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A real sequence (by)72,, is called totally positive if all minors of the
infinite matrix ||bj,i\|f3.:0 are nonnegative (here by = 0 for k& < 0). In this
paper, we investigate the problem of describing the set of sequences (a)?2
such that for every totally positive sequence (by)32, the sequence (arbg),
is also totally positive. We obtain the description of such sequences (ax)%2,
in two cases: when the generating function of the sequence » - arz* has at
least one pole, and when the sequence (ax)32, has not more than 4 nonzero
terms.
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1. Introduction

We start with the definition of multiply positive and totally positive sequences.

Definition 1.1. A real sequence (aj)32, is called m-times positive (m € N),
if all minors of the infinite matrix

apg a1 a2 ag
0 ayp a3 a2 ...
0 0 ay a1 ... (1.1)
0 0 0 ap

of orders less than or equal to m are nonnegative. The class of m-times positive
sequences is denoted by T'Pp,, the class of the generating functions of m-times
positive sequences (f(z) = Y52, axz’) is denoted by TP,,.
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Definition 1.2. A real sequence (ay);2, is called totally positive if all minors
of the infinite matrix (1.1) are nonnegative. The class of totally positive sequences
is denoted by T'Pw. The class of the generating functions of totally positive
sequences is denoted by T P.

Multiply positive sequences (also called Pélya frequency sequences) were in-
troduced by Fekete in 1912 (see [7]) in connection with the problem of exact
calculation of the number of positive zeros of a real polynomial. Multiply pos-
itive and totally positive sequences arise in many areas of mathematics and its
applications, see, for example, [2,10,20].

The class TP, was completely described by Aissen, Schoenberg, Whitney
and Edrei in [1] (see also [10, p. 412]).

Theorem ASWE. A function f € TP if and only if

[e.9]

— Ozl (1 + O‘kz)
flz)=C k];[l T (1.2)

where C > 0,q € Z,y > 0,a; > 0,5 > 0,> 7 (o + Bi) < 0.

Theorem ASWE gives the description of the class TP, in terms of indepen-
dent parameters C, q,y, ax, Bk. It is easy to see that the class T'P, consists of the
sequences (ay,), of the form a, = =¥, where ¢ : NU {0} — (—o0,+0oc] is
a convex function. In [19] the description of the subclass of T'Ps, which consists
of the sequences all of whose sections belong to T P3, in terms of independent
parameters was obtained. The problem of the description of the classes TPy,
3 < m < o0, in terms of independent parameters has not been solved until now.

By theorem ASWE a polynomial p(z) = Y_}_gaxz®, ar > 0, has only real
non-positive zeros if and only if (ag,a,...,a,,0,0,...) € TPy.

In general, the problem of understanding whether a given polynomial has
only real zeros is not trivial. Often such problems are very difficult. However,
in 1926, J. I. Hutchinson found the following simple sufficient condition in terms
of coefficients for an entire function with positive coefficients to have only real
ZEros.

Theorem A (J.I. Hutchinson, [9]). Let f(z) = > 5o, arz®, ar > 0 for all
2

k. Then a:’iﬁ >4 for all n > 2, if and only if the following two conditions are
fulfilled:

(i) the zeros of f(x) are all real, simple and negative, and
(ii) the zeros of any polynomial > j_.  arz®, m < n, formed by taking any number
of consecutive terms of f(x), are all real and non-positive.

For some extensions of Hutchinson’s results see, for example, [3, §4] and [16].

The question about whether or not a given polynomial has only real zeros is
of great importance in many areas of mathematics. So, the problem to describe
the set of operators that preserve this set of polynomials is of the great interest.
In connection with this problem, we define multiplier sequences.
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Definition 1.3. A sequence (yx)3, of real numbers is called a multiplier
sequence if, whenever a real polynomial P(z) = Y, aiz" has only real zeros,
the polynomial >~} yrarz* has only real zeros. The class of multiplier sequences
is denoted by MS.

A simple example of a multiplier sequence is the following sequence: ~; =
k, k = 0,1,2,.... For an arbitrary polynomial P(z) = > }_,axz* with real
coefficients and only real zeros we have Y_1_ kayz* = 2P'(2), and this polynomial
obviously also has only real zeros.

The full description of the set of multiplier sequences was given by G. Pdlya
and J. Schur in 1914. To formulate this famous result, we need the notion of the
Laguerre-Polya class of entire functions.

Definition 1.4. A real entire function f is said to be in the Laguerre-Pdlya
class of type I, written f € L-PI, if it can be expressed in the following form

£(2) = czneP? ﬁ <1 + Z) : (1.3)

T
k=1 k

where ¢ € R, 8 > 0, z;, > 0, n is a nonnegative integer, and » -, x,;l < 00.

Note that the product on the right-hand side can be finite or empty (in the
latter case, the product equals 1).

This class is essential in the theory of entire functions since the polynomials
with only real and nonpositive zeros converge locally uniformly to these and only
these functions. The following prominent theorem provides an even stronger
result.

Theorem B (E. Laguerre and G. Pdlya, see, for example, [8, p. 42-46]
and [14, Chap. VIII, §3]).

(i) Let (Pn)22y, Pn(0) =1, be a sequence of real polynomials having only real
negative zeros which converges uniformly on the disc |z| < A, A > 0. Then
this sequence converges locally uniformly in C to an entire function from the
class L-PI.

(ii) For any f € L-PI there is a sequence of real polynomials with only real

nonpositive zeros, which converges locally uniformly to f.
The following theorem fully describes multiplier sequences.

Theorem C (G. Pélya and J. Schur, cf. [22], [21, pp. 100-124], and [17,
pp. 29-47]). Let (i), be a given real sequence. The following three statements
are equivalent.

L ()i, is a multiplier sequence.

2. For every n € N the polynomial Py(z) = > j_, (Z)ykzk has only real zeros of
the same sign.
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3. The power series ®(z) := Y po Je2" converges absolutely in the whole com-

plex plane and the entire function ®(z) or the entire function ®(—z) admits

the representation
o
nef2 T (1+ = 1.4
cz'e H < + xk), (1.4)

k=1
where c e R, >0, n € NU{0}, 0 < z, < o0, Zzozli<oo.

Tk

Strikingly, the following fact is an obvious consequence.

Corollary of Theorem C. The sequence (79,71, ---,V, 0,0,...) is a multi-
plier sequence if and only if the polynomial P(z) = ka:o %zk has only real zeros
of the same sign.

As we mentioned before, the set of polynomials with nonnegative coefficients
having only real nonpositive roots is a subset of the set T'P,,. In this paper,
we discover an analog of the multiplier sequences for the set of totally positive
sequences. To formulate the problem, we need the next definition.

Definition 1.5. Let A = (ay);2, be a nonnegative sequence. We define the
following linear convolution operator on the set of real sequences:

Aa((br)rZo) = (arbr)izo-

The following problem was posed by Alan Sokal during the inspiring AIM
workshop “Theory and applications of total positivity”, July 24-July 28, 2023
(see [24] for more details).

Problem 1.6. Describe the set of nonnegative sequences A = (ax)};2,, such
that the corresponding convolution operator A preserves the set of T P-
sequences: for every (by)32, € T Ps we have Aa((bg)72,)) € T'Puo.

For some questions connected with the problem above see [6] by A. Dyachenko
and A. Sokal (see also previous works of A. Dyachenko [4,5]).

We consider the multiplier sequence I' = ()2, and the corresponding con-
volution operator Ar((br)72,) = (kbi)?2,- As we mentioned earlier, this operator
preserves the set of finite totally positive sequences (in other words, the set of
coefficients of polynomials with nonnegative coefficients and only real zeros). But
this operator does not preserve the set of all totally positive sequences. Indeed, let

us consider the function f(z) = m =30 brz* (we have b, = 1 — #)

3—2

By theorem ASWE, (b))%, € TPx. But > 50 kb2t = 2f/(2) = %
This function has a positive zero, so the sequence of its coefficients is not a
T P-sequence.

We will denote by A the generating function of a sequence A = (ay)2, :
A(z) = Y02 a2t

Suppose that the sequence A has the property that the corresponding convo-
lution operator A preserves the set of T'Py-sequences. Then, since the constant
sequence of all ones is the T P..-sequence, by theorem ASWE, the generating
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function A(x) is a meromorphic function having the representation (1.2). The
following theorem gives the full description of the generating functions of T Po.-
preservers that have at least one pole.

Theorem 1.7. Let A = (ay)7,, be a nonnegative sequence, and suppose its
generating function is a meromorphic function with at least one pole. Then for
every (bp)iey € TPx we have Ap((bg)72,) € TPx if and only if A(z) = &,
C>0,p>0.

It remains to describe T'Py-preservers whose generating functions are entire
functions. We start with an obvious case of one or two term sequences. Let us
consider a nonnegative sequence A = (ay), such that ag > 0,a; > 0, and aj, =
0 for £ > 2. Then, obviously, for every (by)32, € T Px we have Aa((br)3,) €
TP.. The case of three term sequences is also simple. The following statement
is obvious.

Statement 1.8. Let A = (a;)32, be a nonnegative sequence, such that ay, >
0 for k =0,1,2, and a = 0 for k > 3. Then for every (by)72, € T Px we have
Aa((br),) € TPy if and only if A(z) = ag + a1z + azz? has only real (and
negative) zeros. Moreover, Aa : TPs — T Ps if and only if Ap : TPy — TPx.

The following theorem gives the description of T P -preservers whose gener-
ating functions are polynomials of degree 3.

Theorem 1.9. Let A = (ay);2, be a nonnegative sequence, such that aj >
0 for 0 < k <3, and ar, =0 for k > 4. Then for every (by)3>, € T Px we have
AA((br)2y) € TPx if and only if both polynomials 22:0 apz® and Zi:l apxk
have only real (and nonpositive) zeros. Moreover, Aa : TPs, — T Ps if and only
’Lf AA : TP3 — TPOO.

Using the methods analogous to those that were used in the proof of Theo-
rem 1.9, we can prove the following statement.

Theorem 1.10. Let A = (ay);2, be a nonnegative sequence, such that aj >
0 for 0 <k <4, and ap, =0 for k > 5. Then for every (by)72, € TPx we have
Aa (b)) € TP if and only if the three polynomials Y, _, araz®, S apzk
and o arx® have only real (and nonpositive) zeros. Moreover, Ap : TP —
TPy if and only if Ap : TPy — TP.

We will not present the proof of the above result here, since it is very cumber-
some and does not provide a complete solution to the problem of the description
of all entire T P-preservers.

The following example was given by Alan Sokal.

Example 1.11. Let f be an entire function of the form f(z) = S 72, ax2”

with ag = a1 =1, a = P k_Ql' 5 for k > 2, where (qx)72, is a sequence

2 3 g 19k
of arbitrary parameters under the following conditions: ¢ > 4 for all k. Sup-

pose that (by)72, € TP is an arbitrary sequence. For an entire function (A *
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_ k (an-1bn-1)> _ an_y br,
B)(z) = > p2oakbiz” we have (@nsbn ) (anb) = s Br-abr > 4 for all n > 2,

2 2

A1 _ : bn—l
anpan = n > 4 by our assumptlonz and o 2 1, because every T Ppyo-
sequence is, in particular, a 2-times positive sequence. Thus, using Theorem A

by Hutchinson, we get (A * B)(2) € T Pwo.

since

We formulate the following conjecture, which is consistent with Theorems 1.9,
1.10 and Example 1.11.

Conjecture 1.12. Let A = (ax)32,, be a nonnegative sequence. Then this se-
quence is a T Py -preserver, i.e. for every (by)72, € TP we have Aa ((br)7,) €
TPs if and only if for every | € NU {0} the formal power series > oo, arz® is
an entire function from the L-PI class (in particular, it has only real nonpositive
zeros).

We note that entire functions whose Taylor sections have only real zeros were
studied in various works (see, for example, [12,13]), but entire functions whose
remainders have only real zeros have been studied less (some results can be found
in the very interesting survey [18]). We mention here a way to construct such
a function. The entire function g,(z) = Z?io P a_jg, a > 1, is called the par-
tial theta-function. The survey [23] by S. O. Warnaar contains the history of
investigation of the partial theta-function and some of its main properties. The
paper [11] answers the question: for which a > 1 do the functions g, belong to
the class £-PI. In particular, in [11] it is proved that there exists a constant
Joo ~ 3.23363666 . .., such that g, € £-PI if and only if a® > ¢oo. In [15] the
following theorem is proved. Let f(2) = Y pooarz® with ag = a1 = 1, a5, =

yol k,Ql‘ 3 for kK > 2, where (qk)zoz2 is a sequence of arbitrary parameters

a4 43 Qi _19k
under the following conditions: go > g3 > q4 > --- and limy, o0 ¢ > ¢oo. Then

f € L-PI. Using this theorem we conclude that such an entire function f has all
remainders with only real zeros.

2. Proof of Theorem 1.7

Suppose at first that A(z) = 1_—%2, C > 0,8 > 0. Then we have A(z) =
S5 o CBF2F, whence for every B = (b)22,, € TP, with the generation function
B, the generation function of Aa ((b)$2,) is equal to Y e, CB*bzk = CB(B2) €
?]500. The sufficiency is proved.

Let us prove necessity. Let A = (ay)32, be a sequence such that the corre-
sponding convolution operator Aa preserves the set of T Py-sequences, and A is
not identical zero.

Definition 2.1. For a nonnegative sequence A = (a)72, with the generating
function A(z) = 332, axz"® and a nonnegative sequence B = (b;)2,, with the
generating function B(z) = > 7o, bkz* we will denote by A x B the generating
function of the sequence Aa ((bx)72,) :

(AxB)(z) =) _ agbp”.
k=0
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We mention some simple properties of the generating functions of T Pso-
preservers.

Lemma 2.2. Suppose that a sequence A = (ax)72, is such that for every
bi)il o € TP we have A ((br)32y) € TPsx. Then the following are true:

(

(1) A(2) € TPo

(2) A'(2) € TPo

(3) (4(2))" € TP

(4) ( (2) — cA(c2)) € TP for all ¢ € (0,1) U (1,00).

1

(A(z) — A(c2)) € TPo for all ¢ € (0,1) U (1,00).

d __
(6) (A(2) 1T 1a0) € TPy foralld >0
(7) For alln € NU {0} we have (A(z) — g apz¥) € TP

Proof of Lemma 2.2. (1) We choose the sequence B = (by,)72, € TPy such
that by = 1, B(z) = 1. We have (A * B)(z) = A(z) € TPo

(2) We choose the sequence B = (b;)?°, € TPy such that b, = k, B(z) =
oz We have (A« B)(z) = 24'(z) € TP

(3) We choose the sequence B = (by,)7° o € TPy such that by =k +1 ,B(z) =
ﬁ. We have (A % B)(z) = (24(2)) € TPs

ki1

(4) We choose the sequence B = (by)2 € TPy such that by =“—7,c€
(0,1) U (1,00),B(z) = (1;) =y We have (Ax B)(z) = 12 (A(2) — cA(cz)) €
TPo.

(5) We choose the sequence B = (bp)i2, € TPy such that b, = %,c €
(0,1) U (1,00), B(z) = (1;) (=) Cz) We have (A x B)(z) = 1 (A(z) — A(cz)) €
TPo.

(6) We choose the sequence B = (b;)3, € TPy such that by = 1,b, = d +
L{ior k>1,d>0,B(z) = % We have (4 x B)(z) = (1 +d)(A(z) — #‘llao) €
TPs.

(7) We choose the sequence B = (b)32, € T'Px such that by = 0 for k =
0,1,...,n,and by =1 for k >n+1, B(z) = n+1 . We have (A x B)(z) = A(z) —

S garz” € TPo. The lemma is proved. O

By Lemma 2.2(1), A(z) € TPoo, whence by theorem ASWE we have
a 1+ ARz
A(z) = Czle"? | | — 2.1
<Z) ze Pt 1 _ /Bkz, ( )

were C' >0, ¢ e NU{0}, v >0, ap >0, B > 0, > 72 (ag + Br) < 0.
By Lemma 2.2(2), A'(z) € TPx. By the assumption of Theorem 1.7, the
function A has at least one pole. Suppose A has at least 2 different positive
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poles. Since A does not have positive zeros, then A’ has a positive zero (between
poles), which is impossible. Thus, A has one (maybe, multiple) pole, and we have

[Teeq (1 + oy2) F(z)
A(z) = Czle7* == =: )
) G- (0-pm
were C' >0, ¢ e NU{0}, v >0, 00, >0, >0, Y 10 a < 0.

Since F' is an entire function with nonnegative Taylor coefficients, we have
M(r, F) = max, <, |F(z)] = F(r). If F'is not a nonnegative constant, then

limy 100 F(z) = +o0. If limg_, 4 o % = +00, then A’ has a positive zero on
(8,400), which is impossible. We conclude that
aTTr_ (1 P
Az) = Cz] [ (14 agz) . (z) ’
(1—pz)m (1—pz)m

were C' >0, NU{0}, o >0,8>0,n e NU{0}, g+n <m.
Suppose that m = 2s,s € N. By Lemma 2.2(5), (4 * B)(z) = - (A(z) —

c

A(cz)) € TPaso,c # 1. For ¢ > 1 we have (AxB)(z) = T ((1f,é’iz))23 - (1522))23) :

The function (A x B) has two different poles: é < % Since P(z) > 0 for z >
0, and ¢ > 1, we have lim (A B)(x) = 400, and 1imm_>%_0(A x B)(x) =

&= 52 +0
—00, S0 (A* B) has a root in the interval <é, %) . This contradicts the fact that
A% B €TP,. Thus, m = 2s+1,s € NU{0}.

Suppose that A(z) = (1_@% with deg P = 2s + 1. Then lim,_ 4o A(x) =
—L, L > 0. By Lemma 2.2(4), (A * B)(2) = 21 (cA(cz) — A(2)) € TPoo,c # 1.
For ¢ > 1 we have (A * B)(z) = - ((176,6],36(;)22)“1 - (kgggsﬂ) . We observe that
Ax B)(z) = 400, and limy—400(A * B)(2) = 25 (—cL + L) < 0. So,

hmxﬁ % +0 (

(A * B) has a root in the interval (%, —I—OO) . This contradicts the fact that A =

B € TPo. Thus, deg P < 2s + 1.

We have proved that A(z) = (lljgz))n, where degP < n, n =2s+1, s €
N U {0}, and P is a polynomial with nonnegative coefficients and all nonpositive
roots. It remains to prove that s = 0.

‘We observe that

— BO _ Bl e — n_liBn_l

A= st Y ey

where P(z) = By — B1(1 —B2) 4+ -4+ (=1)""1(1 — B2)" ! = By + BBy (2 — %) +
PU(L)

(2.2)

B2By(z— )24+ 8" 1B, _1(z— 1) ! whence f/B; = —2~ > 0 for all j =
B B8 J 7!
0,1,--- ,n—1.
Lemma 2.3. Let k € N, k > 2, Ay 5(2) = W and F., 5(2) = (1}7) >
0, 6 > 0. Then
(k—1)le¥?

(Akp* Fy5)(2) = m@%—%ﬁ
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where Qor_o(2) is a polynomial of degree at most 2k — 2 of the form

k—1 k-1

_ k—1-s § t—k+s+1
Q2k—2(2) = Z Z (]ivf)l — 5)1((sz 1 t)'t'zt(l — §Bz)2k 2,
=0 t=k—s—1 ’ o

vl

Proof. We have

Appl) = — [ R N 37 (o) (kD)
)= e (m) A

:(k_ll)lﬁk—l Z BIj(j = 1) (j — k + 2)z3~k+1
' Jj=k—1
! i

1

=G L DR =) 5+ 12
s=0

For a function G(z) = Y o dsz° we obtain

(Akp * G)(z) = (/.g—11)| D B (s+k—1)(s+k—2)-(s+1)ds2
s=0
1 _ (k=1)
~ (k—1) ('zk 1G(5Z>) '

Thus, for G(z) = F, 5(2) we have

(k=1)
(Ak,ﬁ * F%(g)(z) = (]4;_11)1 (e’YﬂZZk—l(l _ 5,82)_1> 1

Whence we get

1
(Ak‘ﬁ * F’Y,5)(Z) = (k’ _ 1)'
k—1 s
« (k —~ 1(k S—)'l(l' l)'l‘ (G'yBZ)(kflfs) (Zkfl)(sfl)((l _ 662)71)(1)
s=0 |= ' .
k—1 s " 1
_ k—1—s _~Bz
R <(k—1—s)!(s—Z)!u(W) ¢
(k—1)! k—sti— ! 1
“h—s+l-n° s (1—5ﬂz)l+1>
(k1) 1 1
T (1— 6Bk s:Olz; ((k 19— Dik—s+i-1)

% Zk_s+l_1(’yﬁ)k_1_s((5ﬁ)l(1 _ 55Z)k—l—1> )
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Changing the summation index [ in the second sum by k—s+1—1 = ¢, we obtain
(k —1)le752
2]
k-1 — S — S
(3 Z 7 ) A € L (1 — §3z) P12
= 1 (k—1—8)(k—1—1)t!
(k—1)le7B?
=: m@%—z(z)a

(Ag,p x Fy5)(2) =

where Qor_o is a polynomial of degree at most 2k — 2, since deg(z!(1 —
§Bz)?k—t=5=2) = 2k — s — 2. The lemma is proved. O

By (2.2) we have
A(Z) = BoAnﬁ(Z) — BlAnfl,B(z) + ...+ (—l)n_an_lALﬁ(Z),
where By > 0,B; > 0,...,B,_1 > 0.
So, using Lemma 2.3, we get
(A Fy5)(2) = Bo(An,g * Fy5)(2) — Bi(An—1,8 % Fy5)(2) + -
+ (=1)" " Bao1(Arg * Fy6)(2)

=B st - B D G

B Qas(2) = () B S0l
= i (Bl = D1 2(2) ~ B~ 2 Qa1 - 552)

4 Ba(n — 3)1Qan—o(=) (1 — 882)2 — -+ (—1)" ' By_101Q0(2)(1 — 682)"")
_. (157;;2)”1{2”_2@, (2.3)

where the degree of a polynomial Ha, 2 is at most 2n — 2.
Since F, 5(z) = % € TPy for all v > 0,0 > 0, by our assumption we

conclude that (AxF, 5) € ﬁoo, whence the polynomial Hs,,_5 has all nonnegative
coefficients and all nonpositive roots. We denote by

2n—2
Hgng thh>0

For n > 1 we have 2n — 3 > 0, and we want to evaluate ha,_3 Note that 2?73
can be found only in the terms By(n — 1)!Q2p—2(2) and Bi(n — 2)!Q2,—4(z)(1 —
dp5z) of formula (2.3). By (3.5),

n-1 n-1 n 1—s t—n—+s+1
Quna(2) =Y Z (8" "*(9B) A1 — §8z)2ts2,

-1 = — 1 =¢t)!
SOtn_S_ln 1—98)!(n—-1-1t)k!
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We observe that deg(z!(1 —662)2"17572) =2n—s—2 < 2n—3 for s > 1, so we
will search for the term 22"~3 in the summands with s = 0 and s = 1. We have
(vB)"~ 1(<5ﬁ)
Qan—2(z) = 2" (1 — §82)"
((n =112

n—2 0 n—2 1
" Wzn—2<1 ~ 8"+ (ff—ﬁ S 68

+Z Z ,75 n 1— 5(5ﬁ)t n+s+1 t(l _552)271—15—5—2‘

11— —1— )
Smnsln 1—8)!(n—1-1t)l!

Thus, gathering the terms with 22”73 in the first 3 summands of the above
formula, we obtain the term with 22773 in By(n — 1)!Qa,_2(2) :

n—1 0
o= 1)t (0L E0E 12— ooy

+ (’76)”_2(55)0(_1)n71(5/8)n71+ (Vﬁ)n_Q(éﬁ)l (_1)n2(65)n2>

(n—2)1)? n—2)(n—1)!
n—2 n—2 n—2

— 5 O 5 - 56 - 1)+ 66)

)]

By (3.5),
Q2n-4(2)(1 — 482)

1_562 Z Z ’YB n 2— S(é/@)t n+s+2 t(l_(sﬁz)Qn—t—S—4_

—_9_ — IANAl
SOtnS2n23(n2 t)it!

We observe that deg(zf(1 — 682)2"t5"%) =2n —s—4 <2n—4 for s > 1, so
we will search for the term z2"~% in the summands with s = 0 and multiply it by
(—6z). Thus, the term with 22”3 in (=B (n — 2)!Qapn_4(2)(1 — 682)) equals

G ) S ) M G O ) W e
~Bi(n—2)! )((7»7_)2)!)2) = b >Zn>_2)! —

Finally, we get

_1\n—2 n—2 n—2 _1\n n—2 n—1
hon—3 = BO( 1) Ezﬁ_) 2)[ (55) (Vﬂ - 55(71 — 2))+Bl( 1) ('(Yf)_ 2)563)

— (_1)n—2ézﬂ_)’;‘)?(5ﬁ)"—2 (BoyB — Bo(n — 2)68+B16p3).

Since n =2s+1,s € NU{0}, and 8 > 0,7 > 0,0 > 0, we obtain
signhay,—3 = —sign(ByyS — Bo(n — 2)dp — B16f) = —

for v > 0 being large enough and ¢ > 0 being small enough. We get a contradic-
tion. Thus, n = 1 and A(z) = = ﬂZ,C >0,8>0.
Theorem 1.7 is proved. (]
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3. Proof of Theorem 1.9

Let us prove the necessity. Let A = (ax)72, be a nonnegative sequence, such
that ap > 0 for 0 < k < 3, and a; = 0 for £ > 4. Suppose that the operator Ap
preserves the set of the T'Py,-sequences. Since the sequence By = (1,1,1,1,...) €
T Py, we have Aa(B1) = (ag,a1,a2,a3,0,0,0,...) € TPy, whence the polyno-
mial Zi:o ayx® has only real (and nonpositive) zeros. Further, since the sequence
By = (0,1,1,1,1,...) € TPy, we have Aa(B2) = (0,a1,a2,a3,0,0,0,...) €
TP,,, whence the polynomial 22:1 apx® has only real (and nonpositive) zeros.
The necessity is proved.

Let us prove the sufficiency. Obviously, (cx)p2, € TPs if and only if
(C)\kck)zozo € TP, for C > 0, A > 0. Thus, without loss of generality we

can assume that ag = a1 = 1. Then we can rewrite our sequence A in the form
2

(1,1,2,-1-.0,0,0,...), wherea = -4 = L p= @ _ 9

) a’ a2b? apaz az’ aiasz as’

So, by assumption both the polynomial

2 $3

x
P =1 — 4 — . 1
(z,a,b) +a:+a+a2b, a>0,0>0 (3.1)
and the polynomial
2 23
T b) = — 4+ —. 3.2
(x,a,b) x—|—a+a2b (3:2)
have only real non-positive zeros.
Note that
P(z,a,b) =1+ T(x,a,b). (3.3)
Denote by
2
Fly,a,b) = 1+ ay <1 +y+ yb) (3.4)
and by
2 y® y?
ty,b)=y+y + 5 =yl +y+ 7). (3.5)
We have
F(y,a,b) = 1+ at(y,b). (3.6)

Statement 3.1. Both P and T have only real zeros if and only if both F' and
t have only real zeros.

Proof. Statement 3.1 follows from the two identities below.
F(y,a,b) = P(ay,a,b)
and 1
t(y,b) = ET(ay,a, b). O
The following fact is obvious.

Statement 3.2. The polynomials T(x,a,b) and t(y,b) have only real zeros
if and only if b > 4.
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From now on we will assume that
b > 4. (3.7)

Consider the derivative of the polynomial F(y,a,b).

3
F'(y,a,b) =a <1 + 2y + by2> (3.8)
Denote by
b 3
D)= o[ —144/1-2 3.9
ai(b) = g ( + b> (3.9)
and
b 3
by == -1—4/1—-- 3.10
0a(b) =+ ( b) (3.10)
the roots of F'(y,a,b). It follows from (3.7) that
a(b) 1 3 1
== (- I .
=3 ( 144/1 b) > (3.11)

Since all roots of F(y,a,b) are real, as(b) < aq(b), and limy_, o~ F(y,a,b) =
400, it is clear that
F (ai(b),a,b) <0, (3.12)

and that
F (aa(b),a,b) > 0. (3.13)

The inequality (3.13) can be improved in the following way.

Statement 3.3. We have
F (ay(b),a,b) > 1. (3.14)

Proof. It follows from (3.5) that

1
t/(yv b) = EF/(yv a, b) (315)
Therefore, a1 (b) from (3.9) and ag(b) from (3.10) are roots of t'(y,b) too. By our
assumption, t(y, b) has only real roots. Since limy_,_ t(y,b) = —oo, we have
t (aa(b),b) > 0. (3.16)

By virtue of (3.6), the following is true
F(as(b),a,b) =1+ at (az(b),b) > 1.

Statement 3.3 is proved. O
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In notations introduced in (3.1) and (3.2) the sufficiency in Theorem 1.9 could
be equivalently reformulated in the following form.

Statement 3.4. Assume that both P(x,a,b) and T(xz,a,b) have only real
non-positive zeros, and G(z) = Y 50 cxa® € TPs. Then P x G € TPy.

First, consider the case when ¢y = 0. If additionally ¢; = 0, the Statement
3.4 is obvious. - -
Let ¢; # 0. Since G(x) € TP, and therefore, G(z) € TP, we conclude that

c5 —cre3 > 0. (3.17)
Since T'(z, a, b) has only real zeros we have b > 4 (see (3.7)). Thus,
bes — 4eyesz > 0. (3.18)
The last inequality means that the polynomial

P« G(z,a,b) =1z + — + T
has only real roots, that is by theorem ASWE P x G € ﬁoo. So, in this case
Statement 3.4 is true.

From now on we will assume that ¢y # 0. For G(z) = 372 cxz* we denote
by

pe=F1 keN, (3.19)
Ck
and by
Qo1 = 2L ke N (3.20)
Pk

Then we have

2 k
X X X
G(x)=c0<1+++---++.-->
b1 Dpi1p2 pip2 - Pk

2 3
T T 1 T 1
=c|l+—+|—] —+|— —5— +
b1 b1 q2 b1 q543

z\" 1
+ () T 5 4+ . (3.21)
b1 95493 = qp_19k

Denote by

vy v
gy)=1+y+>—+—5—+... + 2 T (3.22)
Q2 4543 43493 414k

so that by (3.21)
1 __
9(y) = QG(my) € TPe. (3.23)
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Statement 3.5. If g(y) =1 + Yy —+ ZZO:2 (1,;71(1?752% S T\ﬁoo, then

@2>1, ¢3>1, g3q3 —2g2q3+1>0. (3.24)

Proof. By the definition, the statement g(y) € TP., means that all minors
of the matrix

1 1 1
11 2 q43gs q§q§q4
01 1 q% rrndlREE
2
00 1 1 L (3.25)

q2

1 L L
@ qig3
11 Li>o0
¢
01 4
Statement 3.5 is proved. O

By (3.1) we have

T z\? 1 z\? 1
(P*G)(z,a,b) = ¢ (1 + o + <p1) o + (pl> (qga)2q?,b> . (3.26)

Denote by

2
Fy(y,a,b) = 1+ goay + qay® + Zi‘bly&% =1+ gay (1 Fy+ 5b> . (3.27)
3 3

By (3.26) we have

FQ(y7a7b) = (P* G)(yp1q2a7avb)' (328)

1

o

Now we can equivalently reformulate Statement 3.4 in the following way.
Statement 3.6. Assume that both F(y,a,b) and t(y,b) from (3.4) and (3.5)

have only real non-positive zeros, and g(y) from (3.22) belongs to TPs. Then
Fy(y,a,b) € TP.
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Proof. We will show that

F, (O‘l(b),a, b> <0, (3.29)
q2
and
Fy(a2(b),a,b) > 0. (3.30)
Since limg 4o Fy(z,a,b) = +o00 and lim,—, o Fy(x,a,b) = —oo, Statement 3.6

follows from (3.29) and (3.30).
Let us prove (3.29). It follows from (3.27) that

a 9 5
7a/7b :1+GOZ —|——a b + aq (b , 3.31
< ) 1( q2< 1(b)) bq%qg,( 1(b)) (3.31)
and from (3.4) that
b
Fy(c1(b),a,b) — F, <0‘1(),a, b)
q2
c@O) (1- )+ 5 @Oy (1- ). e
1 - , 26 _
By (3.11) we have
e 3) 4 55)
Fylai(b),a,0) = Fy { ——=,a,b | > a(ax(b 1——)|-2(1——
(et q( 2 (ea0) ©) 6\ ds
a(aq(b))?
- # (5¢3q3 — 6g2q3 + 1) . (3.33)
69543
Note that by the first statement of (3.24) we obtain

It follows from (3.33) and the third statement of (3.24) that

2
%@@ﬂ@_ﬂ(%ﬁmﬁzﬂig)

(3g3 — 2gaq3 +1) > 0. (3.35)
Thus, by virtue of (3.12) we conclude that

F, (a;ib),a, b> < Fy(ai(b),a,b) <0
So, (3.29) is proved.

Let us prove (3.30). It follows from (3.27) and the second statement of (3.24)
that

Fq(ag(b),a, b) =1+ q2aa2(b) (1 + Olz(b) + (a2(b))2>
qsb

> 1 + gaas(b) (1 + ag(b) + (O‘Q(bb))2> .
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By (3.4) and (3.14) we have

Fy(a2(b),a,b) > 14 g2(F(a2(b),a,b) — 1) > 1. (3.36)
So, (3.30) and thereby Statement 3.6 is proved. O
Theorem 1.9 is proved. (|
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AHaJIOr MOCJIIIOBHOCTEH MHOXKHUKIB JIJIsI MHOXKWHU
TOTAJbHO JOJATHUX IIOCJIiJOBHOCTEIA

Olga Katkova and Anna Vishnyakova

HiiicHa mMoCsIiTOBHICTD (bk)zozo HA3UBAETHCA TOTAJBHO IOJATHOIO, TKIIIO
BCl MiHOpH HecKiHUeHHOI MaTpuI ||bj,i||;)320 € meig'emanMu (TyT b = 0
st k< 0). Y i crarti Mu JI0CIIIzKyeMO npoGJIeMy OIUCY MHOYKUHHU T10-
caioBHOCTE (G )2 ), TAKIX, IO [IsT KOKHOT TOTAIBHO JI0IATHOI HOCII I0B-
mocti (by)p2, mocmimoBmicTsb (apbk)iY, TAKOXK € TOTAIBHO HOTATHOIO. Mn
OTPUMYEMO OIHC TAaKUX IOCJimOBHOCTEH (ar)7>, y IOBOX BHIANKAX: KOJII
TBipHA (PYHKITS MTOCTITOBHOCTI Z?;O apz* Mae mpuHAMEHI OXHH mOIIOC, a
TaKOXkK KOJIM IIOCIIJOBHICTE ()72, Ma€ He Oiblle YOTUPBOX HEHYIBHOBUX
YJIEHIB.

Kirro9oBi cioBa: TOTaIbHO JOJATHA MOCTIIOBHICTH, KPATHO JOJATHA II0-
CJIJIOBHICTH, MHOTOYJIEHU 3 yCIMa JIIICHUMU KOPEHSAMU, IMOCJIJIOBHICTH MHO-
JKHUKIB, Kyac Jlareppa—Iloia
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