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Radial Positive Solutions for Problems

Involving ¢-Laplacian Operators with
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Using the potential theory, we establish the existence and the asypmtotic
behavior of radial solutions for the following boundary value problem:

DNu') = a(t)u® on (0,1),

where ¢ > 0, A is a positive differentiable function on (0, 1) and the nonneg-
ative function ¢ is continuously differentiable on [0, 00) such that for each

t>0,
(to(t))’

by <~ Lk,
1 Qb(t) X N2
where k; > 0 and ks > 0. The nonnegative nonlinearity a is required
to satisfy some appropriate assumptions related to the Karamata regular
variation theory. We end this paper by giving applications.
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1. Introduction

In order to explain many physical problems which arise from nonlinear elas-
ticity, plasticity and both Newtonian and Non-Newtonian fluids, a particular
attention was paid to problems driving the ¢-Laplacian operator u — —(¢(u'))’,
where ¢ is an increasing homeomorphism [1, 3, 6,8, 12-14, 16]. Particular cases
of the ¢-Laplacian are the p-Laplacian and the curvature operators in Euclidean
and Minkowski space :

1. ¢:(—00,00) = (—00,00), u+s u | ulP72 p>1;
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2. ¢:(—00,00) = (—1,1), urr o
U

N

On the other hand, many researchers investigated the existence of positive solu-

tions for boundary value problems of second order ordinary differentiable equa-

tions involving the p-Laplacian operator with a positive function weight given

by

3. ¢:(-1,1) = (—o0,0), u

1
Ly = (A P2,

where p > 1 and the weight function A is positive satisfying some appropriate
assumptions [2,4,5,11,17,18]. For instance, in [18] Reichel and Walter studied
the equation .
A
where p > 1 and A(t) = t*, o > 0. For the case where f is increasing in u, a
sharp comparison theorem is proved. It leads to maximal solutions, uniqueness
and nonuniqueness results and so on. Using these results, a strong comparison
principle for the boundary value problem as well as a variety of properties of blow-
up solutions are settled under weak assumptions on the nonlinearity f. In [17],
Pucci et al. generalized this result and established some uniqueness results for
the particular case A(t) = t*"!r(t), a > 1, r € C1([0,00)) and f(t,u) = u’,
o> —1.
Later, in [4], Ben Othman et al. studied the existence of radial solutions for
the p-Laplacian problem given as follows:

(Al P~2) = [t w),

(AR, = althu? on (0,1),
AT (u)(0) = 0, (1.1)
u(l) =0,

where p > 1, ®,(t) = t|t|P~2 for t € R, A is a positive differentiable function
on (0,1) and o < p — 1. Applying Karamata regular variation theory and using
some potential theory tools, the authors proved in [4] that (1.1) has a unique
positive continuous solution and gave sharp estimates on this solution. The p-
Laplacian operator was also studied in the vicinity of infinity [5], where the
authors established a result of the existence of a positive radial solution. They
proved that such a solution verifies a certain asymptotic behavior similar to that
of the source function. Dhifli et al. [10] generalized this result to the so-called
¢-Laplacian problem.

Motivated by the above works, our main purpose is to improve the result
given in [4] in the sense that we enlarge the class of the nonlinearity of a and
extend the class of operators to the following problem :

1 / IAVA (e
— < (A6(u' ) = at)u”, on (0,1),

Ag(ju')u(0) = 0, (1.2)
u(1l) =0,
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where the function a satisfies appropriate assumptions related to the Karamata
class IC, the set of all Karamata functions L defined on [0,7) by

b= o [ 22 )

for some n > 0, ¢ > 0 and z € C([0,7]) such that lim,_,o z(x) = 0.

Throughout the paper, the function ¢ is in C* ([0, 00), [0, 00)) and it satisfies
the condition:

(¢) There exist k1, kz > 0 such that for ¢t > 0,

(t6 (1))
o) <™

A large class of nonhomogenous differentiable ¢-Laplacian operators with various
types of nonlinearity of the function ¢, satisfying the condition (¢), arises in
several physical applications. For the case ¢(t) = (1+[t|*)P~1, t € R, p > 3, then
k1 = min(1,2p — 1) and ko = max(1,2p — 1). This operator appears in nonlinear
elasticity problems [12]. If ¢(¢) = [¢|[P72 + [t|7 2, t e R and 1 < p < ¢, then k1 =
p—1 and ko = ¢ — 1. This operator is called the (p, ¢)-Laplacian operator and it
models the phenomena of quantum physics [3].

k1 <

By means of fixed point methods, potential theory tools and Karamata regular
variation theory, we obtain the existence of positive continuous radial solutions
of (1.2) for 0 < o < k; and give estimates on such solutions. To simplify our
statements, we need to fix some notations. Let f and h be two nonnegative
functions defined on a set S. We write f(¢t) ~ h(t), t € S, if there exists a
constant ¢ > 1 such that ¢ !h(t) < f(t) < ch(t) for all t € S. It should be noticed
that ¢ denotes a generic positive constant which may vary from line to line.

For ¢ € C*([0, ), [0,00)) satisfying (¢), we put ®(t) = té(|t|) for t € R. Tt
follows from (¢) that ® : R — R is an odd C'-increasing homeomorphism.

We refer to Ggf for a nonnegative measurable function f on (0,1) as the
function defined on (0, 1) by

Gaf(t) == /t ot ( Azs) /O A f () dr> ds, (1.3)

where ®~! is the inverse of ®. For the special case ¢(t) = [t|P72, t € R with p >

2—
1, we have for t € R, ®(t) = t[t|P~2 and ®~!(¢) = t|t|T—11). Then we shall denote
Go by G,. That is, for a nonnegative measurable function f on (0,1), G, f is
given by

G f(t) = /tl (AES)/OSA(r)f(r) dr)pilds, L e (0,1). (1.4)

Remark 1.1. For a nonnegative continuous function f defined on (0, 1) such
that the mapping « — A(x)f(x) is integrable in a neighborhood of 0, G f is the



156 Sywar Belkahla, Bilel Khamessi, and Zagharide Zine El Abidine

solution of the problem

1 N\
SAB) = —f  on (0,1),

A®(u')(0) = 0,
u(1l) = 0.

Leu =

In what follows, we will define a function that plays a crucial role in this work.
Let p>1, p <0 and 8 < p. For L € K, defined on (0,7], n > 1, such that

T 1-8 1
/ tr=1(L(t))r=T dt < oo,
0

we denote by 1, 5 1. the function defined on (0, 1] by

1 fg<pu+1,
(/nLgS)ds>“ if B=p+1,
= t 1 .
Vpsr () (L(1))71 ifu+1<8<p, (1:5)
HL(s)TT
/0 . ds if =np.

Our main objective is to study the existence of solutions for problem (1.2).
To this end, let us introduce our hypotheses:

(H1) A is a positive differentiable function on (0, 1) verifying the following:
Aty ~t*1—t)*, XA>0and u<O0.

(H2) ais a positive continuous function on [0, 1) such that there exists a constant
¢ > 1 satisfying for ¢t € [0,1),

Ll(l _t) Lg(l —t)
qi—pp SOseaTge

where L; € I with 1 < 52 <1 for i € {1,2} or

Bi1=ko+1=pPy=k1+1 and
1 1
1 Toq 1 >
/ 7([/1(8)) ’ ds < 00, / 7([/2(8)) i ds < o0o.
0 0 s

S

(H3) B1 — k1 < B2 — ko.

Now we are ready to state our main results.

Theorem 1.2. Assume (¢), (Hy), (Ha) hold.
If 51 < B2 < 1, then there exists ¢ > 0 such that fort € (0,1),

1 1% 1%
E(l - t) 1wk1+1,,31,L1(1 - t) < G@G(t) < C(l - t) 2¢k2+1,ﬁ2,L2(1 - t)v
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where v; = min(*H=5 —ki,;“
1

ki
ie{l,2}.
If 1 = P = k1 + 1= ko + 1, then there exists ¢ > 0 such that

117 (Ly(5)) T2 17t (Ly(s)) 71
/0 ds<G<1>a(t)<c/ ———ds.

c s 0 s

) and Yr,11.8,1, 1S the function given by (1.5) for

Theorem 1.3. Assume (¢), (H1)—(Hs) hold. Then for 0 < o < k1, problem
(1.2) has a positive continuous solution u such that there exists ¢ > 1 satisfying

%01(25) <ult) <cbs(t), te(0,1), (1.6)

where for i € {1,2}, 0; is defined on (0,1) by

0i(t) = (1= )%hi(1 — 1), (1.7)
where §; = min(*5E258 K=ty and o) ds defined on (0,1] by
X g < ilat ) olhi i)
-1 /%(z)ds)kil—a RS} }: o~ 1) (18)
Lf}“ 0 i et 1) ZU(’“;_ Mo B <k +1
for 1 < B2 <1 or by
ko ky

Gilt) = (/0 (Ll”)) T owd = (/O M) )

forBr=ko+1=0s =k +1.

The outline of this paper is as follows. Some preliminary results on the Kara-
mata class are stated in Section 2. Section 3 is devoted to proving Theorems 1.2
and 1.3 involving some technical lemmas. The last section contains an example
illustrating our results.

2. Karamata class

In this section, we quote some fundamental properties of functions belonging
to the class K taken from [7,15,20].

Lemma 2.1. Let L € K and € > 0. Then we have

lim t°L(t) = 0.

t—0t
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Proposition 2.2. A function L is a Karamata function if and only if there
exists n > 0 such that L is a positive function in C*((0,n]) satisfying

tL(t)

ST

Lemma 2.3.

1. Let L1,Lo € K, and let p € R. Then the functions L1Lo, L1 + Lo and Lf
are in IC.

2. Let L € K be defined on (0,n], n > 0. Then we have

Lt
hm+ — T E )) =
t—0 / T da
¢ x

n
tn—>/ deEIC.
P

In particular,

L
[ffurther/ ﬂda: converges, then we have
0 X

L(t
t— t
—=d
Jo s

In particular,

t
tr—>/L($)da;€IC.
0 a

Lemma 2.4. Let v € R, and let L be a function in K defined on (0,n], n >
0. We have

n t t1+'yL(t)
1. Ify>—1, then / 27 L(x) dx converges and / 2'L(x)de ~ ——=.
0 0 t—ot 147y
n n tlJWL(t)
2. Ify< -1, then / 27 L(x) dx diverges and/ 2'L(x)dx ~ ————=.
0 t t—0t 14+ Yy

Remark 2.5. We point out that, due to Lemmas 2.3 and 2.4, the functions
Yp a1 and 5, i € {1,2}, given respectively by (1.5), (1.8) and (1.9), are in K.

3. Proofs of theorems

3.1. Technical lemmas. The purpose of this paragraph is to provide some
technical lemmas which will be useful in the proof of our main results. We notice
that if ¢ € C1(]0,00),[0,00)) satisfies the condition (¢), then for each ¢ > 0,
(to(t)) > 0. We recall that ®(t) = to(|t]), t € R.
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Lemma 3.1 ([19]). Assume (¢) holds. Then for s,t > 0,
min(tF1 t52)®(s) < O(st) < max(th, t72)d(s)

and
11 11
min(tF1,t52)® 71 (s) < @7 (st) < max(tFr,tR2)d71(s).
Remark 3.2.
1.  There exists a positive constant ¢y such that for 0 <t < 1,

1 1

1 1
— tF <D THE) g the. (3.1)
Co
2. There exists a positive constant ¢; such that for ¢ > 1,
1 1 1 1
— th2 <O (t) < cp th. (3.2)

&1

Lemma 3.3 ([4, Proposition 2.4]). Let p > 1 and § < p. We suppose that A
is continuous on [0,1), differentiable and positive on (0,1) such that

A(t) = M1 —t)*,
where A > 0 and u < p — 1. Let q be the function defined on [0,1) by
g(t) = (1—1)PL(1 - 1)

such that L € K is defined on (0,n], n > 1, and let it satisfy

T 1-8 1
/ B (L(1)75T dt < oo,
0
Then we have
B
Gpq(t) = (1 —=t)rT9p, 31 (1 —t), tel0,1), (3.3)
where 1y, 5.1, is the function given by (1.5) and g = min(p — B,p— 1 — ).

Lemma 3.4. Let 01, 05 be the functions given by (1.7). Assume (¢) and
(Hy)—(Hg3) hold. Then the function % is bounded above. That is, there erists
¢ > 0 such that fort € [0,1),

61(t) <c
02(1)
Proof. We divide the proof into two cases.
Case 1: If §; < B2 < 1. Fori € {1,2} and ¢ € [0, 1), we consider

0i(t) = (1 —)"4i(1 — 1),

where §; = min (kaJ, %) and 1); is the function given by (1.8). One can

easily see that
ko — p < k1 — M7
ko k1

(3.4)
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and we deduce from (Hs) that

k2+1—52<k2+1—52<k1+1—ﬂ1
kh—o0 = k-0 = k-0

(3.5)

Equations (3.4) and (3.5) imply that dy < 0;. ]
For § < 1, by using Lemma 2.1, we get that the function % is in K and
2

that -
. 01 o s (U1 )
tlirln_ <92) (t) = tng_(l t) (@2) (1-t)=0.

Since % € C([0,1]), we obtain that % is bounded above on (0, 1). It only remains
to prove the result when §; = d2. We split the proof into the following subcases:

Subcase 1. Assume klk B — k2k,2“ < k2+1 ﬁ 2 Therefore we obtain that k; =

ko, p1 < Bletlrosi) anq g, < %j“ﬂﬂ) It follows that for ¢ € (0,1),
we have

0u(t) _
O2(t)
Subcase 2. Assume kl,;“ = k"}c;“ = kQ;; 1 UB 2 < k1k+1 ! f L. This implies that
ki = ko, By < W and By = W We have

- ([ B

Since 0 < 0 < k1 = ko9, we obtain that

0
This implies that — is bounded on (0,1).

)
Subcase 3. Assume ]“kl“ = kQ “ = kglgl;& = kl,jla B Tn this case, we

conclude that k1 = ko and 81 = B9 = w Thus, from (Hj), we have
L1 < Ly and for ¢ € [0, 1),

/’7 Li(s) Fie
1

(1) _ t S <1

02(t) / Ly 5)
1t S

Subcase 4. Assume kl,;tl:ﬁl = katlofo o kQ —£. Then for i € {1,2}, §; >

o ko—o

kit bohizin) e deduce from (3.5) that ky = k:Q and B = By. It follows from
(Ha) that L; < Ly. Therefore, for t € [0, 1), we have

01(t)  (Li(1—t)\Fiv
e2<t>‘<Lz<1—t>) st
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Case 2: If f1 = ko + 1,82 = k1 + 1, then L1 < Lo and k1 = ko. This implies
that for ¢ € [0, 1],

_ 1 - _k1
/1 t(Ll(Z))k2 ds N = (Ll(S))ﬁ ds e
01(t) 0 0 3

_ - <1
92(t) — 1 -kia -t La(s)) k1 S
( / ' t(m@)kl ds) " /0 (2L ds

0

which ends the proof. O

3.2. Proof of Theorem 1.2. We distinguish two cases.
Case 1: Assume (1 < 82 < 1. For t € (0,1), we have

Goalt) = /t T ( Azs) /0 " A(r)a(r) dr) ds.

h(s) = Azs) /O “A(r)a(r)dr, s € (0,1).

We claim that lim h(s) = 0. Using (H;) and (H,), we have for s € (3, 1),

s—1—

Put

h(s) <ecs M1 - s)_”/osr)‘(l — )P P2y (1 —r) dr

Sl —s)7" (/11(1 — ) dr + /: =P Ly(r) dr)

2

1
<e(l—s)™# (1 + /2 P2 Lo (r) dr) .
1-s

We distinguish the following subcases:
Subcase 1: Let 82 < p+ 1. Then, using Lemma 2.4, we get that

Jun

3
/ P2 Lo (r) dr < .
0

Thus we have

1

h(s) <ec(l—s)™# (1 + /2 B2 Lo (1) dr> <c(l—s) M
1-s

Since p < 0, we obtain that lim,_,;- h(s) = 0.
Subcase 2: Let 82 = 1+ 1. We have

h(s)<c(1—s)™# (1 + /2 La(r) dr> .
1

—_s T
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By Lemma 2.3, we obtain that

1
5.—>1+/2 Lz(r)drelC.
1

r

—S
By Lemma 2.1, it implies that lim h(s) = 0.
s—1—

Subcase 3: Let 4+ 1 < 8y < 1. By Lemma 2.4, for s € (%, 1), we have

h(s) <c (1—s)7H (1 4 (1= s)FrBe,(1 - 3))

(1— 3)52—1—#> .

<c(1—s)2Ly1—5) (1 + Lol —3)

By Lemma 2.3, we obtain that L% € K. Using the fact that 8o — 1 — pu > 0,
Lemma 2.1 implies that

h(s) <e(1—s)72Ly(1—s).

Finally, applying again Lemma 2.1, we deduce that lim h(s) = 0.

s—1-
The claim is proved. So, there exists 0 < dy < 1 such that h(s) < 1 for s €

[00,1). By (3.1), for ¢ € [y, 1), we have

1

1 1
Gaalt) :/ d=1(h(s)) ds < c/ (h(s))7 ds.
¢ t
Hence, from (1.4), it follows that
Goa(t) < cGgytra(t), t € [do,1).

By Lemma 3.3, using the fact that S < 1 < k2 + 1, we can deduce that for ¢ €
[507 1)5
Gk2+1a(t) < C(l - t)y2¢/€2+1,52,[/2(1 - t)?

where v, = min (%, ka—;“) and 9, +1,8,,1, is the function given by (1.5).

This implies that
Goalt) < (1= ) Yyirpmia(L— 1), € [60,1). (3.6)

Now, since the functions Gea and t — p,118, 1,(1 — t) are positive and con-
tinuous in [0, dp], then inequality (3.6) remains true for ¢ € [0, Jp]. Hence, for ¢ €
(0,1), we conclude that

Goa(t) < c(1—1)"2Yryq1,8,,0,(1 — 1)

The same arguments are used to prove the lower estimates:

1
7(1 - t)V1¢k1+1,,31,L1(1 - t) < G¢'a(t>7 te (07 1)
C
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Case 2: Assume 51 = ko + 1 = 82 = k1 + 1. Using (H;) and (Hs), we have
for s € (3,1),
1

(1-— 5)“/12 PPy (r) dr-.

—S

h(s) >

ol
ol

(1— s)ﬂf(l — )PP —t)dt >

Since u — 81 < —1, by Lemma 2.4, we obtain

h(s) > 1(1 —s)L(1—s).

c
This implies by Lemmas 2.1, 2.3 and the fact that 81 — 1 > 0 and
1
lim A(s) = lim (1 —s)"""L1(1 —5s) = lim T = 00.
s—1— s—1— s—1— (1 o 3)51_1
Ll(l — S)

So, there exists 0 < dyp < 1 such that h(s) > 1 for s € [0y, 1). By (3.2), we have
for t € [do, 1),

1
Goalt) < ¢ / (h(s)) 7 ds.
t
From (1.4), we have
Goa(t) < cGiy1a(t), t € [dp,1).

Using (Hs) and the fact that 8y = k1 4+ 1, we can deduce by Lemma 3.3 that for
t € [bo, 1),

1-t L 1%
Gr,+10(t) < c/ (La(s) ™ ds.
0 S
This implies that
1
1—t L 1
Goal(t) < c/ (2(;”))16&9, t €[5, 1). (3.7)
0

Now, since the functions Gga and

t— /1_t (LQ(S))E ds
0 s

are positive and continuous on [0, dp], then inequality (3.7) remains true for ¢ €
[0, dp]. Hence, for ¢t € (0,1), we conclude that

Goa(t) < c/l_t(LQ(S))klds.

0 S
The same arguments are used to prove the lower estimates:
1
1 [ (Li(s) 2
/ L) < Gga(t), te(0,1).
CJo S

This leads to the following.



164 Sywar Belkahla, Bilel Khamessi, and Zagharide Zine El Abidine

Corollary 3.5. Assume (¢), (Hy) and (Hg) hold. Let 61 and 02 be the
functions given by (1.7). Then there exists ¢ > 0 such that for t € (0,1),

éel(t) < Golat?)(®) (3.8)

and
Go(abg)(t) < ca(t). (3.9)

Proof. Using (Hz), we obtain that for ¢ € (0,1),
(1= ) P1Li(1— 1) < e (ab])(D)

and
% (ab3)(t) < (1 — )P Ly(1 1),

where for i € {1, 2}, B; = Bi — 06; and L; = Lﬂ/?f such that v; are the functions
given by (1.8) and (1.9).
In what follows, we distinguish two cases :

Case 1: If 81 < B2 < 1, then it follows from Theorem 1.2 that there exists
¢ > 1 such that for ¢t € (0,1),

Go(ab)(t) =

QR

(1= )"y 15,0, (1= 1) (3.10)

and
Go(abg)(t) <c (1— t)u277[1k2+1,32i2(1 —t) (3.11)
such that for i € {1,2}, Uy, 15,1, 18 the function given by (1.5), and 7; =

min (k’%:@, k%—:“) By simple calculus, we get that wkiﬂ GiL = zﬁz and 7; =
d;. Finally, (1.7) leads to (3.8) and (3.9).
Case 2: Let f1 = ko + 1=y = ki1 + 1. From Theorem 1.2, there exists ¢ >

1 such that for ¢ € (0, 1),

Galab?)(t) > = ( / FLa(s)*™ ds) (3.12)
c\Jo s
and ) N
Go(abS)(t) < c (/O (L?(j))klds) . (3.13)
By simple calculus, we get (3.8) and (3.9). O

3.3. Proof of Theorem 1.3. Let #; and 6y be the functions defined by
(1.7) and let a be a function satisfying (Hs). By Corollary 3.5, there exists m >
1 such that for ¢ € (0,1),

%91(@ < Golat?)(®), (3.14)
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Go(abg)(t) < mba(t). (3.15)
Besides, Lemma 3.4 implies that there exists M > 1 satisfying on (0, 1),
01 < M0s.
Now we look at the existence of positive solution of problem (1.2) satisfying

(1.6). We consider the following closed convex:

y = {uGC’([O,l]) ‘ Lo, <u<092},
C
k

1
where ¢ = max | M, m*1—2 |. Using Proposition 2.3 and Lemma 2.1, we get that

61 € C([0,1]). Moreover, the fact that
1
—01 <01 < MOy < cly
c

implies that 8; € Y. Then Y is non empty. On Y, we define the integral operator
T by
Tu = Gg(au’).

In order to prove that T has a fixed point in Y, we should first show that T leaves
invariant the convex Y. Let u be a function in Y. Since G¢ is nondecreasing, we
obtain that

Tu > Go(c aby) (3.16)
and
Tu < Gg(cabg). (3.17)
By Lemma 3.1, using the fact that ¢=? < 1, we conclude that on (0,1),
1 1 s
Go(c %ab)(t) :/ ! <cg / A(r)(abf)(r) dr> ds (3.18)
t A(s) Jo
>c F1Gg(aby). (3.19)

Using the same arguments as above, we obtain

o _no\ __ ! - o 1 3 o ﬁ o
Go(c a62)/t ot <c A(s)/o A(r)(a@z)(r)dr) ds < c1Gg(abg). (3.20)

Combining (3.16), (3.18) with (3.14) and (3.17), (3.20) with (3.15), we conclude
the following:

_o —_e 1 1
Tu>c F1Gep(ab]) > c 1 —0; > -6, (3.21)
m c
and . .
Tu < cF1Gg(aby) < ¢k m Oy < ¢ bs. (3.22)

This yields
1
*(91 < Tu < 692.
C
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With the fact that TY C C(]0, 1]), we conclude that TY C Y. Now, let (upn)nen
be a sequence of functions in C([0,1]) defined by

1
ug = —0h,
C

Up+1 = Tu, forneN.
Moreover, since o > 0, the operator T is nondecreasing on Y. This implies that
up S up <0 < Up < Upy1 S o

It follows from the monotone convergence theorem that the sequence (uy)nen
converges to a function v € Y which satisfies

u(t) = Tu(t) = Go(au’)(t), te|0,1].

Thus, we deduce that problem (1.2) has a positive continuous solution u verifying
(1.6).

4. Example

Let 1 <p<qO0<o<p—1and¢(t) =tP"2 41972 t > 0. Consider the
¢—Laplacian problem

- % (A (JW'[P~2 + |u'\q72)u’)/ =a(t)u’ on (0,1),

(4 (/P72 + ")) (0) = 0, 1)
u(l) =0,
where X B
A(t):tﬁ(l_t)Tv te [071)’
and a is a continuous function on [0, 1) such that for ¢ € [0,1),
log_l(li_t) - log(%)
c(1—t)h
where 81 < B2 < 1 such that 81 —p < B2 — ¢q.

Let ai(t) = (1 —t) P log (%) and as(t) = (1 —t) ™ log(:;) be the

functions defined on [0,1). By Theorem 1.3, problem (4.1) has a positive solution
u satisfying for t € [0, 1),

1
- 01(t) < u(t) < chat),
where

2p—1
2(p—-1)°

log (12 )’H*g if £+ 022(§j) <B<p
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and

| it B2 < § + o5y,
min [ 452 ,q_—? 72—0 . —
Bs(t) = (1— 1) () (108 (%)) if B =+ 05T,

1

<log (%)) T gf 1+ 022(3:}) < B2 <q.

In what follows, we give numerical illustrations of our example.

19

(I) We consider 0 = 15, p=2,¢= 1§, 51 = 33,

and a9 are drawn in Fig. 4.1.

and By = %. The functions a;

Fig. 4.1: The functions a; and as.

2p—1
2(p—1)
y < B2 < 1. Therefore #; and 62 are respectively given for

0= =07 (1o (105 (2))) "

Oa(t) = (1 — )% log (3>$.

1-t¢

and

We notice that 81 and (2 satisfy the conditions 51 = % + o

2(g—p)+1 2p—1
2 T o501

te0,1),

and

The representation below shows the functions #; and 6y (see Fig. 4.2).

J—)
2

Fig. 4.2: The functions 6; and 6-.

II) Wetakeo =1, p=323 ¢g=4%, 8 =2, and B = i, Fig. 4.3 represents the
6 2 3 10 12
functions a1 and as.

We should notice that 51 and (o satisfy the conditions % + 022(2 j) <
1

81 < pand B = % + 0%. We conclude that the functions 6, and 65 are
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20

0

Fig. 4.3: The functions a; and as.

(0ot %)

ou(t) = (1~ )3 log(-)1*

respectively defined on [0,1) by

[Se]

61(t) = (1—1)

and

The functions #; and 6y are represented in Fig. 4.4.

Fig. 4.4: The functions 6; and 6-.

(II1) For o = %, p= 2, qg= %, B = %, and By = %. The functions a; and a9 are

represented in Fig. 4.5.

3

00 02 04 06 08 10

Fig. 4.5: The functions a; and as.

2p—1
2(p—1)

2q—1
2(¢—1)

Here, 81 and [ satisfy the conditions 87 < % + 0o <

B2 < q. Therefore we have for t € [0, 1),

and%—ka

01(t) = (1-t)°
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and 3
2(t) = (1 1) log(;—) >

The behavior of the functions #; and 65 is shown in Fig 4.6.

Conclusion. We studied the existence and the asymptotic behavior of radial

positive solution to a class of problems involving the ¢-Laplacian operator. We
recall that our work extends [4], where the authors considered the p—Laplacian
with 81 = B and L1 = Ly. However, we mention that due to technical difficulties,
our results involve the extremal cases 3; = k; + 1 for ¢ € {1,2}, only for the
particular case 81 = B2 and L; < Lo. Finally, some numerical simulations were
given to illustrate our results.

ees

Fig. 4.6: The functions 6; and 6-.
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PagianbHi momaTHi po3B’sa3ku AJis 3aja4, 110
BKJIIOYAIOTh BaroBi omeparopu ¢-Jariaciana
Sywar Belkahla, Bilel Khamessi, and Zagharide Zine El Abidine

BukopucroByiodun Teopilo mOTeHINaTy, BCTAHOBJIIOEMO ICHYBAHHS Ta
ACUMIITOTUYHY IIOBEIHKY Pa/iaJIbHAX PO3B’fA3KiB HACTYIHOI KpaitoBoi 3a-
Jadi:

(Ag(| v hu')" = a(t)u” on (0,1),

Ag(] u' )u'(0) =0,
u(1l) =0,

=

ne o > 0, A e nonarHor nudepenniiosro GyHKIteo Ha (0, 1), a HeBi eMHa
dyHKIis ¢ € HenepepBHO judepeHIiiioBHo0 Ha [0, 00) TaK, IO JJist KOXKHOTO

t>0, /
b < )

(t)
e ki > 01 ko > 0. Hesix'emua HeniHifiHiCTL @ HOBUHHA 3aJ0BOJILHATU
JesiKi BINMIOBi/THI TPHUITYIIEHHs, MOB’S3aHI 3 TEOPIEI0 PeryssipHUX Bapiariiit
Kapamaru. Mu 3akindyemo 1m0 pobOTy pO3IJISIOM 3aCTOCYBAHb.

< k2a

KimrogoBi  cjioBa: HojJaTHI pO3B’SI3KM, ACHUMIITOTHYHA IIOBEIiHKA, -
nartacian, knac Kapamarn
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