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We study Ricci–Bourguignon solitons on sequential warped products.
The necessary conditions are obtained for a Ricci–Bourguignon soliton with
the structure of a sequential warped product to be an Einstein manifold
when we consider the potential field as a Killing or a conformal vector field.
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1. Introduction

Let (M, g) be a semi-Riemannian manifold and denote by Ric the Ricci tensor
of (M, g). A semi-Riemannian manifold (M, g) is said to be a Ricci soliton [26] if
there exists a smooth vector field X satisfying the equation

Ric +
1

2
LXg = λg (1.1)

for some constant λ and it is denoted by (M, g,X, λ), where L denotes the Lie
derivative, and the vector field X ∈ X(M) is called the potential vector field.
If λ is a smooth function on (M, g), then (M, g,X, λ) is called an almost Ricci
soliton [31].

Ricci solitons are a natural generalization of Einstein manifolds. They corre-
spond to self-similar solutions of the Ricci flow equation

∂g

∂t
= −2Ric,

which was defined by Hamilton [25, 27]. Ricci solitons and their generalizations
have been studied by many geometers in the recent years. See, for example,
[2, 3, 7–9,13,16,18,20,22,30,32] and the references therein.

If a potential vector field is the gradient of a smooth function u on M , then
(M, g,∇u, λ) is called a gradient Ricci soliton and equation (1.1) turns into

Ric + Hessu = λg.
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The study of the concept of Ricci–Bourguignon solitons was introduced by
Dwiwedi [17]. They correspond to self-similar solutions of the Ricci–Bourguignon
flow equation

∂g

∂t
= −2(Ric− ρRg), (1.2)

where R is the scalar curvature and ρ ∈ R. The flow in equation (1.2) was
introduced by J.-P. Bourguignon [6]. Equation (1.2) is precisely the Ricci flow
for ρ = 0.

A Ricci–Bourguignon soliton (briefly RBS) ( [6, 17]) is a semi-Riemannian
manifold (M, g) endowed with a vector field X on M that satisfies

Ric +
1

2
LXg = λg + ρRg, (1.3)

where λ ∈ R and it is denoted by (M, g,X, λ, ρ). If X is the gradient of a smooth
function u on M , then (M, g,∇u, λ, ρ) is called a gradient Ricci–Bourguignon
soliton [17] and equation (1.3) turns into

Ric + Hessu = λg + ρRg.

When λ is a smooth function on (M, g), it is called a Ricci–Bourguignon almost
soliton and a gradient Ricci–Bourguignon almost soliton, respectively [17]. In [17],
Dwivedi proved some results for the solitons of the Ricci–Bourguignon flow gen-
eralizing the corresponding results for Ricci solitons. Later, in [33], Soylu gave
classification theorems for Ricci–Bourguignon solitons and almost solitons with
concurrent potential vector field. In [21], A. Ghosh studied Ricci–Bourguignon
solitons and Ricci–Bourguignon almost solitons on a Riemannian manifold and
proved some triviality results. In [11], Cunha, Lemos and Roing obtained con-
ditions for a Ricci–Bourguignon soliton to be a Ricci soliton and some triviality
cases. In [12], Cunha, Silva Junior, De Lima and De Lima investigated the trivi-
ality of gradient solitons of the Ricci–Bourguignon flow.

Warped product manifolds were defined by O’Neill and Bishop in [5] to con-
struct manifolds with negative curvature. They have an important role in both
geometry and physics. They are used in general relativity to model the space-
time [10]. Doubly, multiply and sequential warped product manifolds are known
as generalizations of the warped product manifolds ( [15,36,37]). There are many
papers in which Ricci solitons on some Riemannian manifolds or on warped prod-
uct manifolds or on some generalizations of warped products have been studied
(see, for example, [1, 4, 14, 19, 23, 24, 28, 29, 34, 35]. Motivated by the above stud-
ies, in this paper, we consider Ricci–Bourguignon solitons on sequential warped
product manifolds. By considering the potential vector field as a Killing or a
conformal vector field, we prove some results.

2. Preliminaries

Let (Mi, gi) be semi-Riemannian manifolds, 1 ≤ i ≤ 3, and f : M1 → R+,
h : M1 ×M2 → R+ be two smooth functions. The sequential warped product
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manifold M is the triple product manifold M = (M1 ×f M2) ×h M3 endowed
with the metric tensor g = (g1 ⊕ f2g2) ⊕ h2g3 [15]. Here the functions f, h are
called the warping functions.

Throughout the paper, (M, g) will be considered as a sequential warped prod-
uct manifold, where M = Mn = (Mn1

1 ×fM
n2
2 )×hM

n3
3 with the metric g = (g1⊕

f2g2)⊕ h2g3. The restriction of the warping function h : M = M1 ×M2 → R to
M1 × {0} is h1 = h|M1×{0}.

We use the notations ∇, ∇i; Ric, Rici; Hess, Hessi; ∆, ∆i; L, Li for the
Levi-Civita connections, Ricci tensors, Hessians, Laplacians and Lie derivatives
of M , and Mi, respectively. The Hessian of M is denoted by Hess.

The following lemmas on sequential warped product manifolds are necessary
to prove our results.

Lemma 2.1 ([15]). Let (M, g) be a sequential warped product and Xi, Yi ∈
X(Mi) for 1 ≤ i ≤ 3. Then

1. ∇X1Y1 = ∇1
X1
Y1;

2. ∇X1X2 = ∇X2X1 = X1(lnf)X2;

3. ∇X2Y2 = ∇2
X2
Y2 − fg2(X2, Y2)∇1f ;

4. ∇X3X1 = ∇X1X3 = X1(lnh)X3;

5. ∇X2X3 = ∇X3X2 = X2(lnh)X3;

6. ∇X3Y3 = ∇3
X3
Y3 − hg3(X3, Y3)∇h.

Lemma 2.2 ([15]). Let (M, g) be a sequential warped product and Xi, Yi ∈
X(Mi) for 1 ≤ i ≤ 3. Then

1. Ric(X1, Y1) = Ric1(X1, Y1)− n2
f Hess1 f(X1, Y1)− n3

h Hessh(X1, Y1);

2. Ric(X2, Y2) = Ric2(X2, Y2)− f ]g2 (X2, Y2)− n3
h Hessh(X2, Y2);

3. Ric(X3, Y3) = Ric3(X3, Y3)− h]g3 (X3, Y3);

4. Ric(Xi, Xj) = 0 if i 6= j, where f ] =
(
f∆1f + (n2 − 1)

∥∥∇1f
∥∥2
)

and h] =(
h∆h+ (n3 − 1) ‖∇h‖2

)
.

Lemma 2.3 ([15]). Let (M, g) be a sequential warped product manifold. A
vector field X ∈ X(M) satisfies the equation

(LXg) (Y,Z) =
(
L1
X1
g1

)
(Y1, Z1) + f2

(
L2
X2
g2

)
(Y2, Z2) + h2

(
L3
X3
g3

)
(Y3, Z3)

+ 2fX1(f)g2(Y2, Z2) + 2h(X1 +X2)(h)g3(Y3, Z3)

for Y,Z ∈ X(M).

A vector field V on a Riemannian manifold (M, g) is said to be conformal if
there exists a smooth function on M satisfying the equation

LV g = 2fg.

If f = 0, then V is called a Killing vector field.
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3. Main Results

In this section, we examine the properties of Ricci–Bourguignon solitons on
sequential warped product manifolds.

Let ψ and σ be two smooth functions on a sequential warped product M =
(M1 ×f M2)×h M3.

Firstly, we have the following theorem:

Theorem 3.1. Let M = (M1 ×f M2)×h M3 be a sequential warped product
equipped with the metric g = (g1⊕ f2g2)⊕h2g3. If (M, g,X, λ, ρ) is an RBS with
potential vector field of the form X = X1 +X2 +X3, where Xi ∈ X(Mi) for 1 ≤
i ≤ 3, then

(i) (M1, g1, X1, λ1, ρ1) is an RBS when Hess f = σg and Hessh = ψg and
λ1 = λ+ ρR+ n2

f σ + n3
h ψ − ρ1R1 is a constant ;

(ii) M2 is an Einstein manifold when X2 is a Killing vector field and Hessh =
ψg;

(iii) (M3, g3, h
2X3, λ3, ρ3) is an RBS when λ3 = λh2+ρRh2+h]−h(X1+X2)(h)−

ρ3R3 is a constant.

Proof. Assume that (M, g,X, λ, ρ) is an RBS with the structure of the se-
quential warped product. Then, for Y,Z ∈ χ(M), the equation

Ric(Y,Z) +
1

2
(LXg) (Y, Z) = (λ+ ρR)g(Y,Z)

is satisfied. Using Lemma 2.2 and Lemma 2.3 for the vector fields Y and Z such
that Y = Y1 + Y2 + Y3 and Z = Z1 + Z2 + Z3, we have

Ric1(Y1, Z1)− n2

f
Hess1 f(Y1, Z1)− n3

h
Hessh(Y1, Z1)

+ Ric2(Y2, Z2)− f ]g2(Y2, Z2)− n3

h
Hessh(Y2, Z2)

+ Ric3(Y3, Z3)− h]g3(Y3, Z3)

+
1

2

(
L1
X1
g1

)
(Y1, Z1) +

1

2
f2
(
L2
X2
g2

)
(Y2, Z2) +

1

2
h2
(
L3
X3
g3

)
(Y3, Z3)

+ fX1(f)g2(Y2, Z2) + h(X1 +X2)(h)g3(Y3, Z3)

= (λ+ ρR)g1(Y1, Z1) + (λ+ ρR)f2g2(Y2, Z2) + (λ+ ρR)h2g3(Y3, Z3). (3.1)

Let Y = Y1 and Z = Z1. So, from equation (3.1), if Hess f = σg and Hessh =
ψg, then we get

Ric1(Y1, Z1) +
1

2
(L1

X1
g1)(Y1, Z1) = λ1g1(Y1, Z1)

+[−λ1 + λ+ ρR+
n2

f
σ +

n3

h
ψ]g1(Y1, Z1)

= λ1g1(Y1, Z1) + ρ1R1g1(Y1, Z1).

Hence (M1, g1, X1, λ1, ρ1) is an RBS when λ1 = λ+ ρR+ n2
f σ + n3

h ψ− ρ1R1 is a
constant.
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Now, let Y = Y2 and Z = Z2. Then

Ric2(Y2, Z2)− f ]g2(Y2, Z2)− n3

h
Hessh(Y2, Z2)

+
1

2
f2
(
L2
X2
g2

)
(Y2, Z2) + fX1(f)g2(Y2, Z2)

= (λ+ ρR)f2g2(Y2, Z2).

Here, if X2 is a Killing vector field and Hessh = ψg, we get

Ric2(Y2, Z2) = (λf2 + ρRf2 + f ] +
n3

h
ψf2 − fX1(f))g2(Y2, Z2),

which implies that M2 is an Einstein manifold.
Finally, let Y = Y3 and Z = Z3. Then

Ric3(Y3, Z3) +
1

2

(
L3
h2X3

)
g3(Y3, Z3)

= λ3g3(Y3, Z3) + [−λ3 + λh2 + ρRh2 + h] − h(X1 +X2)(h)]g3(Y3, Z3)

= λ3g3(Y3, Z3) + ρ3R3g3(Y3, Z3),

which means that (M3, g3, h
2X3, λ3, ρ3) is an RBS when λ3 = λh2 + ρRh2 + h]−

h(X1 +X2)(h)− ρ3R3 is a constant.

In the following theorems, we provide some conditions for the manifolds Mi,
(1 ≤ i ≤ 3) to be Einstein manifolds.

Theorem 3.2. Let M = (M1 ×f M2)×h M3 be a sequential warped product
equipped with the metric g = (g1⊕ f2g2)⊕ h2g3. If (M, g,X, λ, ρ) is an RBS and
X is a Killing vector field, then

(i) M1 is an Einstein manifold when Hess f = σg and Hessh = ψg;

(ii) M2 is an Einstein manifold when Hessh = ψg;

(iii) M3 is an Einstein manifold.

Proof. Let (M, g,X, λ, ρ) be an RBS with the structure of the sequential
warped product and let X be a Killing vector field. Then, for all Y,Z ∈ χ(M),
we have Ric(Y, Z) = (λ+ ρR)g(Y,Z). From equation (3.1), we may write:

Ric1(Y1, Z1) = (λ+ ρR+
n2

f
σ +

n3

h
ψ)g1(Y1, Z1),

Ric2(Y2, Z2) = (λf2 + ρRf2 + f ] +
n3

h
ψf2)g2(Y2, Z2),

Ric3(Y3, Z3) = (λh2 + ρRh2 + h])g3(Y3, Z3),

which imply that M1, M2 and M3 are Einstein manifolds.

Theorem 3.3. Let M = (M1 ×f M2)×h M3 be a sequential warped product
equipped with the metric g = (g1⊕f2g2)⊕h2g3 and let (M, g,X, λ, ρ) be an RBS.
Assume that Hess f = σg and Hessh = ψg. Then Mi (1 ≤ i ≤ 3) are Einstein
manifolds if one of the following conditions holds:
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(i) X = X1 and X1 is Killing on M1;

(ii) X = X2 and X2 is Killing on M2;

(iii) X = X3 and X3 is Killing on M3.

Proof. Let (M, g,X, λ, ρ) be an RBS with the structure of the sequential
warped product. Assume that Hess f = σg and Hessh = ψg. If X = X1 and X1

is Killing on M1, using Lemma 2.3, we have

LXg = 2fX1(f)g2 + 2hX1(h)g3.

So, by using the above equation in (3.1), we get

Ric1(Y1, Z1) = (λ+ ρR+
n2

f
σ +

n3

h
ψ)g1(Y1, Z1),

Ric2(Y2, Z2) = (λf2 + ρRf2 + f ] +
n3

h
ψf2 − fX1(f))g2(Y2, Z2).

Ric3(Y3, Z3) = (λh2 + ρRh2 + h] − hX1(h))g3(Y3, Z3).

Thus the manifolds M1, M2 and M3 are Einstein. Using the same pattern, (ii)
and (iii) can be verified.

Theorem 3.4. Let M = (M1 ×f M2)×h M3 be a sequential warped product
equipped with the metric g = (g1⊕f2g2)⊕h2g3, let (M, g,X, λ, ρ) be an RBS and
X be a conformal vector field. Then

(i) M1 is an Einstein manifold when Hess f = σg and Hessh = ψg,

(ii) M2 is an Einstein manifold when Hessh = ψg,

(iii) M3 is an Einstein manifold.

Proof. Assume that (M, g,X, λ, ρ) is an RBS with the structure of the se-
quential warped product and X is a conformal vector field with factor 2α. Then

Ric(Y, Z) = (λ+ ρR− α)g(Y,Z).

By using (3.1), the above equation implies

Ric1(Y1, Z1)− n2

f
Hess1 f(Y1, Z1)− n3

h
Hessh(Y1, Z1) + Ric2(Y2, Z2)

− f ]g2(Y2, Z2)− n3

h
Hessh(Y2, Z2) + Ric3(Y3, Z3)− h]g3(Y3, Z3)

= (λ+ ρR− α)g1(Y1, Z1)

+ (λ+ ρR− α)f2g2(Y2, Z2) + (λ+ ρR− α)h2g3(Y3, Z3).

If Hess f = σg and Hessh = ψg, then we get

Ric1(Y1, Z1) = (λ+ ρR− α+
n2

f
σ +

n3

h
ψ)g1(Y1, Z1),

Ric2(Y2, Z2) = (λf2 + ρRf2 − αf2 +
n3

h
ψf2 + f ])g2(Y2, Z2),

Ric3(Y3, Z3) = (λh2 + ρRh2 − αh2 + h])g3(Y3, Z3).

Hence, M1, M2 and M3 are Einstein manifolds.
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Using Lemma 2.3, we can state the following theorem:

Theorem 3.5. Let M = (M1 ×f M2)×h M3 be a sequential warped product
equipped with the metric g = (g1⊕f2g2)⊕h2g3. Then (M, g,X, λ, ρ) is an Einstein
manifold if one of the following conditions holds:

(i) X = X3 and X3 is a Killing vector field on M3.

(ii) X1 is a Killing vector field on M1, X2 and X3 are conformal vector fields on
M2 and M3 with factors −2X1(ln f) and −2(X1 +X2)(lnh), respectively.

(iii) X = X2 + X3, X2 and X3 are Killing on M2 and M3, respectively, and
X2(h) = 0.

The next theorem gives the necessary condition for the components of the
vector field X to be conformal vector fields.

Theorem 3.6. Let M = (M1 ×f M2)×h M3 be a sequential warped product
equipped with the metric g = (g1⊕f2g2)⊕h2g3 and let (M, g,X, λ, ρ) be an RBS.

(i) If M1 is an Einstein manifold, Hess f = σg and Hessh = ψg, then X1 is a
conformal vector field on M1.

(ii) If M2 is an Einstein manifold and Hessh = ψg, then X2 is a conformal
vector field on M2.

(iii) If M3 is an Einstein manifold, then X3 is a conformal vector field on M3.

Proof. Let (M1, g1), (M2, g2) and (M3, g3) be Einstein manifolds with factors
µ1, µ2 and µ3, respectively. Let (M, g,X, λ, ρ) be an RBS with the structure
of the sequential warped product. If Hess f = σg and Hessh = ψg, then, from
equation (3.1), we get

µ1g1(Y1, Z1)− n2

f
σg1(Y1, Z1)− n3

h
ψg1(Y1, Z1) + µ2g2(Y2, Z2)

− f ]g2(Y2, Z2)− n3

h
ψf2g2(Y2, Z2) + µ3g3(Y3, Z3)− h]g3(Y3, Z3)

+
1

2

(
L1
X1
g1

)
(Y1, Z1) +

1

2
f2
(
L2
X2
g2

)
(Y2, Z2) +

1

2
h2
(
L3
X3
g3

)
(Y3, Z3)

+ fX1(f)g2(Y2, Z2) + h(X1 +X2)(h)g3(Y3, Z3)

= (λ+ ρR)g1(Y1, Z1) + (λ+ ρR)f2g2(Y2, Z2) + (λ+ ρR)h2g3(Y3, Z3).

Thus,(
L1
X1
g1

)
(Y1, Z1) = 2(λ+ ρR− µ1 +

n2

f
σ +

n3

h
ψ)g1(Y1, Z1),(

L2
X2
g2

)
(Y2, Z2) =

2

f2
(λf2 + ρRf2 − µ2 + f ] +

n3

h
ψf2 − fX1(f))g2(Y2, Z2),(

L3
X3
g3

)
(Y3, Z3) =

2

h2
(λh2 + ρRh2 − µ3 + h] − h(X1 +X2)(h))g3(Y3, Z3).

Hence, X1, X2 and X3 are conformal vector fields on M1, M2 and M3, respec-
tively.
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Theorem 3.7. Let M = (M1 ×f M2)×h M3 be a sequential warped product
equipped with the metric g = (g1⊕ f2g2)⊕h2g3 and let (M, g,X, λ, ρ) be an RBS
such that X = ∇u. Then

(i) (M1, g1,∇φ1, λ1, ρ1) is a gradient RBS when φ1 = u1 − n2 ln f − n3 lnh1,
u1 = u and λ1 = λ+ ρR− ρ1R1 is a constant.

(ii) (M3, g3,∇φ3, λ3, ρ3) is a gradient RBS when φ3 = u and λ3 = λh2 +ρRh2 +
h] − ρ3R3 is a constant.

Proof. Assume that (M, g,X, λ, ρ) is an RBS with the structure of the se-
quential warped product such that X = ∇u. Then, for Y,Z ∈ X(M),

Ric(Y,Z) + Hessu(Y,Z) = λg(Y, Z) + ρRg(Y,Z) (3.2)

is satisfied. Now, let Y = Y1 and Z = Z1. Then equation (3.2) becomes

Ric1(Y1, Z1)− n2

f
Hess1 f(Y1, Z1)− n3

h
Hessh(Y1, Z1) + Hessu1(Y1, Z1)

= λg1(Y1, Z1) + ρRg1(Y1, Z1)

or, equivalently,

Ric1(Y1, Z1) + Hessφ1(Y1, Z1) = λ1g1(Y1, Z1) + (−λ1 + λ+ ρR)g1(Y1, Z1)

= λ1g1(Y1, Z1) + ρ1R1g1(Y1, Z1),

where φ1 = u1 − n2 ln f − n3 lnh1 and u1 = u. In this case, (M1, g1,∇φ1, λ1, ρ1)
is a gradient RBS soliton when λ1 = λ + ρR − ρ1R1 is a constant. Using the
same pattern, (ii) can be verified.

4. Ricci–Bourguignon solitons on sequential warped product
space-times

In this section, we examine Ricci–Bourguignon solitons admitting two space-
times, namely standard static space-times and generalized Robertson–Walker
space-times.

Let (Mi, gi) be semi-Riemannian manifolds, 1 ≤ i ≤ 2, and let f : M1 → R+,
h : M1 ×M2 → R+ be two smooth functions. The (n1 + n2 + 1)-dimensional
sequential standard static space-time [15] M is the triple product manifold M =
(M1×fM2)×hI endowed with the metric tensor g = (g1⊕f2g2)⊕h2(−dt2). Here
I is an open, connected subinterval of R and dt2 is the usual Euclidean metric
tensor on I.

Lemma 4.1 ([15]). Let (M = (M1 ×f M2)×h I, g) be a sequential standard
static space-time and Xi, Yi ∈ X(Mi) for 1 ≤ i ≤ 2. Then

1. ∇X1Y1 = ∇1
X1
Y1;

2. ∇X1X2 = ∇X2X1 = X1(ln f)X2;

3. ∇X2Y2 = ∇2
X2
Y2 − fg2(X2, Y2)∇1f ;
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4. ∇Xi∂t = ∇∂tXi = Xi(lnh)∂t, i = 1, 2;

5. ∇∂t∂t = h ∇h.

Lemma 4.2 ([15]). Let (M = (M1 ×f M2)×h I, g) be a sequential standard
static space-time and Xi, Yi ∈ X(Mi) for 1 ≤ i ≤ 2. Then

1. Ric(X1, Y1) = Ric1(X1, Y1)− n2
f Hess1 f(X1, Y1)− 1

h Hessh(X1, Y1);

2. Ric(X2, Y2) = Ric2(X2, Y2)− f ]g2 (X2, Y2)− 1
h Hessh(X2, Y2);

3. Ric(∂t, ∂t) = h∆h;

4. Ric(Xi, Yj) = 0 when i 6= j, where f ] =
(
f∆1f + (n2 − 1)

∥∥∇1f
∥∥2
)

.

By using Lemma 2.3, it is easy to state the following corollary:

Corollary 4.3. Let (M = (M1×fM2)×h I, g) be a sequential standard static
space-time. Then(

LXg
)

(Y , Z) =
(
L1
X1
g1

)
(Y1, Z1) + f2

(
L2
X2
g2

)
(Y2, Z2)− 2h2uv

∂w

∂t
+ 2fX1(f)g2(Y2, Z2)− 2uvh(X1 +X2)(h),

where X = X1 +X2 + w∂t, Y = Y1 + Y2 + u∂t , Z = Z1 + Z2 + v∂t ∈ X(M).

Now we consider an RBS with the structure of the sequential standard static
space-times. By using Theorem 3.1, the following result can be given:

Theorem 4.4. Let M = (M1 ×f M2) ×h I be a sequential standard static
space-time equipped with the metric g = (g1⊕ f2g2)⊕h2(−dt2). If (M, g,X, λ, ρ)
is an RBS with X = X1 +X2 +w∂t, where Xi ∈ X(Mi) for 1 ≤ i ≤ 2 and w∂t ∈
X(I), then

(i) (M1, g1, X1, λ1, ρ1) is an RBS when Hess f = σg and Hessh = ψg and
λ1 = λ+ ρR+ n2

f σ + 1
hψ − ρ1R1 is a constant;

(ii) M2 is an Einstein manifold when X2 a Killing vector field and Hessh = ψg;

(iii) −∆h
h + ∂w

∂t + 1
h(X1 +X2)(h) = λ+ ρR.

Proof. Let (M, g,X, λ, ρ) be an RBS with the structure of the sequential
warped product. Then, for Y , Z ∈ X(M), the equation

Ric(Y , Z) +
1

2
(LXg)(Y , Z) = (λ+ ρR)g(Y,Z)

is satisfied. Using Lemma 4.2 and Corollary 4.3 for vector fields Y = Y1 + Y2 +
u∂t and Z = Z1 + Z2 + v∂t, we get

Ric1(Y1, Z1)− n2

f
Hess1 f(Y1, Z1)− 1

h
Hessh(Y1, Z1)

+ Ric2(Y2, Z2)− f ]g2(Y2, Z2)− 1

h
Hessh(Y2, Z2)

+ h∆huv +
1

2

(
L1
X1
g1

)
(Y1, Z1) +

1

2
f2
(
L2
X2
g2

)
(Y2, Z2)− h2∂w

∂t
uv



214 Dilek Açıkgöz Kaya and Cihan Özgür

+ fX1(f)g2(Y2, Z2)− uvh(X1 +X2)(h)

= (λ+ ρR)g1(Y1, Z1) + (λ+ ρR)f2g2(Y2, Z2)− (λ+ ρR)h2uv. (4.1)

When the arguments are restricted to the factor manifolds, we obtain

Ric1(Y1, Z1)− n2

f
σg1(Y1, Z1)− 1

h
ψg1(Y1, Z1) +

1

2

(
L1
X1
g1

)
(Y1, Z1)

= (λ+ ρR)g1(Y1, Z1), (4.2)

Ric2(Y2, Z2)− f ]g2(Y2, Z2)− 1

h
Hessh(Y2, Z2)

+
1

2
f2
(
L2
X2
g2

)
(Y2, Z2) + fX1(f)g2(Y2, Z2)

= (λ+ ρR)f2g2(Y2, Z2), (4.3)

and

h∆huv − h2∂w

∂t
uv − h(X1 +X2)(h)uv = −(λ+ ρR)h2uv,

which imply (iii).
In equation (4.2), by following the same pattern as in Theorem 3.1, we arrive

that (M1, g1, X1, λ1, ρ1) is an RBS when

λ1 = λ+ ρR+
n2

f
σ +

1

h
ψ − ρ1R1

is a constant. Moreover, in equation (4.3), if X2 is a Killing vector field and
Hessh = ψg, we obtain that M2 is an Einstein manifold, which completes the
proof.

Now, as an application of Theorems 3.4–3.6, we can give the following results:

Theorem 4.5. Let M = (M1 ×f M2) ×h I be a sequential standard static
space-time and let (M, g,X, λ, ρ) be an RBS with X = X1 + X2 + w∂t, where
Xi ∈ X(Mi) for 1 ≤ i ≤ 2 and w∂t ∈ X(I). Assume that X is a conformal vector
field on M . If Hess f = σg and Hessh = ψg, then M1 and M2 are Einstein
manifolds with factors µ1 = −∆h

h + n2
f σ + 1

hψ and µ2 = −∆h
h f

2 + f ] + 1
hψf

2.

Proof. Assume that (M, g,X, λ, ρ) is an RBS and X is a conformal vector
field on M with factor 2α. Then

Ric(Y , Z) = (λ+ ρR− α)g(Y,Z).

If Hess f = σg and Hessh = ψg, the above equation turns into

Ric1(Y1, Z1)− n2

f
σg1(Y1, Z1)− 1

h
ψg1(Y1, Z1) + Ric2(Y2, Z2)

− f ]g2(Y2, Z2)− 1

h
ψf2g2(Y2, Z2) + h∆huv

= (λ+ ρR− α)g1(Y1, Z1) + (λ+ ρR− α)f2g2(Y2, Z2)− (λ+ ρR− α)h2uv.
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Hence we find

Ric1(Y1, Z1) = (λ+ ρR− α+
n2

f
σ +

1

h
ψ)g1(Y1, Z1),

Ric2(Y2, Z2) = (λf2 + ρRf2 − αf2 +
1

h
ψf2 + f ])g2(Y2, Z2)

and h∆huv = −(λ + ρR − α)h2uv. So, M1 and M2 are Einstein manifolds with
factors µ1 = −∆h

h + n2
f σ + 1

hψ and µ2 = −∆h
h f

2 + f ] + 1
hψf

2.

Theorem 4.6. Let M = (M1 ×f M2) ×h I be a sequential standard static
space-time. Assume that (M, g,X, λ, ρ) is an RBS with X = X1 + X2 + w∂t,
where Xi ∈ X(Mi) for 1 ≤ i ≤ 2 and w∂t ∈ X(I). Then (M, g) is an Einstein
manifold if one of the following conditions holds:

(i) X = w∂t and it is a Killing vector field on I;

(ii) X1 is a Killing vector field on M1, X2 and w∂t are conformal vector fields
on M2 and I with factors −2X1(ln f) and −2(X1 +X2)(lnh);

(iii) X = X2 + w∂t and X2, w∂t are Killing vector fields on M2 and I, and
X2(h) = 0.

Theorem 4.7. Let M = (M1 ×f M2) ×h I be a sequential standard static
space-time and let (M, g,X, λ, ρ) be an RBS with X = X1 +X2 +w∂t, where Xi ∈
X(Mi) for 1 ≤ i ≤ 2 and w∂t ∈ X(I). Assume that Hess f = σg and Hessh =
ψg. If M1 and M2 are Einstein manifolds, then X1 and X2 are conformal vector
fields on M1 and M2.

Proof. Let (M, g,X, λ, ρ) be an RBS and let M1 and M2 be Einstein mani-
folds with factors µ1 and µ2. If Hess f = σg and Hessh = ψg, then from equation
(4.1), we can write

µ1g1(Y1, Z1)− n2

f
σg1(Y1, Z1)− 1

h
ψg1(Y1, Z1) + µ2g2(Y2, Z2)− f ]g2(Y2, Z2)

− 1

h
ψf2g2(Y2, Z2) + h∆huv +

1

2
L1
X1
g1(Y1, Z1)

+
1

2
f2
(
L2
X2
g2

)
(Y2, Z2)− h2∂w

∂t
uv + fX1(f)g2(Y2, Z2)− uvh(X1 +X2)(h)

= (λ+ ρR)g1(Y1, Z1) + (λ+ ρR)f2g2(Y2, Z2)− (λ+ ρR)h2uv.

Hence we have(
L1
X1
g1

)
(Y1, Z1) = 2(λ+ ρR− µ1 +

n2

f
σ +

1

h
ψ)g1(Y1, Z1),(

L2
X2
g2

)
(Y2, Z2) =

2

f2
((λ+ ρR)f2 − µ2 + f ] +

1

h
ψf2 − fX1(f))g2(Y2, Z2)

and

h∆h− h2∂w

∂t
− h(X1 +X2)(h) = −(λ+ ρR)h2,

which imply that X1 and X2 are conformal vector fields on M1 and M2.
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Now we consider an RBS with the structure of the sequential generalized
Robertson–Walker space-times. Firstly, we define the notion of the sequential
generalized Robertson-Walker space-time.

Let (Mi, gi) be semi-Riemannian manifolds, 2 ≤ i ≤ 3, and let f : I → R+, h :
I×M2 → R+ be two smooth functions. The (n2 +n3 +1)-dimensional sequential
generalized Robertson–Walker space-time M is the triple product manifold M =
(I ×f M2)×hM3 endowed with the metric tensor g = (−dt2 ⊕ f2g2)⊕ h2g3 [15].
Here I is an open, connected subinterval of R and dt2 is the usual Euclidean
metric tensor on I.

Lemma 4.8 ([15]). Let (M = (I×f M2)×hM3, g) be a sequential generalized
Robertson–Walker space-time and Xi, Yi ∈ X(Mi) for 2 ≤ i ≤ 3. Then

1. ∇∂t∂t = 0;

2. ∇∂tXi = ∇Xi∂t = ḟ
fXi, i = 2, 3;

3. ∇X2Y2 = ∇2
X2
Y2 − fḟg2(X2, Y2)∂t;

4. ∇X2X3 = ∇X3X2 = X2(lnh)X3;

5. ∇X3Y3 = ∇3
X3
Y3 − hg3(X3, Y3)∇h.

Lemma 4.9 ([15]). Let (M = (I×f M2)×hM3, g) be a sequential generalized
Robertson–Walker space-time and Xi, Yi ∈ X(Mi) for 2 ≤ i ≤ 3. Then

1. Ric(∂t, ∂t) = n2
f f̈ + n3

h
∂2h
∂t2

;

2. Ric(X2, Y2) = Ric2(X2, Y2)− f�g2 (X2, Y2)− n3
h Hessh(X2, Y2);

3. Ric(X3, Y3) = Ric3(X3, Y3)− h]g3(X3, Y3);

4. Ric(Xi, Yj) = 0 when i 6= j, where f� = −ff̈ + (n2 − 1)ḟ2 and h] = h∆h +
(n3 − 1) ‖∇h‖2.

By using Lemma 2.3, it is easy to state the following corollary:

Corollary 4.10. Let (M = (I ×f M2) ×h M3, g) be a sequential generalized
Robertson–Walker space-time. Then

(LXg)(Y , Z) = −2
∂w

∂t
uv + f2

(
L2
X2
g2

)
(Y2, Z2) + h2

(
L3
X3
g3

)
(Y3, Z3)

+ 2wf
∂f

∂t
g2(Y2, Z2) + 2wh(

∂h

∂t
+X2(h))g3(Y3, Z3),

where X = w∂t +X2 +X3, Y = u∂t + Y2 + Y3 and Z = v∂t + Z2 + Z3 ∈ X(M).

First, we give the following theorem as an application of Theorem 3.1.

Theorem 4.11. Let M = (I ×f M2) ×h M3 be a sequential generalized
Robertson–Walker space-time. Assume that (M, g,X, λ, ρ) is an RBS with X =
w∂t +X2 +X3 on M, where Xi ∈ X(Mi) for 2 ≤ i ≤ 3 and w∂t ∈ X(I). Then

(i) −n2
f f̈ −

n3
h

∂2h
∂t2

+ ∂w
∂t = λ+ ρR;

(ii) when Hessh = ψg and λ2 = λf2 + ρRf2 + f� − wfḟ + n3
h ψf

2 − ρ2R2 is a
constant, (M2, g2, f

2X2, λ2, ρ2) is an RBS;
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(iii) (M3, g3, h
2X3, λ3, ρ3) is an RBS when λ3 = λh2 + ρRh2 + h] − wh∂h

∂t
−whX2(h)− ρ3R3 is a constant.

Proof. Assume that (M, g,X, λ, ρ) is an RBS soliton with the structure of
the generalized Robertson-Walker space-time M = (I×f M2)×hM3. By Lemma
4.9 and Corollary 4.10, the proof is clear.

The next result can be considered as a consequence of Theorem 3.4.

Theorem 4.12. Let M = (I ×f M2) ×h M3 be a sequential generalized
Robertson–Walker space-time and let (M, g,X, λ, ρ) be an RBS soliton with X =
w∂t + X2 + X3. Assume that X is a conformal vector field on M . If Hessh =
ψg, then M2 and M3 are Einstein manifolds with factors

µ1 =

(
−n2

f
f̈ − n3

h

∂2h

∂t2

)
f2 + f� +

n3

h
ψf2

and

µ2 =

(
−n2

f
f̈ − n3

h

∂2h

∂t2

)
h2 + h].

Proof. The proof is similar to those of Theorem 3.4 and Theorem 4.5.

Now we give the following result for the gradient RBS with the structure of
the generalized Robertson–Walker space-time.

Theorem 4.13. Let (M = (I ×f M2)×hM3, g,∇u, λ, ρ) be a sequential gen-
eralized Robertson–Walker space-time and let (M, g,∇u, λ, ρ) be an RBS, where

u =

∫ t

a
f(r) dr

for some constant a ∈ I. Then M is an Einstein manifold with factor (λ+ ρR−
ḟ).

Proof. Suppose that X = ∇u. Then X = f∂t.

Let {∂t, ∂1, ∂2, . . . , ∂n2 , ∂n2+1, . . . , ∂n2+n3} be an orthonormal basis for X(M).
The Hessian of u is given by Hessu(Y, Z) = g(∇Y∇u, Z). Here we have the
following six cases:

i) If Y = Z = ∂t, we get

Hess(∂t, ∂t) = g(∇∂t∇u, ∂t) = ḟg(∂t, ∂t).

ii) If Y = ∂t and Z = ∂i, 1 ≤ i ≤ n2, we have

Hessu(∂t, ∂i) = g(∇∂t∇u, ∂i) = ḟg(∂t, ∂i).

iii) If Y = ∂t and Z = ∂k, n2 + 1 ≤ k ≤ n2 + n3, we get Hessu = ḟg.
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iv) If Y = ∂i and Z = ∂j , 1 ≤ i, j ≤ n2, we have

Hessu(∂i, ∂j) = g(∇∂i∇u, ∂j) = fg(
ḟ

f
∂i, ∂j) = ḟg(∂i, ∂j).

v) If Y = ∂i, 1 ≤ i ≤ n2, and Z = ∂k, n2 + 1 ≤ k ≤ n2 + n3, we obtain
Hessu = ḟg.

vi) Finally, if Y = ∂k and Z = ∂l, n2 + 1 ≤ k, l ≤ n2 + n3, we have

Hessu(∂k, ∂l) = g(∇∂k∇u, ∂l) = fg(
ḟ

f
∂k, ∂l) = ḟg(∂k, ∂l).

Hence, Hessu(Y,Z) = ḟg(Y,Z) and (LXg)(Y,Z) = 2 Hessu(Y,Z) = 2ḟg(Y,Z).
Therefore, Ric = (λ+ ρR− ḟ)g is satisfied, which completes the proof.
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Солiтони Рiччi–Бургiньона на многовидах iз
секвенцiально викривленим добутком

Dilek Açıkgöz Kaya and Cihan Özgür

Ми вивчаємо солiтони Рiччi–Бургiньона на многовидах iз секвенцi-
ально викривленим добутком. Одержано необхiднi умови того, що солi-
тон Рiччi–Бургiньона iз структурою секвенцiально викривленого добу-
тку є многовидом Ейнштейна, коли потенцiйне поле розглядається як
поле Кiллiнга або конформне векторне поле.

Ключовi слова: солiтон Рiччi–Бургiньона, многовид з викривленим
добутком, многовид iз секвенцiально викривленим добутком, векторне
поле Кiллiнга, конформне векторне поле
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