Journal of Mathematical Physics, Analysis, Geometry
2024, Vol. 20, No. 2, pp. 172-194
doi: https://doi.org/10.15407/mag20.02.172

Positive Matrix Representations of Rational
Positive Real Functions of Several Variables
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A rational homogeneous (of degree one) positive real matrix-valued func-
tion of several variables can be represented as a Schur complement to the
diagonal block of a linear homogeneous matrix-valued function with positive
semidefinite real matrix coefficients (the long-resolvent representation). The
numerators of the partial derivatives of a positive real function are sums of
squares of polynomials.
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1. Introduction

The long-resolvent representation theorem (see [4-6]) asserts that each ratio-
nal m x m matrix-valued function f(z1,...,24) is a Schur complement

f(2) = Ani(z) — A1a(2) A2 (2) ' Az (2) (1.1)

of the block Ass(z) of a linear (m + 1) x (m + l) matrix-valued function (linear
pencil)
Az) = {Az‘j(z)}?,j:1 = Ao+ 2141+ + 2444 (1.2)

If, moreover, f(z) satisfies additional conditions from the list:

@) fz,--020) = f(a1,- -5 2a0),
(i) f(2)" = f(2),
(iii) f()\zl, Ce ,)\Zd) = /\f(Zl, ce ,Zd), reC \ {0},

then one can choose matrices Ag, & = 0,1,...,d, to be (i) real (respectively,
(ii) symmetric, (iii) such that Ag = 0). Another proof of this theorem has been
recently obtained in [22].

A particular role is played by the BessmertnyT class RB}"™™ (see [1,16,17,22])
of functions (1.1) with a positive real homogeneous matrix pencil:

A(z) =21 A1 4+ 294y, AL =Ap,=A, >0, k=1,...,d
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Positive definiteness is understood in the sense of quadratic forms. Functions
of class RB}"™"™ are characteristic functions of electric circuits containing ideal
transformers and elements of d type, where each element of the kth type has an
impedance z, [4,5,9]. If f(z) € RB}"™™, then, from (1.1), we get:

(iv) f(z)+ f(2)*>0,zel?={z€C?|Rez; >0,...,Rezg > 0},
(v) f(#) is holomorphic on IT¢.
A function f(z) satisfying conditions (i)—(v) is called positive real [5]. The class
of rational positive real functions is denoted by RPJ™*™

It is clear that RBJ"™*™ C RP**™. For d = 1,2, we have RB}"*™ = RP"™*™.
If d > 3, then the question of the coincidence of the classes RB}*"™ and RP"™*™
still remains open (see [2,16,22]), with the exception of functions of degree 2 and
some others [5,7,8]. In this paper, we prove RBJ"™ = RP"™™ for all d > 1.

It was proved in [2, Theorem 4.1] that f(z) € RB}™™ if and only if there
exist rational matrix-valued functions ®,(z), k = 1,...,d, holomorphic on II¢
that satisfy the conditions:

CI)k(Azl,...,)\zd):@k(zl,...,zd), /\E(C\{O},

(I)k(,?l, - ,Ed) = @k(zl, ceey Zd),
d
F(2) =) 2®i(2)®k(w)*, w,z€CY (1.3)
k=1

Characterizations of the form (1.3) for various generalizations of the class RB]"*™
were obtained in [2,3,16,17]. In [16, 17], non-rational analogs of the classes
RP;”X’” and RB(TX”"” were studied, where the coefficients of long-resolvent rep-
resentations are bounded linear operators on a Hilbert space. In [2], for rational
Cayley inner Herglotz—Agler functions over the right poly-halfplain (here the
term “Cayley inner” means that the Cayley transform over the values of func-
tion is an inner function), long-resolvent representation (1.1) was obtained, in
which the matrix Ag is skew-symmetric and the other matrices Ay are symmetric
positive semidefinite. Thus, the class of Cayley inner rational Herglotz—Agler
functions is an extension of the class RB"*™. In [3], non-rational analogs of
Cayley inner Herglotz—Agler functions were studied, where the coefficients of the
long-resolvent representation are linear operators on a Hilbert space, with Ag
possibly unbounded.

For rational functions, relation (1.3) requires the representation of nonnega-
tive polynomials as a sum of squares of rational functions holomorphic in II%. The
Artin solution of Hilbert’s 17th problem on the representation of a non-negative
polynomial as a sum of squares of rational functions says nothing on the location
of the singularities of functions in the decomposition [19, Ch. XI, Corollary 3.3].
A similar class of positive real functions in d variables (without condition (iii)
of homogeneity of degree 1) was considered by T. Koga [18]. Koga’s method is
based on the following statement.

Lemma 1.1 (Koga’s Sum-of-Squares Lemma). Let p(x1,...,2z4) be a poly-
nomial with real coefficients, quadratic in each variable. If p(x) > 0 for real x;,
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i=1,...,d, then p(z) = > hj(z)?, where h;j(z) are polynomials linear in each
variable.

As noted by N.K. Bose, Koga’s proof is wrong [11]. A counterexample is
the non-negative polynomial not representable as a sum of polynomial squares
constructed by M.-D. Choi [14]:

Tiyt + 23Y5 + 73Y3 — 2(T1y172y2 + T2y2T3Ys + T1Y1T3Y3)
+ 2(aiys + wy3 + a3yt).  (14)

In Koga’s method, a nonnegative polynomial is a partial Wronskian

Ip(x) 9q(x)

ka _p(x)Tm (1.5)

Fi.(z) = W, [, p] = q(z)
of a pair of polynomials such that q(z),p(z) # 0, z € TI%. The polynomial (1.4)
does not satisfy this condition. The representation (1.5) strongly restricts the
class of nonnegative polynomials. In this paper, we will prove a theorem that
“rehabilitates” T. Koga’s method.

Theorem 1.2 (Sum-of-Squares Theorem). If P(z)/q(z) € RP;™™, then the
partial Wronskians

OP(z) dq(z)
W, Pl = - P
0P = 0(2) 5 = P
are sums of squares of polynomials.
This theorem made it possible to prove the main result: RPZlnxm = ]RB;”XT”

for every d > 1.

The paper is organized as follows. In Section 2, we explain terminology and
provide preliminary information. In Section 3, we recall the simplest properties
of functions of the class RPZIM’” and properties of the degree reduction operator
of a rational function. For a multi-affine function, a criterion for belonging to the
class RP;"™™ is obtained (Theorem 3.7). Section 4 studies the properties of the
denominators of rational functions in the Artin decomposition into the sum of
squares. Theorem 4.3 and Proposition 4.4 allow localizing the singularities of ra-
tional functions in the Artin decomposition. A convenient representation for the
partial Wronskians W, [¢; p] is given in Theorem 5.1 (Product Polarization The-
orem) in Section 5. In fact, for a rational function f = p/q, this theorem implies
Hefer’s expansion f(z) — f(¢) = >_(zx — (k) Fi(z, ) with additional conditions of
symmetry Fy(z, () = Fy(C, 2).

In Section 6, we study the set of Gram matrices of a given 2n-form and
prove the Representation Defect Lemma (Lemma 6.7). This lemma allows one
to obtain a new long-resolvent representation from a given representation if one
of the matrices of the new representation is known.

In Section 7, a representation of a rational function with one nonnegative
partial Wronskian is obtained in Theorem 7.1. This representation contains the
Artin denominator of the nonnegative partial Wronskian in explicit form.
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In Section 8 on the basis of Theorem 7.1, the Sum-of-Squares Theorem (The-
orem 8.2) is proved.

In Section 9, a long-resolvent representation of a rational positive real matrix-
valued function with a positive semidefinite matrix pencil is obtained in Theorem
9.1.

2. Terminology, notations and preliminaries

Let R[z] be a ring of polynomials in the variables (21,...,z24) € C? with real
coefficients. We say p(z) € R[z] is affine in 2, if deg,, p(z) = 1, and we say p(z)
is multi-affine if it is affine in 2 for all k =1,...,d.

Recall that a circular region is a proper subset of the complex plane, which is
bounded by circles (straight lines). In particular, the half-plane is a circular re-
gion. We need the following statement about symmetric multiaffine polynomials.

Theorem 2.1 (Grace-Walsh—Szegd, [13, Theorem 2.12]). Let p be a symmet-
ric multi-affine polynomial in n complex variables, let C be an open or a closed
circular region in C, and let z1,...,2z, be any fixed points in the region C. If
degp = n or C is convex, then there exists at least one point & € C such that

p(z1,.. .y 2n) =D&, ..., 8).

A polynomial p(z) is called a form (n-form) if p(Azy ..., Azq) = A"p(21 ..., 24),
reC.

A rational matrix-valued function will be written in the form f(z) =
P(2)/q(2), where P(2) = {pi;(2)}{’;,_; is a matrix polynomial and ¢(2) is a scalar
polynomial. In fact, division P(z)/q(z) is the standard operation of multiplying
of the matrix P(z) by the number g(z)~'.

The matrix A is called real if A = A (where the bar denotes the replacement
of each element of A by a complex conjugate number). The symbol AT denotes

the transpose of A. If A is a matrix with complex elements, then A* = A" is the
Hermitian conjugate matrix.

A real symmetric m x m matrix A is called positive semidefinite (A > 0) if
the inequality n7 An > 0 holds for all n € R™, and positive definite (A > 0) if
nT An > 0 for all  # 0.

A matrix-valued form F(z) is called positive semidefinite or PSD if F'(z) >
0 for all z € RY. A matrix-valued PSD form F(z) is called a sum of squares or
SOS if F(z) = H(2)H(2)" , where H(z) is some matrix-valued polynomial.

If = (61,...,04) € N&, then z& = 23 ... ng is a monomial. Let {z% }J]Vil be
a set of all monomials of degree n in variables z1, ..., z4. Each 2n-form F(z) can
be represented as

ail ... aipm z

Fz) = (2% - 2% | 0 e - (2.1)
apil --- MM ZOM

The symmetric matrix A = {ajk}%czl is called a Gram matrix of a 2n-form F(z).
The Gram matrix is not uniquely determined by the 2n-form. It is known [20,
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Theorem 1] that PSD form F(z) is a SOS form if and only if F'(z) has a positive
semidefinite Gram matrix.

If K is a field, then K(z1,...,z4) denotes the set of rational functions in
variables 1, ..., x4 with coeflicients from the field K.

Theorem 2.2 (Artin, [19, Chap. XI, Corollary 3.3]). Let K be a real field
admitting only one ordering. Let f(x) € K(x1,...,xq) be a rational function that
does not take negative values: f(a) > 0 for all a = (ay,...,aq) € K%, in which
f(a) is defined. Then f(x) is a sum of squares in K(x1,...,xq).

If F(2) is a SOS form, then s(2)?F(z) is also a SOS form for each form s(z).
If F(2) is not representable as a sum of squares of polynomials, then the question
arises: for which s(z) is the form s(z)*F(z) also not a SOS form?

Proposition 2.3 ([15, Lemma 2.1]). Let F(x) be a PSD not SOS form and
let s(z) be an irreducible indefinite form in Rz1,...,x4]. Then s*F is also a
PSD not SOS form.

Proof. Clearly, s>F is PSD. If s>F = Yk hi, then for every real tuple a with
s(a) = 0, it follows that s?F(a) = 0. This implies hj(a)? = 0 Yk. So, on the
real variety s = 0, we have hy = 0 as well. Thus, (see [10], Theorem 4.5.1) for
each k, there exists gy such that hy = sgy. This gives FF = >, g,g, which is a
contradiction. O

Corollary 2.4. Let F(x) be a matriz-valued PSD not SOS form and let s(x)
be an irreducible indefinite form in Rlx1,...,24). Then s*F is also a PSD not
SOS form.

In the univariate case, coprime polynomials have no common zeros. For sev-
eral variables, the situation is different (for example, examine the polynomials z;
and zg). Let Z(h) = {z € C? | h(z) = 0} be a zero set of the polynomial h.

Theorem 2.5 ([21, Theorem 1.3.2]). Suppose that d > 1 and s(z), h(z) €
Clz1,...,24] are coprime polynomials such that s(0) = h(0) = 0. If Q is a
neighborhood of zero in C, then:

(a) mneither of the sets Z(s) N Q and Z(h) N is a subset of the other,
(b) for any a € C, there exists z € Q such that h(z) # 0, s(z)/h(z) = a.

The assertion (a) of this theorem remains valid for polynomials coprime in
the ring Rz, ..., 2z4].

A polynomial p(z) € R[zy,..., z4] is called a polynomial with Hurwitz prop-
erty or a stable polynomial if p(z) # 0 on I [12,13]. A homogeneous stable
polynomial is called a Hurwitz form. If F(z) is a Hurwitz form, then the poly-
nomial

F(CEl, sy Th—1, 2k Tht-1, - - - )xd)

has only real zeros in zj, for fixed x1,..., 25 1, Tgr1,-..,24 € R.
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3. Degree reduction operator and positivity
Proposition 3.1. If f(z) = P(z)/q(z) € RPJ"™™, then partial Wronskians

OP(z) Jq(2)

Wzk [Q? P] = q( ) 82k azk ’

— P(2) k=1,...,d, (3.1)

are PSD forms.

Proof. Suppose k = 1. If ¥ = (zo,...2q)
Im f((,2) > 0, Im¢ > 0, and Imp(¢) = 0 m(
de(¢)/d¢|¢cer > 0 holds. From this,

W, la, Pl(z) = q(x)?dp(C)/d|¢=sy >0, x€R™ 0

€ R then Imp(() =
= 0. Hence the inequality

Proposition 3.2. Assume f = P/q € RP}"™. If deg, P > deg,, q, then
there exists a real m x m matriz Ay, > 0 and a matriz form Pi(z) with the
following properties:

(a) deg, P1(z) =deg,, q(2),
(b) fi(z) = Pi(z)/a(z) € RPZ™™,
(c) [f(2) =24+ f1(2).

Proof. Suppose that k= 1. If 2 = (29, ..., 2z4) € 17!, then, for the function
©(¢) = f(¢, Z), the inequality ¢(¢) + ¢(¢)* > 0 holds for Re¢ > 0. The degrees
of the numerator and denominator of Such function cannot differ by more than
1. It follows that lim,, o f(2)/21 = A1(Z) = resc—o(¢) > 0. Since Ay(2) is
holomorphic on IT9~!, we see that A;(Z) = A; > 0 is a constant matrix and
fi1(z1,2) = f(21,2) — 2141 is positive real. fi(z) is homogeneous. Then we have
fi(z) € RPX™. O

Further simplification is based on the use of the degree reduction operator [13,
18]. In some cases, we can restrict ourselves to considering multi-affine functions.
An example of multi-affine k-forms are the elementary symmetric polynomials:

Uk(c1,-~-7<n) = Z Ch(iz"'cikv O-O(Cla"wcn) =1 (32)
11 <t <--<ig

Definition 3.3. Let p(20,2) = Y12 pi—k(2)z5 be an I-form. A map

no no -1
D WECEEIWED (’;0) oG Cu)  (33)

is called a degree reduction operator in the variable zo. If f(z0,2) =
p(20,2)/q(20, 2), deg,, f(20,2) = no, then the degree reduction operator is de-
fined as

D0 [p(20, 2)/4(20, 2)] = DI [p(20, 2)] /D7 [q(20, 2)]- (3.4)

Under the condition (; = --- = (,, = 20, we get the original function. Thus,
the operator D70 is invertible. It turns out that the degree reduction operator
(3.4) has the following property.
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Theorem 3.4./\Let P(20,2), q(20,2) be coprime. If f = P/q € RPJ™,
deg,, f = no, then f(C1,. .., Cng» 2) = DLO[f(20,2)] is a function of class RPZZ@?,
affine and symmetric in variables (i, ..., Cp,-

We need some lemmas. Recall that the Hurwitz form is a homogeneous stable
polynomial.

Lemma 3.5. The coprime numerator and denominator of a scalar positive
real function are Hurwitz forms.

Proof. The homogeneity of the polynomials is obvious. Stability easily follows
from a similar fact for functions of one variable having a nonnegative real part in

the right half-plane. O

Lemma 3.6. Let p(z0,2) be a Hurwitz form. If deg, p(z0,2) = no, then
the polynomial p(C1, . . ., Cng, 2) = D10 [p(20, 2)] is also a Hurwitz form in variable
Clv"w(ﬂo»z

Proof. If z € 1I¢, then the polynomial p(zp, z) has no zeros for Rezy > 0.
Suppose Re(; >0, j =1,...,ng are fixed. By the Grace-Walsh-Szegé Theorem,
there exists a point &, Re{ > 0 such that p((i,...,Cng,2) = p(&,2) # 0. The
homogeneity of p((1, ..., (n,y, 2) is obvious. O

Proof of Theorem 3.4. A matrix-valued function f(zo,z) is positive real if
and only if for any real row vector 1 scalar function 7 f(zo,z)n? is positive real.
Since addition does not move out of the class of positive real functions, we see
that z411 + p(20, 2)/q(20, 2) is a positive real function in variables zg, z, z4+1. By
Lemma 3.6, the polynomial

D [za119(20, 2) + p(20, 2)] = 24+:1D%0[q(20, 2)] + D30 [p(20, 2)]

is a Hurwitz form. This implies Re (DZ0[p(z0,2)]/D2[q(20,2)]) > 0 for
(Cly- -y Cngs 215+ - - 2q) € ™0 Symmetry in the variables (i, ...,y is obvi-
ous. O

Theorem 3.7. A multi-affine real homogeneous (f(Az) = A\f(z), A € C\{0})
rational matriz-values function f(z) = P(z)/q(z) belongs to the class RP}*™ iff
all Wronskians W, [q, P], k =1,...,d, are PSD forms.

Proof. The necessity is proved in Proposition 3.1. Let us prove the sufficiency.
Since f(z) is multi-affine, we see that

f(Z) = Z:;f;igf\; i ;:;2((;)7 zZ= (Zla R R R N PRI Zd)'

It follows from here that

Im f(z,7) =

W, lq, P(Z)
12101 (Z) + q2()[?

Hence Im f(z;,2) > 0, Imz;, > 0 for each k£ = 1,...,d (for any other real vari-
ables). So, as seen from Theorem 2.4 in [6], Im f ( ) > 0 in the upper poly-
halfplane. It follows from the homogeneity of f(z) that f(z) € RP}"™™. O

Imz,, zeRTL
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4. Artin’s denominators of PSD not SOS form

Let F(z) € R[z1,..., z4] be a PSD not SOS form. By Artin’s theorem, there
exists a form s(z) such that s(z)2F(z) is a SOS form. The form s(z) is called
Artin’s denominator of F(z).

Proposition 4.1. Suppose s°F is a SOS form. If each irreducible factor of
s is an indefinite form, then F is also a SOS form.

Proof. Suppose F'is a PSD not SOS form. Let s = s1 - - - sy, be the decompo-
sition of s into irreducible factors. Successively applying Proposition 2.3 to the
forms

F\=5iF, Fy=s3F, ..., F,=352Fy.1,

we obtain F},, = s2F is a PSD not SOS form, which is a contradiction. O

Definition 4.2. Artin’s denominator s of a PSD not SOS form I is called
an Artin minimal denominator if a form § = s/s; is not Artin’s denominator of
F for each irreducible factor s; of s.

Theorem 4.3. Fach PSD not SOS form F(z) has a non-constant Artin min-
imal denominator s(z). The irreducible factors of Artin’s minimal denominator
do not change sign on RY.

Proof. By the Artin theorem, there exists a form r(z) for which r(2)2F(2)
is a SOS form. Each irreducible factor of the form r(z) is either indefinite or it
does not change sign on R%. Then r(z) = 79(2)s(2), where all irreducible factors
of the form s(z) do not change sign on R, and irreducible factors of the form
ro(2) are indefinite. Consider the form Fj(z) = s(2)2F(z). By the assumption,
r3F) = r2F is a SOS. Since every irreducible factor of 79(z) is indefinite, we see
that F} is a SOS form (Proposition 4.1). Then s(z) is also the Artin denominator
for F. Let so be some irreducible factor of the form s. If s/sy remains the Artin
denominator of F, then the factor sg is removed from s. Removing all “excess”
irreducible factors from the form s, we obtain the Artin denominator with the
required properties. ]

Proposition 4.4. Let s(z) be a non-constant real irreducible form that does
not change sign on R®. Then there exists a point z' from the open upper poly-
halfplane such that s(z") = 0.

Proof. Suppose that for any k such that 0s(z)/0zr # 0, the polynomial
s(zx,Z) = s(x1 ..., Tk—1, 2k, Tkt1, - - -, Tq) has only real zeros in z; for each fixed
Z € R, Then the equation s = 0 defines a real manifold of dimension d — 1.
By Theorem 4.5.1 from [10], the ideal generated by the polynomial s is real, and
the irreducible form s(z) is indefinite. This contradicts the assumption.

The complex zeros of s(zk, T) form complex conjugate pairs. Then there exists
2= (%1, ., Tk—1, Mks Tht1,---,Tq), Imng > 0 such that s(z) = 0. Let z§- =z;+
iy;, j # k. If y; > 0 is sufficiently small, then s(z,?2’) still vanishes at some 2z},

from the open upper half-plane. ]
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5. Product Polarization Theorem

The following statement is an analogue of the theorem on the long-resolvent
representation of a rational function.

Theorem 5.1 (Product Polarization Theorem). Let q(2), p(z) be real forms
of degree n and n + 1 satisfy the conditions

deg, q(z) <ng, deg, p(z) <my, k=1,...,d.

Let U(z) = (2*,...,2%) be a row vector of all monomials of degree n for which
deg,, 2% < ny. Then there exist real symmetric matrices Ag, k =1,...,d such
that
9(Op(2) = V() (141 + -+ + 2a4a) ¥ (2)7, (,zeC (5.1)
W, [q,p] = U(2)Ap¥(2)7, k=1,...,d. (5.2)

We need some lemmas.

Lemma 5.2. Suppose k > 0 is an integer. If ("' = (olq---Cop, ¢V =
C1¢3 - - Qaky1, then there exist real symmetric (2k + 1) x (2k + 1) matrices Cj,
j=1,2,...,2k+1 and multi-affine monomials {C"s }5551 of degree k in variables
Cly. .-y Copt1 such that

CMI CV
<M2 0

(G101 + - + Ca+1C2k41) : =l .| (5.3)
<M2k+1 0

Proof. If k = 0, then (" = 1 (empty product) and ¢ = ¢(;. We have (¥ =
(1 -1, and the matrix pencil C(z) = (3 - 1 has a size of 1 x 1. For k > 1, the
multi-affine monomials {(* }?i‘gl are defined by the relations

" =G Congr, €M = GooC2/Gr, j=3,...,2k+ 1.

Notice that (H2++1 = (¥ /Copq1, (M2 = (opy1¢H/Cor. Let us define the matrix
pencil C(¢) = {ei; (O)}E1:

()T iy /2, i i =] =1,
Cij(C) = Cmax{i,j}/2 if ‘Z - .7‘ = 2k,
0, otherwise.

It is easy to see that C(¢) = C(¢) = C(¢)T. Let us calculate the components
b; = b;(¢) of the right-hand side of (5.3):

2k+1

by = Z c1;(C)CM = ¢12(C)CH2 + €1 app1 (O)CH2+1 = ¢,

J=1
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For 2 <i < 2k, we obtain

2k+1

bi= Y cii (¢ = iim1(Q)CH + cipa ()¢

—_

j=
(=)' (Gim1GMt = Gi¢MH1) /2 = (1) (Gma ¢! = Gioa (1) /2 = 0.

For ¢ =2k + 1, we get

2k+1

bakt1 = Z Cok+1,5(C)CH = car41,1(Q)CH + capy1,26(C)¢H?F = 0. O
j=1

Lemma 5.3. Let 2, 2% be monomials of degree n and n + 1 satisfy the
conditions
deg, 2% <ny, deg,, P <ng, k=1,....d

Then there exist matrices By, = By, = B,{, k=1,...,d, such that

201 B
292 0

(z1B1 + -+ + zqBaq) : = e (5.4)
z‘);N 0

where {z% };VZI are all monomials of degree n for which deg,, 2% < ny.

Proof. Let z7 be the greatest common divisor of the monomials 2, z°.
Then 2™ = my(2)27, 27 = ma(2)27, where the subsets of the variables of the
monomials mq(z), ma(z) do not intersect. If degm;i(z) = k, then degma(z) =
k 4+ 1. By Lemma 5.2, there exist matrices Cj, = C}, = C,? such that

C2C4 - -+ CQor2” C1G3 "+ Gopp12”
CH2zY 0
(GC1+ -+ Crr1C2%41) : = : . (5.5)
Cﬂ2k‘+1 Pl 0

In (5.5), we replace the variables (2, (4, ..., (2 by the variables of the mono-
mial mq(z), and the variables (1, (3, ..., (ok+1 by the variables of the monomial
ma(z) such that

CaGa- - Ganz" = ma(2)27 = 2%, (1G3-- Gorpa2” = ma(2)2” = 2P,

From (5.5), we obtain

(Zj1Dj1 + -+ erDjr) . —| | 2 = 2%, (5.6)
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where z;,, ..., zj, are the variables of the monomials m;(2), ma(z). The matrices
D, are the sums of the corresponding matrices C; from (5.5).
Since each monomial (*i, j = 2,...,2k+1 contains only a part of the variables

with even indices, we see that for the variables z; that are present in the monomial
m1(z)z7 inequality deg, 2% < deg, 2** < n; holds. Similarly, for z; that are
present in ma(2)27 we get deg,, 205 < deg,, 28 < ny.

If 2% 2% ... 2%  are pairwise distinct monomials from the set
29 2% . 29241 then there exists a matrix B = {b;;} such that
P 1 0 - 0 z
292 bo1 by - bam z
2O2k+1 bokt1,1 bokt12 - bartim M

From (5.6), we get

Q1 B
z 0

(Zj1Bj1 to Tt erBjr) : o (5.7)
ZoM 0

where (zlejl +- 1+ ijBjT) =BT (zlejl + ot ijDjr)B. We extend the set
{z% }jj‘il to the set {2 }¥, of all pairwise distinct monomials of degree n for
which deg,, 2% < ny, k = 1,...,d. Supplementing the matrices in (5.7) with
zero entries, we obtain (5.4). O

Proof of Theorem 5.1. Let q(z) = Z;V:1 a;z%, p(z) = Eszl b,2% . By
Lemma 5.3, for fixed monomials 2%, 2%, there exists a symmetric real linear
matrix pencil Bj,(z) such that

Z% 0
Biy(z) | 2% | = ||, j=1,....N,v=1,...,1 (5.8)
zO"N 0

We define A(z) = 2141+ -+ - + 2q44 = Zjvzl aj ijzl byBj,(2z). Then
z™ a1p(z)
A) | = o (5.9)

ZON anp(z)
Since aj,b, € R and B;,(Z) = Bj,(2) = Bj,(2)", we see that
A(Z) = A(z) = A(2)T.
Multiplying (5.9) on the left by the row vector ((®1,...,(*N), ¢ € C?, we obtain
(5.1). In addition, (5.2) follows from (5.1). O
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6. Representation Defect Lemma

Let {z% }évzl be a set of all monomials of degree n satisfying the conditions
deg, 2% < mny, k =1,...,d, and F(z) a real 2n-form such that deg, F(z) <
2ng. Suppose F(z) has two Gram matrices Ay, As: F(2) = ¥(2)A19(2)T =
U(2)A2¥(2)T, where W(z) = (2%,...,2%). The symmetric matrix S =
{Sij}%'ﬂ = A; — A, satisfies the relation

N
U(2)SV(2)T = Z 8;j2%12% = 0. (6.1)

1,j=1

The set of matrices S satisfying (6.1) is a linear space Ly. Now we construct a
special basis of this linear space.

Proposition 6.1. Suppose Lg is a linear space of real symmetric matri-
ces satisfying condition (6.1). Then there exists a basis in Ly such that the
nonzero submatrices of the basis matrices are located at the intersection of rows
and columns corresponding to monomials 2227, 2,227, lez7 that are present as
entries in the row vector ¥(z):

0 0 -1 2227
(2227, 2,227, 2227) [ 0 2 0 zrz2Y | =0, (6.2)
—1 0 21227
and monomials z,2", 212", 21272, 2,272 (27 # 20?) that are present as entries
in U(z):

00 1 0 22N
_ M
(z,ﬂz'”,zlz'“,zlz”,zrz”) (1) 8 8 01 jiw =0. (6.3)
1
0-10 0 2p 22

Remark 6.2. Since ZZszl 81j2%2% =%, ez =0, and 2% #£ 2P i # j, we

see that
Cr = Z Sij = 0. (6.4)

a;to=f

If the sum (6.4) contains m > 2 different elements s;;, then m —1 elements can be
chosen as arbitrary. Then multi-index ) defines an (m—1)-dimensional subspace
in Lo.

Let 8 = (r1,...,74) be a multi-index with non-negative components and |3| =
r1+---+74 =2n > 0. Let Og denote the set of all unordered pairs m = (2%, 2%7)
of all monomials 2%, 2% (Ja;| = |aj| = n) such that 2% 2% = 2# and deg,, 2% <
ny, for all s, k. If 2n;, < 1, for some k, then the set ©4 is empty. Therefore, ©g #
@ if and only if

2nk2rk, k:1,...,d.
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It is easy to see that the monomial 2* = z‘fl "o zgd (

the pair m € O3 if and only if

|a| = n) is an element of

0 <o <min{ng,rr}, 0<rr—0p <min{ng,rp}, k=1,...,d. (6.5)

For each monomial 2% = z‘fl e zgd (|| = n) satisfying condition (6.5), there is a

unique monomial z* such that (2%, z") € Og.

Definition 6.3. Let m; = (2,2/) € Og, 2% = PR L -zl‘sl-

S
ds < min{ng, 75}, 9 > 0. The monomial

dd

- z;" and

a; 01 ds+1 6—1 g
ZJ_Zl...Zs Zl Zd

satisfies condition (6.5). Then there is a unique monomial z#/ such that 7; =
(2%, 21) € ©3. The map

(2%, 21) ==y = (279, 21) € Og (6.6)

is called an elementary transformation in ©g. Multi-indices o;, a;; of monomials
z% 2% are related by

aj=a;+(0,...,0,1,0,...,0,—1,0,...,0).

Remark 6.4. Since we do not distinguish between the pairs (z¢, z*) and
(2#,2%), there may exist a pair m € O3 that dots not change under an elementary
transformation.

To prove Proposition 6.1 we need several lemmas.

Lemma 6.5. For any m,7 € ©Og, m # 7, there exists a “connecting” m
and T chain of elements m € ©g such that each next element is an elementary
transformation of the previous one.

Proof. Let 8 = (r1,...,7q) and m = (za,z“), T = (za,zﬁ), where z% =
zfl e zgd and 2% = zfl .- ~z§d. Since 7 # 7, we may assume that z® # 2%, From

the relations | 3] = 2n > 0 and |a| = |@| = n, it follows that S ¢_, my, = 0, where
my =05 — 0 (k=1,...,d).

Let m be the sum of all positive components of v = (m1, ..., mg). Then there
exist m elementary tuples v, [ = 1,2,...,m, not necessarily all different, such
that:

(i) each elementary tuple v, = (egl), e eg)) has only two non-zero components
+1 and —1;

(i) [mp—el| < |mgl, k=1,...,d, 1=1,...,m);
(il)) v+ +ym =1
If m =1, then the tuple « is elementary and ~v; = 7.

Let m > 1 and let 71 be an elementary tuple containing +1 in place of some
positive component and —1 in place of some negative component of the tuple ~.
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The sum of all positive components of v — 1 is equal to m — 1 and the sum of
all components is still zero.

Repeating the previous argument for v — 1, we obtain the elementary tuple
v2. At the (m — 1)-th step, the elementary tuple v — 1 — -+ — Y1 = Y 1S
formed.

Consider a sequence of multi-indices:

a, 00 =a+1, .., =1+ Yy e Q= Q1+ Y = Q.

(0

From (i)-(iii), it follows that the components v, of each multi-index oy =

( 0]

v, ..,uc(ll)), I=1,...,m— 1, satisfy the condition
min{ék,gk} < V,(gl) < max{ék,gk}, k= 1, Ce ,d.
For a = (01,...,94) and a = (25\1, e ,S\d), inequalities (6.5) are valid. Then

{0 < min{ék,gk} < VIE,Z) < max{&k,gk} < min{ng, ry},

0<r, — max{ék,gk} <7 — V,il) <7 — min{ék,gk} < min{ng, ri}.

Therefore, all “intermediate” multi-indices oy (I = 1,...,m —1) also satisfy (6.5)
and determine the sequence of elements

~

T, 71 = (zoéljzﬂl), cery Tl = (zOém—17z//’/m—1)7 7

of the set ©3, in which neighboring elements are related by an elementary trans-
formation of the form (6.6). O

Lemma 6.6. If ©Og contains m > 2 elements, then in the set ©g there ewist
(m — 1) different pairs {mp, 7} such that m, is an elementary transformation

of .

Proof. Let us associate the finite graph with the set ©3. The vertices are
elements of the set ©g. The edges form pairs {my, 7, } (7 # m,) of elements
are connected by an elementary transformation. By Lemma 6.1, the graph is
connected. Then the graph tree contains m — 1 edges. In the graph tree different
edges are incident to different pairs of vertices. O

Proof of Proposition 6.1. The linear space Lg is the direct sum of subspaces
Lg,, each of which corresponds to its own multi-index B (|8x] = 2n). Let
us construct a basis in each of these subspaces. Suppose ©g, contains m > 2
elements. By Lemma 6.6, in Og, there exist m — 1 different pairs {m, 7, } such
that 7, and 7, are connected by an elementary transformation. Let us show that
each pair {7, m,} defines a basis matrix of the form (6.2) or (6.3). The following
cases are possible:

(a) One of the elements of a pair {m,m,} has the form m; = (2%, 2%), and
my, = (2%, 2%). Let 27 be the greatest common divisor of the monomials 2%, 2%,



186 Michail Bessmertnyl

z%. Since 7, is an elementary transformation of 7, then there exist variables
zr, z; such that

2
r

2

2% = 222", 2% = zz2Y, 2% =220,

This triplet of monomials defines a basis matrix of the form (6.2).

(b) 7 = (2%,2%), 2% #£ 2%; 7, = (2M,2%), 2% # 2%, and 7, is an
elementary transformation of 7. Then there exist variables z., z; such that
2Y = 2,2 2™ = 2 2% = 2272 2% = 2,272 Notice that 27 # 272, Indeed,
if 2 = 272, then m, = m,, which is impossible. This quadruple of monomials
defines a basis matrix of the form (6.3).

All pairs {my, m,} are different. Then the constructed set of (m — 1) matrices
is linearly independent. O

Lemma 6.7 (Representation Defect Lemma). Suppose that a real symmetric
(N x N)-matriz Sy satisfies the following conditions:

(a) W(2)519(2)T =0,

oM ()T
b) Si——F"—=0
( ) 1 az?l ’
where ¥(z) = (2%, ..., 2%V) is a row vector of all monomials of degree n such that
deg,, 2% <ng, k=1,...,d. Then there exist real symmetric (N x N)-matrices
Sk, k=2,...,d for which
(2151 + 2252 + - + Zde)\I/(z)T =0. (6.7)

Proof. Without loss of generality, we can assume

U(z) = ("¢ (2), ¥(21,2))
where deg, ¥(z1,2) = (n1 — 1), 2= (22,..., 24). Then
8"1\I/(Z)T <S11 Sm) <n1!g0(/Z\)T> .
5177“ = T o =0.
8Z1 312 Sl 0
Hence S1; = 0, ST, = 0 and ¥(z1,2)81(21,2)T = 0. We rewrite (6.7) in block

form R ) L
(izl(%)T zl§ls f (;)2(2)) <le((i~A()ZT)T> - (8) ' (6.8)

Let us find a solution {.S5;;(%) ?,j:1 of (6.8) when in place of the matrix S there

are basis matrices §1,j. For the basis matrix (6.3), there exist 2127, 21272 € U(z)
such that the corresponding nonzero submatrix of the solution (together with the
basis matrix) has the form

0 0 |—2, z O 0\ 21272

0 0 0 0 —z 2z z12M
-z, 0 0 0 =z O 22N —0
Zk 0 0 0 0 —Z1 Z,,ZA/1 -
0 —z| z1 0 0 0 2,272

0 Zy 0 —2Z1 0 0 zkz'm
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Similarly, for basis matrix (6.2) and monomials z1 2,27, 212127 € ¥(z), we have

0 0 0 —z 2z 212727
0 0|z —2z 0 212127

0 z| 0 0 —2z 2227 | =o.
—z1 —zr| 0 221 O zr 2127
zw 0 |—2z1 O 0 ZIQZ'Y

The matrix S; is a linear combination of basis matrices §17j of the forms (6.2),
(6.3). Then any solution of equation (6.8) is a linear combination of such solu-
tions. ]

7. Functions with PSD not SOS Wronskian

Let f(z) = p(2)/q(z) be a scalar function. If the partial Wronskian W, [q, p]
is a PSD form, then the following statement holds.

Theorem 7.1. Let f(z) = p(2)/q(2), 2 € C, be a real homogeneous (of
degree one) rational function such that deg, p <deg, q, k=1,...,d.
If s(2)°W,,[q,p] = H(2)H(2)" is a SOS form for some form s(z), then there

exist real symmetric matrices Ay, Ag, ..., Aq (where Ay is positive semidefinite)
for which
¥(¢) U(z)" d
z)= ——>= (2141 + 20As + - - - + zgAy) ———, (,z € C, 7.1
TE) = Qs B+ 2 ) s ¢ =

U(z) , T(2)"
ERECE
U(2)A19(2)T = H(2)H(2)". (7.3)

Wzk [q:p} =

k=1,....d, (7.2)

Here ¥(z) = (2“,...,2°N) satisfies the conditions degz% = deg(qs) and
deg,, 2% <deg, (¢s), k=1,...,d.

Proof. By Theorem 5.1, there exists a matrix pencil B(z) for which

q(Q)s(Q)p(2)s(2) = W(C) (21By + 22Ba + - -+ + 2aBq) ¥(2)", (7.4)
W, lgs,ps] = U(2)BpU ()T, k=1,...,d

Let deg,, W(z) = ny. Differentiating (7.4) (ny + 1) times in 21, we obtain

g (z)T

B
! 0zy"

= 0. (7.6)

By the assumption, s2W,, [q, p] = W, [¢s, ps] is a SOS form. Then there exists
a matrix A; > 0 for which

U(2)B1¥(2)! = s°W,,[q,p] = H(2)H(2)T = W(2)A,9(2)T.
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Since W, [gs,ps](z) > 0, then, deg, W. [gs,ps] < 2(ny — 1). Therefore, if
deg,, (2%2%) = 2ny, then the matrix A; = {a;;} has a corresponding diago-
nal elements a;; = 0. Then, from A; > 0, we obtain

oM ()T
AL T\
! 027"

Il
e

(7.7)

By (7.7) and (7.6), it follows that the matrix S; = A; — B; satisfies the assump-
tions of Representation Defect Lemma. Then there exist real symmetric matrices
S9,...,54 such that

)(Z1S1 + 2989 + -+ Zde)\I/(Z)T =0. (7.8)

v(¢
Adding (7.8) to (7.4) and dividing both sides of the resulting identity by the
product ¢(¢)s(¢)q(z)s(z ) we obtain (7.1). Relations (7.2), (7.3) follow from the
identities s2W., [q,p] = W, [gs,ps] = ¥(2) Ap¥(2)T. O

8. Sum-of-Squares Theorem

Let ({I)% = {z € C% | Imz; > 0,...,Imz; > 0} be an open upper poly-
halfplane.

Lemma 8.1. Let h(z),s0(z) € Rlz1,...,zq4] be coprime forms and let so(z)
be an irreducible non-constant form that does not change sign on R%. Then there
exists a point 2’ € (il1)? for which so(2') = 0, h(2') # 0.

Proof. By Proposition 4.4, there exists a point z € (iII)¢ such that so(z) =
0. Suppose that h(z) = 0. Let Q C (iIT)? be a neighborhood of z. By Theorem
2.5, s0(2') = 0, h(2') # 0 for some point 2’ € Q C (il1)%. O

Theorem 8.2 (Sum-of-Squares Theorem). If P/q € RP**™, then the partial
Wronskians

OP(z

0z,

SN—
|
)
—~
N
~—

W, la, Pl = q(z) k=1,...,d (8.1)

are matriz-valued SOS forms.

Proof. By Proposition 3.1, the Wronskians W, [q, P| are PSD forms. If d =
2, then each PSD form is a SOS form. We will assume d > 3. By Proposition
3.2, f(2) = 2141 + - -+ + 29Aq + fi(2), where fi = Pi/q € RP}"™™, deg, P =
deg, qand Ay >0, k=1,....d. If W, [q, P1] is a SOS form, then W, [q, P| =
q(z )fAk + W, lq, P1] is also a SOS form.
We will assume that deg,, P(z) = deg,, q(z) = n1. Let us act on the function
f(2) by the degree reduction operator in the variable z;. We obtain a function

F(GseeesGu 20y 20) = PIGERPIVT

f(Cl, .-+ Cny 5 2) is multi-affine and symmetric in variables (1, ..., (p, . If We (G, ]3]
is a SOS, then W, [q, P] = niW¢,[q, P : is also a SOS. Therefore,

1==Cp, =21
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without loss of generality, we can assume n; = 1 and deg, P = deg, ¢, k =
1,...,d.

Suppose that W, [¢, P] is a PSD not SOS form. Since n; = 1, we see that the
PSD form W, [q, P] does not depend on the variable z;. Let s(2) = s(za,...,24)
be its Artin’s minimal denominator: s(2)2W,,[q, P] = G(2)G(2)". Each irre-
ducible factor s;j(Z) of the form s(z) cannot be a divisor of all elements of the
polynomial matrix G(Z), otherwise s/s; is also Artin’s denominator of W, [q, P],
which contradicts the minimality of s. Then there exists a diagonal element
fii(z2) = p(2)/q(z) of the matrix f(z) such that

S(Q)QWM [Q7p] - H<2)H</Z\)T7 (8'2)

where the polynomial row vector H(Z) has at least one component (we denote it
by h(Z)) such that so(Z), h(Z) are coprime (here so(Z) is some irreducible factor
of Artin’s minimal denominator s(z)).

By Theorem 7.1, there exists a symmetric matrix pencil

A(z) = 21A1 + 2040 + - - + 2qAq

with a positive semidefinite matrix A; > 0 and the monomial row vector ¥(z)
such that

ORI 15
RO= @) ~qoug T A GGy B
(), W) HEHET
W la,p] = G Ay G =50 ) (8.4)
From (8.3), we get
e HE) HE S UG U(2)"
b fu =T S e i e &Y

By Lemma 8.1, there exists 2 € (ilI)4! for which so(2) = 0, h(z') # 0. Let
Qg1 C (iD)4 ! be a neighborhood of the point 2. Since fii(z) is a positive real
function, we see that for any fixed 2} € R, the inequality Im f;;(z],Zz) > 0 holds
for 2 € Qg1 C (il1)4L. From (8.5), we obtain

d A —~
\I’ \IJ / *
=5 : f”l’ Ay, (””2 Z)A Tm z; > 0. (8.6)
4@, 25 4o, D)s)

Im fu xlv
Then, for a sufficiently small positive fixed ¢} > 0, there exists a neighborhood
Q)| € Qq_y of the point 2’ for which
d . ~ . ~
\I/ / / \I/ / / *
St WD, Va2
P q() +1iy1,2)s(2) " q(z] + iy}, 2)s(2)

>0, 2eQ . (8.7)
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Let 2} =z} + iy} (Im 2z} > 0). From (8.5), we get
d

- s (2)1? WA,
Im fzz(zl ) 2) =Im 2 — =5 t Imzy————5- (8-8)
. D e M P D Ve ra

According to (8.7), for z € Q/, |, the second term in (8.8) is positive. Since
s(zA’ ) =0 and h(zA’ ) # 0, then the first term increases indefinitely at z — 2. This

implies Im f;;(2) — 400. Then the diagonal element f;;(2) is not holomorphic in
the open upper poly-halfplane. This is a contradiction. O

9. Representations of positive real functions

Theorem 9.1 (Main theorem). Each rational function f(z) of class RP}*™
is the Schur complement

f(2) = Au1(2) — Ara(2) Az (2) " Az (2) (9.1)
of the block Aas(2) of a linear (m + 1) X (m + 1) matriz pencil
A(2) = {Aij ()} jor = 21 Aa + - + 204
with real symmetric positive semidefinite matrix coefficients Ag, k=1,...,d.
Corollary 9.2. We have RPJ™™ = RBJ™™ for every d > 1.

We need the following generalization of Darlington’s theorem for functions of
several variables (see also [18]).

Proposition 9.3. Let a rational multi-affine matriz-valued function f(z) €
RPI™™ be represented as

. P(Z) . Z1P1(/Z\) —|—P2(/Z\) > S (s .
f(Z) - Q(Z) - Z1£]1(3)+Q2(3)’ Q1( )7&07 ( 2y d)'

If W, [q, P] = ®1(2)®1(2)T is a SOS, and ®, is of size m X r, then

g@:(gn@) gu@): ! (Pl@ @1@) (9.2)

921(2) 92(2))  a1(2) \&10)" @(3)I
is a multi-affine function of class IR{PC(ZTIJFT)X(mH), and
F(2) = g11(2) — 912(3) (922(2) + 21.1,) " g1 (3). (9.3)

Proof. Representation (9.3) follows from the obvious identity

. lel(/z"\) +P2(2) . i _ (I)lq){
IO = O +ed o Eetaa) (9.4)
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The multi-affinity of g(2) is obvious. Let us prove that
g(3) e RP{ XA,

By Theorem 3.7, it suffices to prove that W, = ¢30g(2)/0z, k = 2,...,d, are
PSD forms. The function f(z) is multi-affine. Then

P(z) B lekﬁl + z1]32 + Zkﬁg + ﬁ4

z) = = — — e — 9.5
1) q(2) 2121kq1 + 2102 + 2kG3 + @ (9:5)
From (9.5) and (9.2), we get
0] = 2} (53131 - 51133>
2 (WP - P+ BR—©P) + (@B - 2P, (96)
99(2) (13152 — Py Py (2) )
W., =q¢ = ~ R : 9.7
=N, r(2)T (203 — ©1qa) I, (6-7)
where (I)k(/z\) = (Zké\l + é\g) 8‘131/8Zk -q®, k=2,...,d.
Note the identity
(Pidz — Poii ) = @4(2) @ — @)~ @x(3)" (9.8)
Indeed,
B0 = (i + ) S O
z z = (Z -
k(2) P KL B) 5
0P oeT
~9 ~ o~ 1T 1 ~2 T
— —® b — DD . 9.9
(qu1+q1q2)<aZk I+ 182k>+q1 197 (9.9)

®,(z) is a multi-affine form. Differentiating (9.6) in z; and substituting the
obtained expressions into (9.9), we obtain (9.8). Since ¢(z) is a Hurwitz form,
then, (see [13], Proposition 2.8),

g3+ @

= — — C R,Pdfl.
s=0 “kd1 T Q2

_ q
h= 86]/62’1

Then Q = (3233 — q1q4) is PSD. For 7 € R?~2, from (9.7), (9.8), we get

. I, ®.Q~1\ /0 0 I, O

Lemma 9.4. If f(2) = g11 — 912 (922 + 211, ) " go1 and
(911 912) _ <a11 a12> _ <a13> (as3 +22L»2)_1 (a31 a32)7
g21 922 az1 a2 az3

Az Aoz ' (A
1) = an = (4 ) (42 42) ().

then
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where
Ay Ap Ags aiy a2 a3 0 0 0
Ao Agp Aoz | = | a2 a2 a3 | + |0 21, O
Az Asp Asz as; azz ass 0 0 2f,

The assertion of the lemma can be verified by direct calculation.

Proof of Theorem 9.1. By Proposition 3.2, we may assume that
deg, P =deg, q=ng, k=1,...,d.

Applying to f(z) the degree reduction operator D7k, in each variable zj we obtain
the multi-affine positive real function

FlGis-++Gu) = DY+ D)) =+ = CC]; E% . 5 2(%), (9.10)

where ql(g) # 0. The matrix pencil representing the multi-affine function f(C )
will be constructed step by step. By Theorem 8.2, there exists m X r1 matrix-
valued polynomial ®1(() such that W, [g, P] = ®1(¢)®1(¢)”. By Proposition 9.3,

the function
gV = i g%) _ b Pi()  21(0)
9&1) 952) a1(¢Q) Py ( )T q2(0) I,

belongs to the class ]RP(m Tl)x(errl)v and

~ —1
f(Cly sy Cn) 911 - 952) (géé) + ClIm) géll)'

The matrix-valued function g(l)(z ) depends only on n — 1 variables and satisfies
the conditions of Proposition 9.3. Then

2 (2 (2) 1
911 9 g 2
@) = (%a %%) (%%) (o +otra) () )
23

921" 922

By Lemma 9.4, we obtain

(2) (2) )

T +C1[r 993 921
F© =g = (o) o) ™2 ,
R A Y

where the matrix-valued function ¢(®) depends only on n—2 variables and satisfies
the conditions of Proposition 9.3.

Continuing the process, at the n — 1 step we get a positive real matrix-valued
function of one variable (,: g(”_l)(cn) CnApn, where A, = {aw} > 0 (here
a;j are blocks of the appropriate size). Then

F(Gry e Ca) = A1 (Q) — A12(Q) A22(¢) " A1 (€),

2,7=1
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where the positive real matrix pencil A(¢) = {4;;(()}

2 has the form

ij=1
an‘alg ce+ Q1N 0‘ o --- 0
4O =6 a:21 a:22 a2:N . 0 Cl‘.lrl 0
az.v1 az.vz CLZ\./N o, 0 - Cnfl.lrn—l
The degree reduction operator is invertible. Returning to the variables 21, ..., zq4,

we obtain a positive long-resolvent representation of the original function f(z).

1]
2]

O]
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JomaTHi MaTpuvHi 300pa>keHHsI palioHAJIbHUX
MO3UTUBHUX JINCHUX (PYHKIIN KiJIbKOX 3MiHHUX

Michail Bessmertnyt

Parnionanbiy ofHOpiaHy (IEpIioro cremeHs) MO3UTUBHY JifiCHY MaTpH-
9HY (QYHKIIO KiTbKOX 3MIHHIX MOXKHa 300pa3uTn sk pomnosHenus Illypa mo
JiaroHaJIbHOTO OJIOKY JIiHIfTHOT 0/IHOPITHOT MaTpUIHOI DYHKIIT 3 HEBiT €MHO
BU3HAYEHUMH JHHCHUMU MATPUIHAMHU KoedilieHTaMn (J0Bro-pe3osbBeHTHE
300pazkents ). UuceJbHUKY YaCTUHHUX IIOXIJHUX MO3UTHUBHOI JificHOl dbyH-
KITiI € cyMaMu KBaJIpaTiB MHOTOWIEHIB.

KirrowoBi ciroBa: o3uTuBHA, AificHa (pyHKINS, MATPpUIHO3HATHA (DYHKITIS,
nonopHenHs [[lypa, M0Bro-pe3oibBeHTHE 300paskeHHsI, CyMa KBaJ[PATiB
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