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We study Ricci-Bourguignon solitons on sequential warped products.
The necessary conditions are obtained for a Ricci-Bourguignon soliton with
the structure of a sequential warped product to be an Einstein manifold
when we consider the potential field as a Killing or a conformal vector field.
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1. Introduction

Let (M, g) be a semi-Riemannian manifold and denote by Ric the Ricci tensor
of (M, g). A semi-Riemannian manifold (M, g) is said to be a Ricci soliton [26] if
there exists a smooth vector field X satisfying the equation

1
Ric + §£Xg =\g (1.1)

for some constant A and it is denoted by (M, g, X, \), where £ denotes the Lie
derivative, and the vector field X € X(M) is called the potential vector field.
If A is a smooth function on (M, g), then (M, g, X, \) is called an almost Ricci
soliton [31].

Ricci solitons are a natural generalization of Einstein manifolds. They corre-
spond to self-similar solutions of the Ricci flow equation

% = —2Ric,

which was defined by Hamilton [25,27]. Ricci solitons and their generalizations
have been studied by many geometers in the recent years. See, for example,
[2,3,7-9,13,16,18,20,22,30,32] and the references therein.

If a potential vector field is the gradient of a smooth function v on M, then
(M, g,Vu, ) is called a gradient Ricci soliton and equation (1.1) turns into

Ric 4+ Hessu = Ag.
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The study of the concept of Ricci-Bourguignon solitons was introduced by
Dwiwedi [17]. They correspond to self-similar solutions of the Ricci-Bourguignon
flow equation

dg

ot
where R is the scalar curvature and p € R. The flow in equation (1.2) was
introduced by J.-P. Bourguignon [6]. Equation (1.2) is precisely the Ricci flow
for p = 0.

A Ricci-Bourguignon soliton (briefly RBS) ( [6,17]) is a semi-Riemannian
manifold (M, g) endowed with a vector field X on M that satisfies

—2(Ric — pRyg), (1.2)

1
Ric + §£Xg = A\g + pRyg, (1.3)

where A € R and it is denoted by (M, g, X, A, p). If X is the gradient of a smooth
function w on M, then (M,g,Vu,\,p) is called a gradient Ricci-Bourguignon
soliton [17] and equation (1.3) turns into

Ric + Hessu = Ag + pRg.

When A is a smooth function on (M, g), it is called a Ricci-Bourguignon almost
soliton and a gradient Ricci-Bourguignon almost soliton, respectively [17]. In [17],
Dwivedi proved some results for the solitons of the Ricci-Bourguignon flow gen-
eralizing the corresponding results for Ricci solitons. Later, in [33], Soylu gave
classification theorems for Ricci-Bourguignon solitons and almost solitons with
concurrent potential vector field. In [21], A. Ghosh studied Ricci-Bourguignon
solitons and Ricci-Bourguignon almost solitons on a Riemannian manifold and
proved some triviality results. In [11], Cunha, Lemos and Roing obtained con-
ditions for a Ricci-Bourguignon soliton to be a Ricci soliton and some triviality
cases. In [12], Cunha, Silva Junior, De Lima and De Lima investigated the trivi-
ality of gradient solitons of the Ricci-Bourguignon flow.

Warped product manifolds were defined by O’Neill and Bishop in [5] to con-
struct manifolds with negative curvature. They have an important role in both
geometry and physics. They are used in general relativity to model the space-
time [10]. Doubly, multiply and sequential warped product manifolds are known
as generalizations of the warped product manifolds ( [15,36,37]). There are many
papers in which Ricci solitons on some Riemannian manifolds or on warped prod-
uct manifolds or on some generalizations of warped products have been studied
(see, for example, [1,4,14,19,23,24,28,29,34,35]. Motivated by the above stud-
ies, in this paper, we consider Ricci-Bourguignon solitons on sequential warped
product manifolds. By considering the potential vector field as a Killing or a
conformal vector field, we prove some results.

2. Preliminaries

Let (M;,g;) be semi-Riemannian manifolds, 1 < i < 3, and f : M; — R™T,
h : M; x My — RT be two smooth functions. The sequential warped product
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manifold M is the triple product manifold M = (M x; M) x}, Ms endowed
with the metric tensor ¢ = (g1 ® f2g2) ® h%g3 [15]. Here the functions f,h are
called the warping functions.

Throughout the paper, (M, g) will be considered as a sequential warped prod-
uct manifold, where M = M"™ = (M]" x y My?) xp, M3"* with the metric g = (g1 @
f?92) @ h%g3. The restriction of the warping function h: M = M; x My — R to
M x {0} is h' = h‘Mlx{O}-

We use the notations V, V?; Ric, Ric’; Hess, Hess’; A, A% £, L' for the
Levi-Civita connections, Ricci tensors, Hessians, Laplacians and Lie derivatives
of M, and M;, respectively. The Hessian of M is denoted by Hess.

The following lemmas on sequential warped product manifolds are necessary
to prove our results.

Lemma 2.1 ([15]). Let (M,g) be a sequential warped product and X;,Y; €
X(M;) for 1 <i<3. Then
Vx, Y1 = Vi Yi;
VXlXQ = VXQXl = X1 (hlf)XQ,‘
Vx,Ya = V%, Ya — f92(X2,Y2) V! f;
Vi, X1 = Vx, X3 = X1 (Inh) X;;
VX2X3 = VXsXQ == Xg(lnh)Xg,'
VX3Y3 = V§(3Y3 - hgg(Xg, YE;)Vh

S

Lemma 2.2 ([15]). Let (M,g) be a sequential warped product and X;,Y; €
X(M;) for1 <i<3. Then

Ric(X1,Y1) = Ricl (X1, Y1) — 2 Hess' f(X1,Y1) — 28 Hess h(X1, Y1);
Ric(X2,Y2) = Ric*(Xa, Ya) — figa (X2, Y2) — %3 Hess h(Xs, Ya);
Ric(X3,Y3) = Ric®(X3,Y3) — higs (X3,Y3);

Ric(X;, X;) = 0 if i # j, where f# = (fAlf—i— (ng — 1) HVlfH2> and h* =

(hAh + (n3 — 1) ||VA| )

Ll

Lemma 2.3 ([15]). Let (M,g) be a sequential warped product manifold. A
vector field X € X(M) satisfies the equation

(Lxg) (Y, Z) = (Lx,91) (Y1, Z1) + f* (L%,92) (Yo, Z2) + B* (L%, 93) (Y3, Z3)
+2f X1(f)g92(Ya, Za) + 20(X1 + X2)(h)g3(Y3, Z3)

forY,Z e X(M).

A vector field V on a Riemannian manifold (M, g) is said to be conformal if
there exists a smooth function on M satisfying the equation

Lyvg=2fg.

If f =0, then V is called a Killing vector field.
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3. Main Results

In this section, we examine the properties of Ricci-Bourguignon solitons on
sequential warped product manifolds.

Let ¢ and o be two smooth functions on a sequential warped product M =
(M1 Xf Mg) Xh Mg.

Firstly, we have the following theorem:

Theorem 3.1. Let M = (My x5 M) xp Mz be a sequential warped product
equipped with the metric g = (g1 D f2g2) ® h2gs. If (M, g, X, \, p) is an RBS with
potential vector field of the form X = X1 + Xy + X3, where X; € X(M;) for 1 <
i <3, then

(i) (Mi,g1,X1,A1,p1) is an RBS when Hessf = og and Hessh = g and
AM=A+pR+ "—f%' + 534 — p1Ry is a constant;

(ii) My is an Einstein manifold when Xo is a Killing vector field and Hess h =

Vg;
(iii) (M3, g3, h2X3, A3, p3) is an RBS when A3 = Ah>+pRh?+hf —h(X1+X2)(h)—
p3Rs3 is a constant.

Proof. Assume that (M, g, X, A, p) is an RBS with the structure of the se-
quential warped product. Then, for Y, Z € x(M), the equation

Rie(Y, 2) + 5 (£x9) (. 2) = (A + pR)g(Y’ 2)

is satisfied. Using Lemma 2.2 and Lemma 2.3 for the vector fields Y and Z such
that Y =Y, + Yo + Y3 and Z = Z; + Z5 + Z3, we have

Ric! (Y3, Z1) — % Hess! f(Y1, Z1) — % Hess h(Y1, Z1)

+ Ric* (Y, Z2) — figa(Ya, Z5) — 7 Hess h(Ys, Z)
+ Ric®(Ys, Z3) — higs(Ys, Z3)
1 1 1
+3 (Lx, 1) (1, Z1) + §f2 (£3,92) (Ya, Z2) + §h2 (L%, 93) (Y3, Z3)
+ fX1(f)g2(Ya, Z2) + (X1 + X2)(h)gs(Y3, Z3)
= (A pR)g1(Y1,Z1) + (A + pR) f2g2(Ya, Zo) + (A + pR)h?g3(Y3, Z3). (3.1)
Let Y =Y, and Z = Z;. So, from equation (3.1), if Hess f = 0g and Hessh =
1g, then we get

. 1
Ric' (Y1, Z1) + §(£}<191)(Y1,Z1) = Mg1(Y1, 21)
ng ns
— — Yi.Z
f0+ h¢]91( 1. Z1)
= Mg1(Y1, Z1) + p1 R1g1 (Y1, Z1).

Hence (M1, g1, X1, A1, p1) is an RBS when Ay = A+ pR + %U + 72y —p1Risa
constant.

=AM+ A+ pR+
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Now, let Y =Y5 and Z = Z5. Then
Ric2(Ya, Zo) — figa(Ya, Zo) — %Hessh(Yg, Zy)

+ %fQ (£%,92) (Yo, Z2) + fX1(f)g2(Y2, Z2)
= A+ pR)f292(Ya, Z5).

Here, if X5 is a Killing vector field and Hess h = vg, we get
. n
Ric*(Ya, Z2) = (\f? + pRf* + f* + %)7/1.)62 — 1 X1(f))g2(Y2, Z3),

which implies that Ms is an Finstein manifold.
Finally, let Y = Y3 and Z = Z3. Then

. 1
Rlc3(}f37 Z3) -+ 5 (E}SZQXd) gg(Y:g, Zg)
= A393(Y3, Z3) + [~ A3 + AR? + pRE* + h? — h(X1 + X2)(h)]g3 (Y3, Z3)
= A393(Y3, Z3) + p3R3g93(Y3, Z3),

which means that (Mg, g3, h>X3, A3, p3) is an RBS when A3 = Ah? + pRh? + hf —
h(X1 4+ X2)(h) — p3R3 is a constant. O

In the following theorems, we provide some conditions for the manifolds M;,
(1 <1i < 3) to be Einstein manifolds.

Theorem 3.2. Let M = (M x5 M) xp Mz be a sequential warped product
equipped with the metric g = (g1 ® f2g2) ® h?gs. If (M, g, X, \, p) is an RBS and
X is a Killing vector field, then
(i) M is an Finstein manifold when Hess f = o0g and Hess h = 1)g;

(ii) Ms is an Finstein manifold when Hess h = 1g;
(iii) Ms is an Einstein manifold.

Proof. Let (M,g,X,\,p) be an RBS with the structure of the sequential
warped product and let X be a Killing vector field. Then, for all Y, Z € x(M),
we have Ric(Y, Z) = (A + pR)g(Y, Z). From equation (3.1), we may write:
n2
f

. n
Ric*(Ya, Z2) = (\f? + pRfP + 24+ 520 f%)2(Y2, Z2).

Ric3(V3, Z3) = (\W® + pRA? + h¥)g3(Y3, Z3),

Ric (Y1, 21) = A+ pR + o + 220)g1(V1, 20),

which imply that My, M> and M3 are Einstein manifolds. O

Theorem 3.3. Let M = (M x5 M) xp, Mg be a sequential warped product
equipped with the metric g = (91D f2g2) ®h%g3 and let (M, g, X, \, p) be an RBS.
Assume that Hess f = og and Hessh = 1g. Then M; (1 < i < 3) are Finstein
manifolds if one of the following conditions holds:
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(i) X =X; and X; is Killing on M;;
(il) X = Xy and Xy is Killing on Mo;
(iii) X = X3 and X3 is Killing on Ms.
Proof. Let (M,g,X,\,p) be an RBS with the structure of the sequential

warped product. Assume that Hess f = 0¢g and Hessh = ¢g. If X = X; and X3
is Killing on M, using Lemma 2.3, we have

Lxg=2fX1(f)g2 +2hX1(h)g3.

So, by using the above equation in (3.1), we get
n2
7
Ric®(Ya, Z2) = A\ + pRF? + J* + S22 = FX1(f))g2 (Yo, Zo).
Ric®(Ys, Z3) = (AW + pRh2 + hf — hX1(h))gs3(Y3, Z3).

Ric! (Y1, Z1) = (A + pR+ 25 + %w)gl(Yl, Z),

Thus the manifolds M;, My and M3 are Einstein. Using the same pattern, (ii)
and (iii) can be verified. O

Theorem 3.4. Let M = (M x5 M) xp Mg be a sequential warped product
equipped with the metric g = (g1 ® f2g2) ® h?gs, let (M, g, X, X, p) be an RBS and
X be a conformal vector field. Then

(i) M is an FEinstein manifold when Hess f = o0g and Hess h = 1)g,
(il) My is an Einstein manifold when Hess h = g,
(iii) Ms is an Finstein manifold.

Proof. Assume that (M, g, X, \, p) is an RBS with the structure of the se-
quential warped product and X is a conformal vector field with factor 2a.. Then

Ric(Y,Z) = A+ pR— a)g(Y, Z).
By using (3.1), the above equation implies

Ricl (Y1, Z1) — % Hess! (Y1, Z1) — % Hess h(Yi, Z1) + Ric%(Ya, Zo)

ng — .

~ I*g2(Ya, Z2) — 57 Hess h(Ya, Za) + Ric’ (Ya, Z3) — h'gs(Va, Z3)

= A+ pR—a)q1(Y1, Z1)

+ (A+pR — )2 g2(Ya, Za) + (A + pR — a)h°g3(Y3, Z3).
If Hess f = 0g and Hess h = v g, then we get
n2
f
Ric*(Ya, Z2) = (Af? 4 pRI? = af* + S20 12 4 )92 (Yo, Zo),

Ric? (Y3, Z3) = (Ah? + pRh? — ah® + h¥)g3(Y3, Z3).

Ric' (Y1, 21) = (A + pR— a+ o + 229)q1 (Y, Z1),

Hence, My, My and Mjz are Einstein manifolds. ]
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Using Lemma 2.3, we can state the following theorem:

Theorem 3.5. Let M = (My x5 M) xp Mz be a sequential warped product
equipped with the metric g = (g1D f2g2)®h?g3. Then (M, g, X, \, p) is an Einstein
manifold if one of the following conditions holds:

(i) X = X3 and X3 is a Killing vector field on Ms.

(ii) X1 is a Killing vector field on My, Xo and X3 are conformal vector fields on
My and Ms with factors —2X(In f) and —2(X1 + X2)(Inh), respectively.

(iii) X = Xy + X3, X9 and X3 are Killing on Ms and Ms, respectively, and
Xo(h) =0.

The next theorem gives the necessary condition for the components of the
vector field X to be conformal vector fields.

Theorem 3.6. Let M = (M x5 M) xp Mg be a sequential warped product
equipped with the metric g = (g1® f2g2) ®h%gs and let (M, g, X, \, p) be an RBS.

(i) If My is an Einstein manifold, Hess f = 0g and Hessh = g, then X1 is a
conformal vector field on M;.

(ii) If My is an BEinstein manifold and Hessh = g, then Xs is a conformal
vector field on M.

(iii) If M3 is an Einstein manifold, then X3 is a conformal vector field on Ms.

Proof. Let (M, g1), (Ma, g2) and (M3, g3) be Einstein manifolds with factors
w1, o and ps, respectively. Let (M, g, X, \, p) be an RBS with the structure
of the sequential warped product. If Hess f = og and Hess h = /g, then, from
equation (3.1), we get

n n
pigr(Y1, Z1) — 72091(5/1, Zy) — fi/}gl(Yh Z1) + p2g2(Ye, Z2)
n
— 1*g2(Ya, Zo) — f¢f292(y27 Zo) + u3gs(Ya, Z3) — higs (Y3, Z3)

+ % (Lx,01) (Y1, Z1) + %fz (£%,92) (Y2, Z2) + %hQ (£%,93) (Ya, Z3)
+ fX1(f)g2(Yz2, Z2) + h(X1 + X2)(h)g3(Y3, Z3)
= A+ pR)g1(Y1, Z1) + (A + pR) f292(Ya, Zo) + (A + pR)h?g5(Y3, Z3).

Thus,

@
f
(f2 4 PRI = a4+ f* + 220 f = FXU(F))g2 (e, Z2),

n
(Chy01) (1, 21) = 203 + pR — pn + 0 + 2 0) 1 (Y2, Z0),

2

P
2

h?

(£%,92) (Ya, Zo)
(£%,93) (Y3, Z3) = — (AR? + pRA? — g + h* — (X1 + X2)(h))g3(Y3, Z3).

Hence, X7, X2 and X3 are conformal vector fields on My, Ms and Mg, respec-
tively. O
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Theorem 3.7. Let M = (M x5 M) xp Mg be a sequential warped product
equipped with the metric g = (g1 ® f2g2) ® h2gs and let (M, g, X, \, p) be an RBS
such that X = Vu. Then
(i) (M1,91,Vo1,M\1,p1) is a gradient RBS when ¢1 = u; — ngln f — nglnhy,

uy =u and A\; = A+ pR — p1 Ry s a constant.
(i) (Ms, g3, Vs, A3, p3) is a gradient RBS when ¢3 = u and 3 = A\h? + pRh? +
ht — p3R3 is a constant.

Proof. Assume that (M, g, X, \, p) is an RBS with the structure of the se-
quential warped product such that X = Vu. Then, for Y, Z € X(M),

Ric(Y, Z) + Hessu(Y, Z) = N\g(Y, Z) + pRyg(Y, Z) (3.2)
is satisfied. Now, let Y = Y] and Z = Z;. Then equation (3.2) becomes

Ricl(Yi, Z1) — % Hess! f(Y1, Z1) — % Hess h(Y1, Z1) + Hess uy (Ya, Z1)
= Ag1(Y1, Z1) + pRg1 (Y1, Z1)
or, equivalently,

Ric' (Y1, Z1) + Hess ¢1(Y1, Z1) = Aig1 (Y1, Z1) + (A + A+ pR)g1 (Y1, Z1)
=Mg1(Y1, Z1) + prRagi (Y1, Z4),

where ¢ = u; —ngln f —nglnhy and ug = u. In this case, (M, g1, V1, A1, p1)
is a gradient RBS soliton when A\; = A + pR — p1 Ry is a constant. Using the
same pattern, (ii) can be verified. O

4. Ricci—Bourguignon solitons on sequential warped product
space-times

In this section, we examine Ricci-Bourguignon solitons admitting two space-
times, namely standard static space-times and generalized Robertson—Walker
space-times.

Let (M;, g;) be semi-Riemannian manifolds, 1 <7 < 2, and let f: M; — Rt
h : My x My — R" be two smooth functions. The (n; + ns + 1)-dimensional
sequential standard static space-time [15] M is the triple product manifold M =
(M x § Ma) x I endowed with the metric tensor g = (g1 ® f2g2) ®h*(—dt?). Here
I is an open, connected subinterval of R and dt? is the usual Euclidean metric
tensor on [.

Lemma 4.1 ([15]). Let (M = (My x5 M) x, 1,3g) be a sequential standard
static space-time and X;,Y; € X(M;) for 1 <i < 2. Then
1. ﬁlel == Vﬁ(lyl;
2. Yxng =Vx, X1 = X1(In f) Xo;
3. Vx,Y2 = V5, Ya — fga(X2, Vo)V f;
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4. Vx, 0, =V, X; = Xi(Inh)oy, i = 1,2;
5. Vp,0¢ = h Vh.
Lemma 4.2 ([15]). Let (M = (My x5 Ms) xp, 1,3) be a sequential standard
static space-time and X;,Y; € X(M;) for 1 <i < 2. Then
1. Ric(X1,Y1) = Ricl(X1,V7) — ? Hess' f(X1,Y1) — + Hess h(X1,Y1);
2. Rlc(XQ,YQ) Ric*(X»,Y2) — ffg2 (X2, Y2) — + Hess h( X5, Y2);
3. Ric(0y,0) = hAh;
4. Ric(X;,Y;) =0 when i # j, where f* = (fAlf + (ng—1) HVlsz>.

By using Lemma 2.3, it is easy to state the following corollary:

Corollary 4.3. Let (M = (My x5 M) x,1,9) be a sequential standard static
space-time. Then

(Lx3) (V. Z) = (Ck. 1) (Y1, Z0) + 2 (£2,92) (Ya, Za) — 202w

ot
+2fX1(f)g2(Ya, Z2) — 2uvh(Xy + X2)(h),

whereY:XlJngerat,?:Y1+Y2+u8t ,7:Z1+Zg+vat€:f(M).

Now we consider an RBS with the structure of the sequential standard static
space-times. By using Theorem 3.1, the following result can be given:

Theorem 4.4. Let M = (M X g M) xp, I be a sequential standard static
space-time equipped with the metric g = (g1 ® f2g2) ® h?(—dt?). If (M, g, X, \,p)
is an RBS with X = X1 + Xo + w0y, where X; € X(M;) for 1 <i <2 and wd; €
X(I), then

(i) (M1,91,X1,A1,p1) is an RBS when Hess f = og and Hessh = g and
M =A+pR+ ”20 + hw p1R1 is a constant;

(ii) M2 zs an Emstem manifold when Xs a Killing vector field and Hess h = ¢g;
(iii) =52 + 22 4+ L(X; + Xo)(h) = A+ pR.

Proof. Let (M,g,X,)\,p) be an RBS with the structure of the sequential
warped product. Then, for Y, Z € X(M), the equation
S I
Rie(Y, Z) + 5 (Lx9)(Y, 2) = (A + pR)g(Y, Z)

is satisfied. Using Lemma 4.2 and Corollary 4.3 for vector fields Y = Y] + Y5 +
w0y and Z = Zy + Zo + v0;, we get

1.
Ric!(Y1, Z1) — %Hessl f(¥1,21) - 3 Hess h(Y1, Z1)

. 1 —
+ Ric?(Ya, ZQ) — frgo(Ya, Zo) — E Hess h(Ys, Z5)

90w
+ hAhuv + = (EXlgl) (Y1, Z1) + f2 (£3,92) (Y2, Z2) = P v
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+ fX1(f)g2(Y2, Z2) — uvh(Xy + X2)(h)
= (A +pR)g1(V1, 1) + A+ PR) f*g2(Ya, Za) — (A + pR)P*uv.  (4.1)

When the arguments are restricted to the factor manifolds, we obtain

. n 1 1
Ric' (Y1, 21) — 72091(1/17 Z) - Ewgl(yl, Z1) + 3 (Lx, 1) (Y1, Z1)
= (A +pR)g1(Y1, Z1), (4.2)
11—
Ric*(Y2, Z2) = f*g5(Ya, Za) — 3 Hess h(Ya, Zo)

+ %J‘Q (£%,92) (Ya, Za) + [X1(f)g2(Ya, Za)
= (X + ER)J&QQ(Y?’ ZQ): (43)

and

hAhuv — h2881:uv — h(X1 + Xo)(h)uv = —(\ + pR)h2uw,

which imply (iii).
In equation (4.2), by following the same pattern as in Theorem 3.1, we arrive
that (M1, g1, X1, A1, p1) is an RBS when

n
f

is a constant. Moreover, in equation (4.3), if Xy is a Killing vector field and
Hess h = g, we obtain that Ms is an Einstein manifold, which completes the
proof. O

— — 1
Al=A+pR+ U+E¢—01R1

Now, as an application of Theorems 3.4-3.6, we can give the following results:

Theorem 4.5. Let Mi:f(Ml X M) xp I be a sequential standard static
space-time and let (M,q, X, \,p) be an RBS with X = X1 + Xo + w0, where
Xi € X(M;) for 1 <i <2 and wd; € X(I). Assume that X is a conformal vector
field on M. If Hess f = og and Hessh = g, then My and My are Einstein
manifolds with factors p; = —% + o+ U and pg = —%JQ + ff+ Ly fr

Proof. Assume that (M,g, X, )\, p) is an RBS and X is a conformal vector
field on M with factor 2. Then

Ric(Y,Z) = (A +pR — a)g(Y, Z).
If Hess f = 0g and Hess h = g, the above equation turns into

. n 1 .
Ric! (Y1, Z1) — 72091 (Y1, Z1) = 34001(Y1,. Z1) + Ric* (Y, Z2)

1
— *92(Ya, Z2) = 201 g2(Ya, Z2) + hiShuw
= (A +pR—a)g1(Y1,Z1) + A+ R — @) f2g2(Ya, Zo) — (A + pR — o) h*uv.
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Hence we find

n2
I
RIC(Y5, 2) = (2 + PR — af* + 202 + FloalVa, %)

- 1
Ric'(Y1,Z1) = A+ pR—a+ —0 + +0)91(Y1, 21),

and hAhuv = —(X + pR — a)h?uv. So, My and My are Einstein manifolds with
factors #1:—%+n720+%1l) and ugz—%f2+fﬁ+%¢f2. O

Theorem 4.6. Let M = (My x5 Ms) xp, I be a sequential standard static
space-time. Assume that (M,g, X, \,p) is an RBS with X = X1 + Xo + w0},
where X; € X(M;) for 1 < i < 2 and wd; € X(I). Then (M,g) is an Einstein
manifold if one of the following conditions holds:

(i) X = wd; and it is a Killing vector field on I;

(il) X1 is a Killing vector field on My, Xo and wd; are conformal vector fields
on My and I with factors —2X1(In f) and —2(X1 + X2)(In h);

(iii) X = X9 + w0, and Xa, w0y are Killing vector fields on My and I, and
Xo(h) =0.

Theorem 4.7. Let M = (M X Ma) xp I be a sequential standard static
space-time and let (M, G, X, \,p) be an RBS with X = X1+ Xo+w0;, where X; €
X(M;) for 1 <i <2 and wd; € X(I). Assume that Hess f = 0g and Hessh =

¥g. If My and My are Finstein manifolds, then X1 and X9 are conformal vector
fields on My and M.

Proof. Let (M,g,X,\,p) be an RBS and let M; and M be Einstein mani-
folds with factors pp and po. If Hess f = oG and Hess h = g, then from equation
(4.1), we can write

n2

f
1

Y f2g2(Ya, Zo) + hAhuv + 55%91(3/1, Zy)

1
1191(Y1, Z1) — —091(Y1, Z1) — ~0g1(Y1, Z1) + paga(Ya, Z2) — fg2(Ya, Zo)
h

—_

ok

+ =2 (L%, 92) (Yo, Zo) — h28—wuv + fX1(f)g2(Ya, Zo) — uvh(X1 + Xo)(h)

1
27 7 B 8t7 o
= (A +pR)g1(Y1, Z1) + (N + pR) f?g2(Ya, Z9) — (X + pR)h*uv.

Hence we have

n2

f o+ %¢)91(H’Z1)7

(Cx,01) (V1,Z1) =20+ 5R — 1 +

(£%,92) (Y2, Z2) = f22((>\+ PR)f? — pa+ fH+ %Wz — [X1(f))g2(Ya, Z2)
and 5
hAh — h2aif — (X1 + X2)(h) = —(X + PR)R2,

which imply that X; and X5 are conformal vector fields on My and Ms. O
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Now we consider an RBS with the structure of the sequential generalized
Robertson—Walker space-times. Firstly, we define the notion of the sequential
generalized Robertson-Walker space-time.

Let (M;, g;) be semi-Riemannian manifolds, 2 <7 < 3,and let f: I — R* h:
I x My — R be two smooth functions. The (ng +ng + 1)-dimensional sequential
generalized Robertson—Walker space-time M is the triple product manifold M =
(I x ¢ M3) xj, M3 endowed with the metric tensor g = (—dt? & f2g2) @ h?gs [15].
Here I is an open, connected subinterval of R and dt? is the usual Euclidean
metric tensor on 1.

Lemma 4.8 ([15]). Let (M = (I x s My) xp, Ms,q) be a sequential generalized
Robertson—Walker space-time and X;,Y; € X(M;) for 2 <i<3. Then

1. vatﬁt =0;

Vo Xi=Vx,0 = £X,, i=23;
Vx,Ys = V%, Ys — ffga(Xa, Ya)dy;
Vx, X3 = Vx,Xo = Xo(Inh) Xs;
Vx,Ys = Vi, Vs — hgs(X3, Y3)Vh.

A

Lemma 4.9 ([15]). Let (M = (I x s My) xp M3,q) be a sequential generalized
Robertson—Walker space-time and X;,Y; € X(M;) for 2 <i <3. Then

1. ﬁ(@t,ﬁt) = %f—l— %%7

2. E(X27Y2) = RiCQ(XQ,YQ) - fogg (X27}/2) - %%h(XQ,YQ);

3. Ric(X3,Y3) = Ric®(X3,Y3) — higs(Xs, Y3);

4. Ric(X;,Y;) =0 when i # j, where f° = —ff+ (ng — 1) and ht = hAh +
(ns — 1) [ VA|*.

By using Lemma 2.3, it is easy to state the following corollary:

Corollary 4.10. Let (M = (I x5 My) xj, M3,g) be a sequential generalized
Robertson—Walker space-time. Then

— — 0
(Lx)(Y,Z) = _28%)1“} + 2 (L%,92) (Ya, Za) + B (L3, 93) (Y3, Z3)

0 oh
+ 2wfa—‘:QQ(Y2, ZQ) + Qwh(a + Xg(h))gy)(}/g, Z3),

where X = w0y + Xo + X3, Y = ud; + Yo + Y3 and Z = v0; + Zo + Z3 € X(M).
First, we give the following theorem as an application of Theorem 3.1.

Theorem 4.11. Let M = (I x5 M) x5 M3 be a sequential generalized
Robertson—Walker space-time. Assume that (M,g, X, \,p) is an RBS with X =
wdy + Xo + X3 on M, where X; € X(M;) for 2 <i <3 and wd; € X(I). Then
(i) —mf-m8h4 9 -X4pR
(i) when Hessh = g and Ay = A\f2+pRf2+ fo —wff + B34pf2 — paRy is a

constant, (Ma, g2, f2 X2, Mo, p2) is an RBS;
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(iii) (M3, g3, h?X3, A3, p3) is an RBS when A3 = Mh%> + pRh?> + h¥ — wh%’f
—whXs(h) — psRs is a constant.

Proof. Assume that (M,g, X, \,p) is an RBS soliton with the structure of
the generalized Robertson-Walker space-time M = (I Xy M3) xj, M3. By Lemma
4.9 and Corollary 4.10, the proof is clear. O

The next result can be considered as a consequence of Theorem 3.4.

Theorem 4.12. Let M = (I X M) xp Mg be a sequential generalized
Robertson—Walker space-time and let (M, g, X, \,p) be an RBS soliton with X =
wo; + Xo + X3. Assume that X is a conformal vector field on M. If Hessh =
g, then My and Ms are Einstein manifolds with factors

(e e M
= (-T2 -0 ) £ s SRt

and

ng =« ns0%h 9

= (—=f - === )2+
e (ff hW> !

Proof. The proof is similar to those of Theorem 3.4 and Theorem 4.5. O

Now we give the following result for the gradient RBS with the structure of
the generalized Robertson—Walker space-time.

Theorem 4.13. Let (M = (I x ¢ Ms) xp, M3,7, Vu,xiﬁ) be a sequential gen-
eralized Robertson—Walker space-time and let (M,q,Vu, \,p) be an RBS, where

u:/:f(r)dr

for some constant a € I. Then M is an BEinstein manifold with factor (A +pR —

f)-

Proof. Suppose that X = Vu. Then X = f0;.

Let {0y, 01,02, .,0ny,0pyt1, -, Onging } be an orthonormal basis for X(M).
The Hessian of u is given by Hessu(Y,Z) = g(VyVu, Z). Here we have the
following six cases:

)Y =Z = 0, we get

Hess(0;, &) = G(Va, Vu, d;) = fG(0;, ;).
i) fY =0, and Z = 0;, 1 <1i < ngy, we have
Hessu(0;,9;) = §(Vo,Vu, 8;) = fg(0;, ;).

i) f Y =0, and Z = Ok, n2 + 1 < k < ny + n3, we get Hessu:f?.
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iv) f Y =0; and Z = 0;, 1 <'i,j < ng, we have

= . -
Hess u(9;,05) = 9(Va,Vu, 9;) = fg(?au@j) = fg9(9;, 0;).
v) IfY =0;,1<i<mny and Z = 0, no +1 < k < ny + n3, we obtain
Hessu = fg.
vi) Finally, if Y = 0y and Z = 9;, no + 1 < k, | < ny + ns3, we have

Hess u(0r, 01) = §(Vo, Vi, ) = fg<;ak, a) = fa(0n. ).

Hence, Hessu(Y, Z) = fg(¥, Z) and (Lxg)(Y,Z) = 2Hessu(Y, Z) = 2fg(Y, Z).

Therefore, Ric = (A + pR — f)g is satisfied, which completes the proof. O
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Couitoan Piuui-Byprinbona Ha MHOroBuax i3
CEKBEHI[iaJIbHO BUKPUBJIEHUM JI00yTKOM

Dilek Acikgdz Kaya and Cihan Ozgiir

Mu BuBuaemo cositonn Piagi-Byprinbona na MHOroBHaax i3 CeKBEHITI-
aJIbHO BUKpUBJeHNM j100yTKOM. OJiep:KaHo HeOOXi/IHI YMOBH TOI'O, IO COJIi-
ToH Piudi-Byprinbona i3 cTpyKTypoio CeKBeHITiaIbHO BUKPUBJICHOTO JI00Y-
TKy € MHOTOBHJIOM ElHINTEliHA, KON MOTEHIIINHE TOJIe PO3TVISAIAETHCI STK
moste Kijutinra abo kKoHGOpMHE BEKTOPHE TIOJIE.

KirrowoBi cioBa: comiton Pigui-Byprinbona, MHOTOBHJ 3 BUKPUBJICHUM
JI06YTKOM, MHOTOBH/I i3 CEKBEHIIAJbHO BUKPUBJIEHUM JIOOYTKOM, BEKTODHE
moste Kijutiara, koudopMHEE BEKTOPHE I10J1e
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