t)

(1− t)β2
,

where β1 < β2 < 1 such that β1 − p < β2 − q.
Let a1(t) = (1 − t)−β1 log−1( 3

1−t) and a2(t) = (1 − t)−β2 log( 3
1−t) be the

functions defined on [0, 1). By Theorem 1.3, problem (4.1) has a positive solution
u satisfying for t ∈ [0, 1),

1

c
θ1(t) 6 u(t) 6 c θ2(t),

where

θ1(t) = (1− t)
min

(
p−β1
p−1−σ ,

p− 1
2

p−1

)


1 if β1 <
1
2 + σ 2p−1

2(p−1) ,(
log
(

log
(

3
1−t
))) 1

p−1−σ
if β1 = 1

2 + σ 2p−1
2(p−1) ,(

log
(

3
1−t
)) −1

p−1−σ
if 1

2 + σ 2p−1
2(p−1) < β1 < p
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and

θ2(t) = (1− t)
min

(
q−β2
q−1−σ ,

q− 1
2

q−1

)


1 if β2 <
1
2 + σ 2q−1

2(q−1) ,(
log
(

3
1−t
)) 2

q−1−σ
if β2 = 1

2 + σ 2q−1
2(q−1) ,(

log
(

3
1−t
)) 1

q−1−σ
if 1

2 + σ 2q−1
2(q−1) < β2 < q.

In what follows, we give numerical illustrations of our example.

(I) We consider σ = 1
12 , p = 2, q = 9

4 , β1 = 19
36 , and β2 = 15

16 . The functions a1

and a2 are drawn in Fig. 4.1.

Fig. 4.1: The functions a1 and a2.

We notice that β1 and β2 satisfy the conditions β1 = 1
2 + σ 2p−1

2(p−1) and
2(q−p)+1

2 + σ 2p−1
2(p−1) < β2 < 1. Therefore θ1 and θ2 are respectively given for

t ∈ [0, 1),

θ1(t) = (1− t)
3
2

(
log

(
log

(
3

1− t

))) 12
11

and

θ2(t) = (1− t)
9
8 log

(
3

1− t

) 6
7

.

The representation below shows the functions θ1 and θ2 (see Fig. 4.2).

Fig. 4.2: The functions θ1 and θ2.

(II) We take σ = 1
6 , p = 3

2 , q = 4
3 , β1 = 9

10 , and β2 = 11
12 . Fig. 4.3 represents the

functions a1 and a2.
We should notice that β1 and β2 satisfy the conditions 1

2 + σ 2p−1
2(p−1) <

β1 < p and β2 = 1
2 + σ 2q−1

2(q−1) . We conclude that the functions θ1 and θ2 are
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Fig. 4.3: The functions a1 and a2.

respectively defined on [0, 1) by

θ1(t) = (1− t)
9
5

(
(log(

3

1− t
)

)−3

and

θ2(t) = (1− t)
5
2 log(

3

1− t
)12.

The functions θ1 and θ2 are represented in Fig. 4.4.

Fig. 4.4: The functions θ1 and θ2.

(III) For σ = 1
7 , p = 5

4 , q = 3
2 , β1 = 5

7 , and β2 = 181
210 . The functions a1 and a2 are

represented in Fig. 4.5.

Fig. 4.5: The functions a1 and a2.

Here, β1 and β2 satisfy the conditions β1 <
1
2 + σ 2p−1

2(p−1) and 1
2 + σ 2q−1

2(q−1) <

β2 < q. Therefore we have for t ∈ [0, 1),

θ1(t) = (1− t)3
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and

θ2(t) = (1− t)
134
75 log(

3

1− t
)
14
5 .

The behavior of the functions θ1 and θ2 is shown in Fig 4.6.

Conclusion. We studied the existence and the asymptotic behavior of radial
positive solution to a class of problems involving the φ-Laplacian operator. We
recall that our work extends [4], where the authors considered the p−Laplacian
with β1 = β2 and L1 = L2. However, we mention that due to technical difficulties,
our results involve the extremal cases βi = ki + 1 for i ∈ {1, 2}, only for the
particular case β1 = β2 and L1 6 L2. Finally, some numerical simulations were
given to illustrate our results.

Fig. 4.6: The functions θ1 and θ2.
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Радiальнi додатнi розв’язки для задач, що
включають ваговi оператори φ-лапласiана

Sywar Belkahla, Bilel Khamessi, and Zagharide Zine El Abidine

Використовуючи теорiю потенцiалу, встановлюємо iснування та
асимптотичну поведiнку радiальних розв’язкiв наступної крайової за-
дачi: 

− 1

A
(Aφ(| u′ |)u′)′ = a(t)uσ on (0, 1),

Aφ(| u′ |)u′(0) = 0,

u(1) = 0,

де σ > 0, A є додатною диференцiйовною функцiєю на (0, 1), а невiд’ємна
функцiя φ є неперервно диференцiйовною на [0,∞) так, що для кожного
t > 0,

k1 6
(tφ(t))′

φ(t)
6 k2,

де k1 > 0 i k2 > 0. Невiд’ємна нелiнiйнiсть a повинна задовольняти
деякi вiдповiднi припущення, пов’язанi з теорiєю регулярних варiацiй
Карамати. Ми закiнчуємо цю роботу розглядом застосувань.

Ключовi слова: додатнi розв’язки, асимптотична поведiнка, φ-
лапласiан, клас Карамати
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