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In this paper, we derive a Reilly type formula for the diffusion-type op-
erator £- = £ div(AV-) on weighted manifolds with boundary, where A and
B are two positive smooth functions on manifolds. As its applications, some
inequalities of Poincaré type, Colesanti type, Minkowski type and Heintze—
Karcher type are provided.
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1. Introduction

Let (M™,g,du) be an n-dimensional compact weighted manifold with bound-
ary OM. A weighted Riemannian manifold is actually a Riemannian manifold
equipped with some measure which is conformal to the usual Riemannian mea-
sure. More precisely, for a given compact n-dimensional Riemannian manifold
(M™, g) with the metric g, the triple (M™, g,du) is called a compact weighted
Riemannian manifold, where du = Bdv is a weighted volume form, B is a pos-
itive smooth function on M, and dv is the Riemannian volume element related
to g. Let n be the unit outward normal of M. Define the second fundamental
form of M by II(X,Y) = (Vxn,Y) for any two tangent vector fields X and Y
on M, and the mean curvature by H = tr(II).

In this paper, we consider the diffusion-type operator on (M™, g,du) as fol-
lows:

1 . A 1
L = B div(AV:) = B (A . —{—A(V-,VA)) , (1.1)
where A and B are two positive smooth functions on M, V denotes the Levi-
Civita connection, div = tr(V-) denotes the Riemannian divergence operator,
and A = divV is the Laplace-Beltrami operator.

There are two trivial cases among all £. For the case A = B = constant, one

sees from (1.1) that the diffusion-type operator L is the usual Laplacian. For the
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case A = e 2f B = ¢ n > 2, one sees from (1.1) that the diffusion-type
operator £ is in consistence with the usual ones for conformal metric e2/g.
We note that in the case A = B = e~/ one sees from (1.1) that

L-=el dive V) =A-—(V-, Vf). (1.2)

We call (1.2) the Witten Laplacian (also called drifting, weighted or Bakry-Emery
Laplacian) with respect to the weighted volume form duy = e~ fdv. In recent
years, the Witten Laplacian received much attention from many mathematicians
(see [1,2,4-8,11-13,18-20] and the references therein).

For the case A =™, B=¢"/ a > 1, one sees from (1.1) that

L= el div(e V) = e /DA . —a(V-, V). (1.3)

This is in fact the Laplacian with density in the literature which was introduced
by Ndiaye [15].

We notice that the Green formula (the integration by parts formula) for the
diffusion-type operator £ holds under the weighted measure du = Bdf2, that is,

A A
/ hLudp = / —hOnudpy — / —(Vu,Vh)du
M om B m B

A
:/ E(hanu — udnh) dpy +/ ulhdp,
oM M

holds provided u or h belongs to C°°(M), where Ohu = (n, Vu), duy = Bdvy and
dvg is the volume form on OM.
Following [14], to relate £ with geometry we consider the m-modified Ricci
curvature Ricy ., given by
n

— ) 1, m—-n—11
RICA7m = Ric — ZV A + ﬁﬁdA & dA, (14)

where m is a real constant, and m = n if and only if A is a constant. Here V?
and Ric denote the Hessian operator and Ricci curvature. When m = oo, (1.4)
gives the tensor

— 1
Rica 0 = Ric — Zv2A + ﬁdA ® dA, (1.5)

which is called oo-modified Ricci curvature. The A-mean curvature of OM is
defined by

-~ 1
Hjp=H+ ZanA (1.6)

It should be noticed that in the case A = B = e_f the m-modified Ricci cur-
vature Ric A,m, the oo-modified Ricci curvature Ric A,00 and the A-mean curvature
H A become the m- Bakrnymery Ricci curvature
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the oo—Bakry—Emery Ricci curvature Ricy = Ric+V?2f and the f-mean curvature
Hy = H — (Vf,n), respectively (see [17]).

Among the important formulae in differential geometry, the Reilly formula [16]
is an important tool in the study of various geometric and analytical problems
on a Riemannian manifold with smooth boundary. Ma and Du [13] extended the
Reilly formula for the Witten Laplacian and applied it to study eigenvalue esti-
mates for the Witten Laplacian on compact Riemannian manifolds with bound-
ary. Kolesnikov and Milman [9,10] obtained new Poincaré type inequalities for
weighted manifolds by systematically using Ma-Du’s Reilly-type formula com-
bined with various conditions on the boundary of the manifold and boundary
conditions for elliptic equations. Further more recent applications may be found
n [3,8,21].

The purpose of this paper is to study some integral inequalities for the
diffusion-type operator £ and their applications on weighted manifolds with
boundary. Firstly, we derive a Reilly type formula for the diffusion-type op-
erator £ on weighted manifolds with boundary, which is the important tool to
prove our main theorems.

Theorem 1.1. Let A and B be two positive smooth functions on a given
compact weighted Riemannian manifold (M™, g,du) of dimension n > 2 with the
boundary OM . For any smooth function u, we have the following equality:

B s Ao _ A

A~
+ / (2 H4(0nt)? + Loudau) duo
om B

+ g( II(Vau, Vou) — (Vau, Vy(Onu))) dug. (1.7)

oM
Remark 1.2. Clearly, if A = B = constant, our Reilly type formula (1.7)
degenerates into the classical Reilly’s formula in [16]; if A = B = e/, our
formula (1.7) degenerates into the formula (3) of Ma and Du in [13]; if A = e~/
and B = e~/ our formula (1.7) degenerates into the formula (4) of Ndiaye in [15].

A simple computation shows that

Ao 2, A=
E!V ul —i—ERch,oo(Vu,Vu)

_A A
|v2 2+ = (RIC - Zv2A + ﬁdA ® dA) (Vu, Vu)

1A B A
g + fgqﬁuf + pRicam(Vu, Vu)

(F b

1B
EZ(EU) + BRlCAm(Vu Vu) (1.8)

_ —]V2u Au

oy \
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provided m € (—o0,0) U [n, +00). The equality holds if and only if

Viu = 9 (1.9)
and
n 1

Inserting (1.8) into (1.1), we immediately obtain the following result:

Corollary 1.3. Let A, B and u be as in Theorem 1.1 and m € (—o0,0) U
[n,+00). Then we have the following inequalities:

A—
0> / < Ricg m(Vu, Vu) — ]Eu]2>
M m

+/ (AﬁA(anu)Q -l-ﬁau@nu) dpg
om \ B
A
n / A M(Vou, Vou) — (Vou, Vo (0uu))) duo, (1.11)
om B

where the equality occurs if and only if (1.9) and (1.10) hold.

Remark 1.4. In [12] (or see [9,10]), Li and Wei provide a Reilly type inequality
for the Witten Laplacian and give some applications. In particular, if A = B =
e/, then (1.11) becomes the formula (9) of Li and Wei in [12].

Throughout this work, we employ Einstein summation convention. By abuse
of notation, Ric A,m may denote the 2-covariant tensor (Rlc A,m)pg, but also may

denote its 1-contravariant version (Rlc Am)p, as in
. _ i .
<Rﬂy“nVu,Vu>::gU(Rﬂyun) VFuViy
<R1(:A m> ViuViy = Rch m(Vu, Vu).
Similarly, the 2-contravariant tensors (H_l)aﬁ and ((EEAM)_I)}) 7 are defined
by
—1\ij ; = NG = ;
(H ) ILj, = oy, ( (Rchm) ) (Ricam)jr = 0y

Given an integrable function ¢ on (M",g,du), the dimensional mean-value and
dimensional variance of ¢ on (M™, g,du) are defined by

A
L BY A )
p=E vl = [ Ze-9Pde
oo oh

Next, by applying the above Reilly type inequality (1.11), we obtain some
new Poincaré type inequalities for the diffusion-type operator £ on weighted
Riemannian manifolds (M", g, dpu).
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Theorem 1.5. Let (M”,g,du) be a smooth compact weighted Riemannian
manifold of dimension n > 2 with RlCA,m > 0, where m € (—00,0) U [n,+00).
Let A and B be two positive smooth functions on M. Then, for any ¢ € C*°(M),
we have:

(I)  Assume that OM = @ and [,; 4o dp=0. Then

m A j—
_ < il i )
p—— Vary(p) < /M 5 (Rchm) (Ve, V) du

(IT)  Assume that OM # @ and 11 > 0 (M is locally convex). Then

m A f— -1
- < — i .
— Vara(p) < /M 5 (Rchm) (Veo,Vo)du

(ITIT) Assume that OM # &, Ha>0 (M is generalized mean-convezx), p =0 on
OM. Then
m A

A s -1
2 < = i .
m—1/,B% dp < /M B (RlCA,m) (Ve, V) dp

(IV) Assume that OM # &, Ha>0 (M is strictly generalized mean-convez).
Then
m A A (=
—_— Bgoz du < /M B (Rch,m>

Remark 1.6. Particularly, when A = B = e/, then Theorem 1.5 reduces to
Theorem 1.2 of Kolesnikov and Milman in [9].

2

A dy
= -
MBHA

(Vo,Vo)du+ /8

By using the above Reilly type inequality (1.11), we also give the following
Colesanti type inequalities on the boundary of weighted Riemannian manifolds
(M", g, dp).

Theorem 1.7. Let (M™,g,du) be a smooth compact weighted Riemannian
manifold of dimension n > 2 with boundary and f/{EAym > pg, where p € R and

m € (—00,0) U [n,+o0). Let A and B be two positive smooth functions on M.
Assume that Hy > 0 on OM, then, for any ¢ € C*°(OM), we have

A A (p B 2
/aM SV, Vo) duy < /W BE, <2w + Aﬁa@/)) dyp. (1.12)

We also obtain a dual-version of Theorem 1.7:

Theorem 1.8. Let (M™,g,du) be a smooth compact weighted Riemannian

manifold of dimensionn > 2 with boundary and ﬁA m > 0, wherem € (—o0,0)U
[n,4+00). Assume that II > 0 on OM, then, for any ¢ € C*°(OM), we have

/ Y(Vorb, Vouo) dug
om B

A=~ m —
> /8M EHA¢ dpy — ——— </8M ¢dua> ;o (1.13)

where Va(M) = [}, & dp.
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Remark 1.9. Particularly, when A = B = e ! , then Theorem 1.7 and The-
orem 1.8 reduce to Theorem 1.1 and Theorem 1.2 of Kolesnikov and Milman
in [10].

In particular, taking ¢» = 1 in (1.13), we obtain the following Minkowski type
inequalities:

Theorem 1.10. Let (M",g,du) be a smooth compact weighted Rieman-
nian manifold of dimension n > 2 with boundary and Rica,, > 0, where m €
(—00,0) U [n,+00). Assume that IT >0 on OM, then

AMgﬁmmasmgl”éﬁﬁya (1.14)

where VA(OM) =[5, %dua.

Using the Cauchy—Schwarz inequality

W@MWS/

A ~ A1l
HAdua/ == dus
om B om B Hy

in (1.14) gives the following Heintze—Karcher type inequalities:

Theorem 1.11. Let (M"™, g,du) be a smooth compact weighted Riemannian
manifold of dimensionn > 2 with boundary and Rica ,, > 0, where m € (—o0,0)U
[n,+00). Assume that II > 0 on OM, then

A1l m
L B ez e vaen (1.15)

On the other hand, we can replace the assumption II > 0 in Theorem 1.11 by
a weaker condition H4 > 0 to obtain the following theorem on OM.

Theorem 1.12. Let (M™,g,du) be a smooth compact weighted Riemannian
manifold of dimension n > 2 with boundary and Rica ,, > 0, where m € (—o0,0)U
[n,+00). Assume that Hy >0 on OM, then

A1l m
——— > M). 1.1
/ dup = — 1VA( ) (1.16)

Remark 1.13. Particularly, when A = B = e/, then Theorems 1.10-1.12
reduce to some previous results in [10, Theorem 4.4] and [4, Theorem 1.1].

This paper is organized as follows. In Section 2, we prove Theorem 1.1.
Theorem 1.5 is proved in Section 3. Theorem 1.7 and Theorem 1.8 are proved in
Section 4. In Section 5, we prove Theorem 1.12.
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2. Proof of Theorem 1.1

In this section, we give the proof of our main tool, Theorem 1.1 from the
Introduction. For the proof of Theorem 1.1, the following lemma will be used.

Lemma 2.1. Let A, B and u be as in Theorem 1.1. We have
§£|Vu| = EW ul” + ERch,oo(Vu, Vu) 4+ (Vu, VLu) + B VZ’VU Lu.
(2.1)
Proof. From the definition of £ and the Bochner formula
1
5A\Vu|2 = |V2u|? + Ric(Vu, Vu) + (Vu, VAu),
we have
2 A 2 1 2
LIVul® = EA|VU| +E<VA,V|Vu| )
= 2§]V ul” + 2ER1(3(Vu, Vu) + ZE(Vu, VAu) + §<VA’ V|Vul?)

A A 1
= 2§|V2u|2 + 25 Rie(Vu, Vu) + 2(Vu, VLu) + (VA V|Vul?)

B
+ 2%£u(Vu, v% - 2%(%, V(5 (Vu, VA)). (2.2)
By direct computations, we have
L ivA,VIVu?) = 2520V, v 4) (2.3)
B B
and
—% <vu, v <j1<vu, VA>>>
_ 2ﬁ<vu, VA — %(vm(w, V) + V2u(Vu, VA)).  (2.4)
Inserting (2.3) and (2.4) into (2.2), we obtain (2.1). O

Notice that the Bochner-type formula (2.1) looks very similar to the Bochner
formula for the Ricci tensor of an n—d/irilensional manifold. This is our motivation
for the oo-modified Ricci curvature Ricg .

Proof of Theorem 1.1. We integrate equality (2.1). On the left-hand side, we
have

1 s 1 [ A , 1 )
2/M£]Vu| dp = 2/MB <A|Vu\ +A<VA,V|Vu] ) ) du

1 1
L o (vuR)Ade, - / (V|Vul2, VA) do
2 Jom 2 u
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1 (1
+> | =(VA,V|Vu?
2/MB< VIVul) dp

=/ g(Vu, V (0nu)) dus. (2.5)

The third and the fourth terms on the right-hand side give

/M <<w, VL) + %Eu <vi, vu> ) du

:/ B(Vu,VLu) dv+/ ALy <VB,VU> dv
M M A

= B@nuﬁudva—/ AuEquv—/ (Vu, VB)Ludv
M M

oM
+/ (Vu,VB>Eudv—/ g(VU,V/DEudv
M M
= Banuﬁudva—/ BAuEudv—/ E(Vu,VA}ﬁudv
oM M M A
B
z/ 8nu£ud,ua—/ —|Lul* dp. (2.6)
oM M A

Then we obtain

A A A—
/ —(Vu,V(0qu)) duy :/ |V2u|2du+/ —Rica o0 (Vu, Vu) du
om B m B m B
B
+ OnuLludpy —/ —|Lul* dp,
oM mA
that is,

B A A—
— Eu2du—/ —|V2u*du :/ —Ricg o (Vu, Vu)du
[ enkdn= [ S0P dn = [ SR (Viva)
A
+ / OnuLludpy — / —(Vu, V(Oau)) dug. (2.7)
oM om B
Now, it remains to estimate dpulu — %(Vu, V(Onw)) which is equal to

4 [Au@nu + l(Vu, V A)Onu — (Vu, V(@nu»] :

B A
We notice that
Au = Hdgu + Agu + 02u (2.8)
and
(Vu, V(0pu)) = dqudu — I(Vau, Vou) + (Vou, Vo(dnu)). (2.9)

We then combine equalities (2.8) and (2.9) to derive an expression for the last
term in the right-hand side of (2.7)

1
Onulu — %(Vu, V(Opu)) = % (HOpu + Apu + 02u)0qu + Z(Vu, V A)Ohu
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A
- E[anuaﬁu —II(Vau, Vau) + (Vau, Va(Onu))]

A
=3 [(H@nzﬂ—Aau)@nu%— A(Vu VA)Onu
A
- E[—H(Vau, Vau) + <V3u, Va(@nu»]
We notice that
A
B [(H@nu+A3u)8 u+ A(Vu VA)Oy u]
:% [(H@nu+Aau)8nu+ A((Vau VoA) + OnudnA)On ]
—AH8218 OnA + Ayud Vou, Vo A)onu
=5 (nU)—Fz( u)20nA + aunu+A( ou, VoA)
AH+5A82AA Vau,VaA) | 0
=5 " (Onu)” + dU+A<aUd>nu
A 2
= — H4(0nu)* + Loudnu.
B
Hence,

/M A|[,u| du—/M B\V ul|*dp = . BRch,OO(Vu,Vu) du
A
+ / (EHA(anu)2 + LouOnu) dug
oM
A
+ / S ((Vou, Vou) — (Vou, Vo(Ou) duo.
oM
This completes the proof. O

3. Proof of Theorem 1.5

The idea in the proof of Theorem 1.5 is similar to that used by Kolesnikov
and Milman in [9]. We use the Reilly type inequality (1.11) to prove Theorem
1.5 below.

Proof. (I) We solve PDE

B
Z[,u:go on M. (3.1)
Thus, it follows from (1.11) that
m—-1 2
Eu| dp > —Rchm(Vu Vu) du (3.2)
and
1B (A \? m—1 [ A
752 2 dp=—= [ Z=p%du. (3.3
Mm‘“‘ MmA<B<p>umMB<pu()
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Then combining (3.2) and (3.3), we have

-1 A
m=z — 2du>/ —Rchm(Vu Vu)dpu. (3.4)
m M B

Using the divergence theorem, we have

A
/ Ag02dlu,:/ Bgoﬁudv:—/ “(V, Vu) du
m B M m B
1
A — 2 A
< (/ ~(Ricp.mVu, Vu) du> </ —((Ricam) Ve, Vo) du>
u B ’ v B ’

< (2] 20 duf ([ 5@ 'vevoa) . 65

m A, A f— -1
L i <[ = .
w1/, BY dp < /M B (RICA,m) (Vo,Vo)du

[N

Thus,

By the assumption that fM %cp dp = 0, we obtain the assertion of Case (I).
(IT) Since M™ is compact, by integration by parts, we have

A
OnuLaou duy = —/ —9(Vou, Vadnu) dugy. (3.6)
oM om B

By (1.11) and (3.6), we can get
> = -z - =
0> /M <BR10A,m(Vu, Vu) - A[Eu] ) d
A
+/ = [(Vau, Vau) — 29(Vau, Vaonu)] dus
om B

A ~
n / S Ha (@) dpo. (3.7)
oM

Let u be a smooth solution to the Neumann problem

B
Zﬁu:go on M,

Opu=0 on OM.

Then, by the Cauchy—Schwarz inequality,
*90 O
A A
=— —(V,Vu d,u,—i-/ —@Onu dy
/M B< ) om B

A — SOrA — 2
< / —(RicgmVu, Vu) du / —((Ricam) Ve, V) du
v B ’ v B ’

A
oM
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Since Onu‘aM =0 and IT > 0, we obtain from (3.7) that

B m—1 A j—
Z\Luldy > —<R' WV, >d. 3.10
[ Aot anz " | 2 (RieanVu Va) du (3.10)
Consequently, we obtain
m-1[Ax >/A<Ei\ v V>d (3.11)
w | ez | G (RicamVu, Vu) du. :
Plugging this back into (3.9) and using that 3nu’8M = 0 yields
-1 A A/ — -1
moL [ et [ 2 {(Rean) Ve.Ve) du
m B MB ’

By the fact that

A A
—pdp = / Ludp = / —Onudpuy =0,
/M B M om B

we obtain the assertion of Case (II).
(ITT) Let u be a smooth solution to the Dirichlet problem

B
ZLu= M
int (3.12)

=0 on OM.

Observe that (3.11) still holds since v = 0 and Hf > 0. Plugging (3.11) back
into (3.9) and using that @’aM = ( yields the assertion of Case (III).

(IV) Let u be a smooth solution to the Dirichlet problem (3.12). If Hy >
0, by (3.7), we have

- > =
— B e du > / Rchm(Vu Vu)dp +

On the other hand, we obtain for any € > 0:
A

A
—otdpy = — / —(Vp,Vu)du +
B MB< )

éHA(a u)? dpg. (3.13)
om B

A
—Onu diiy

ou B‘P 12

<5/ A Riow Vi, Vi) d

=3 [, B HAmYE p

"‘2*5 B((Rch,m) Ve, V) du+/ E(pﬁnudua. (3.14)

By (3.13) and (3.14), using the Cauchy Schwarz inequality, we can get

A
_/ —HA dua+/ —@Onuduy
oM om B

1 A <p
Rchm) Ve, Ve du—l—— dpy.
A ) [ He
m—1

Multiplying by 2¢ and using the optimal ¢ = *—=, we obtain the assertion of
Case (IV). This completes the proof. O

< —
_25 u B
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4. Proof of Theorems 1.7 and 1.8
We use the Reilly type inequality to prove Theorem 1.7 below.

Proof of Theorem 1.7. Let u be a smooth solution to the Dirichlet problem

Lu=0 on M,
(4.1)
u=1 on JdM.
By (1.11), we have
A 9 A (B ~
> — I
0> P/M B!Vu| d,u-i—/aM 5 <A£aw+HA8nu> Ont diig
A
+ / —(Vay, Vo) — g(Vorh, Vaonu)| dua.
om B
By (3.6), we have
2 A= 2
0=>p \Vu! dp + = H 4 (0nu)? dpug
om B
/ *H Va%/) Va@/) dpy + 2/ OnuL o) dpy. (4.2)

On the other hand, note that
A A
Z\Vultdu = / —uOnudpy — / uludp.
/M BV om B M
It follows from (4.1) that
A A
—\Vul? dp = / —Opuduy. 4.3
By (4.2) and (4.3), using the inequality Az?+ Bz > — 4A * with A > 0, we can get
A
/ BU(Voy, Vo) dua
oM
<—p | L¥Onuduy— SHA(Onu) dpg —2 | Onuloh dup
om B om B oM

- / (AJf.rA(c’aw)2 + péwanu + 23nu58¢> dpia
om \ B B

~ A
= - /8M <2HA(anu)2 + (PBT# + 2£8¢> 8nu> dﬂ@

A 2
< B Ty )d.
/éaMHA<w Zeow) dno

This completes the proof. O

Next we use the Reilly type inequality to prove Theorem 1.8 below.
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Proof of Theorem 1.8. By the Cauchy—Schwarz inequality, we have
A A A4
- QEQ(Vau, VgOnu) > —EH(Vau, Vou) — EH (VgOnu, Voonu).  (4.4)

From (3.7) and (4.4), we have
1B

m — 9 A > 2
m--2 > [ ZM(Vau, Vou) + Ha(8a
L m | Lu|® dp /8 B[ (Vou, Vou) A(Onu)?] dug

A
-2 —3g(Vau, Vyonu) dug
om B

A ~
> [ SN(Tou, Vou) + Ha(0n)?] duo
om B
A A
— —II"(V§Onu, Vadnu) dug — —II(Vou, Vou) duy
om B om B
= — H 4 (Opu)* duy — —II"(VyOnu, Voonu) dugy. (4.5)
om B om B
Let u be a smooth solution to the Neumann problem

B 1 A
—Lu=—— —d on M,

{A Va(M) Jour BY 0 (4.6)
Optt = Y on OM.

By (4.5) and (4.6), we have

m—1A 1 A 2
= Zwduy) d
e m B(VA@M) orr BY “8> 8
2/ é1€T,4(8nu)2 dua—/ éﬂfl(vaanu,vaﬁnu)dua.
om B om B

This completes the proof. O

5. Proof of Theorem 1.12

Proof. Let u be a smooth solution to the Dirichlet problem

B
{A£u1 on M, (5.1)

u=0 on OM.
By (3.7), we can get
m—1B A~
M)= | ——=|Lul*du > ~H % dpup. 2
van = [ P2 Riel > | SHa0utde. (62
On the other hand, note that

(Va(M))? = ( / ﬁrcumf - ( | ganUdua>2

A~ A1
< — H A (Onu Zdua/ ——=—duy. 5.3
/BM B (G om B Hy (5:3)

By (5.2) and (5.3), the assertion follows. O

m—1
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InTrerpanpua dpopmysia tuny Peiisi, moB’si3ana 3
oneparopamu audys3iiiHoro tuiy, Ta il 3acToCyBaHHS

Fanqi Zeng, Huiting Chang, and Yujun Sun

VY wiit crarti Mmu BuBogmMo (opmysy tuity Peitni gyt oneparopa audy-
siftnoro Tuny £- = & div(AV-) Ha 3BazkKeHHX MHOTOBHJAX i3 Mexero, e A i
HaBeJieHO Jiesiki HepiBuocTi Tumy Ilyankape, KosecanTti, MinkoBchKkoro Ta
Xaitnne-Kapuepa.

Kirrogosi cioBa: dopmysa tuny Peitni, oneparop mudyaiitaoro Tury, m-
MoaudikoBaHa KpuBruHa Piudi, A-cepenssi KpuBuHa,


mailto:fanzeng10@126.com
mailto:changhuiting163@163.com
mailto:791366179@qq.com

	Introduction
	Proof of Theorem 1.1
	Proof of Theorem 1.5
	Proof of Theorems 1.7 and 1.8
	Proof of Theorem 1.12

