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Arithmetic of a certain convolution

semigroup of probability distributions on the

group R× Z(2)

Gennadiy Feldman

We consider a certain convolution semigroup Θ of probability distribu-
tions on the group R×Z(2), where R is the group of real numbers and Z(2)
is the additive group of the integers modulo 2. This semigroup appeared
in connection with the study of a characterization problem of mathemat-
ical statistics on a-adic solenoids containing an element of order 2. We
answer the questions that arise in the study of arithmetic of the semigroup
Θ. Namely, we describe the class of infinitely divisible distributions, the
class of indecomposable distributions, and the class of distributions which
have no indecomposable factors.
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1. Introduction

A number of works are devoted to arithmetic of various semigroups of prob-
ability distributions (see, e.g., [6, 8, 9]). The purpose of this note is to study the
arithmetic of a certain semigroup of probability distributions on the direct prod-
uct of the group of real numbers and the additive group of the integers modulo
2. This semigroup appears in connection with the study of a characterization
problem of mathematical statistics on a-adic solenoids containing an element of
order 2 ([1], see also [3, §11]).

Let X be a locally compact Abelian group. Denote by Y the character group
of the group X and by (x, y) the value of a character y ∈ Y at an element x ∈
X. Denote by M1(X) the convolution semigroup of all distributions (probability
measures) on the group X. Let µ ∈ M1(X). Denote by

µ̂(y) =

∫
X

(x, y)dµ(x), y ∈ Y,

the characteristic function of the distribution µ. The characteristic function of a
signed measure on the group X is defined in the same way. Denote by mK the
Haar distribution on a compact subgroup K of the group X.
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Recall the following definitions. Let µ ∈ M1(X). A distribution µ1 ∈ M1(X)
is called a factor of µ if there is a distribution µ2 ∈ M1(X) such that the equality

µ = µ1 ∗ µ2 (1.1)

holds. A distribution with support only at a single point x ∈ X is called degen-
erate and is denoted by Ex. A nondegenerate distribution µ ∈ M1(X) is called
indecomposable if it has only degenerate distributions or shifts µ as factors. A
distribution µ ∈ M1(X) is called decomposable if there are nondegenerate dis-
tributions µ1 and µ2 such that (1.1) holds. A distribution µ ∈ M1(X) is said to
be infinitely divisible if, for each natural n, there are a distribution µn ∈ M1(X)
and an element xn ∈ X such that µ = µ∗nn ∗ Exn . We note that this definition
is slightly different from the classical one in the case of the group of real num-
bers. The shift by the element xn is necessary, in particular, for all degenerate
distributions to be infinitely divisible.

Denote by R the group of real numbers and by Z(2) = {0, 1} the additive
group of the integers modulo 2. Consider the group R × Z(2). Denote by (t, k),
where t ∈ R, k ∈ Z(2), its elements. The character group of the group R×Z(2) is
topologically isomorphic to the group R×Z(2). Denote by (s, l), s ∈ R, l ∈ Z(2),
elements of the character group of the group R× Z(2). The value of a character
(s, l) at an element (t, k) ∈ R× Z(2) is defined by the formula

((t, k), (s, l)) = eits(−1)kl.

Let µ ∈ M1(R × Z(2)) and assume that the support of µ is contained in the
subgroup Z(2), i.e., µ{(0, 0)} = a ≥ 0, µ{(0, 1)} = b ≥ 0, where a+ b = 1. Then
the characteristic function µ̂(s, l) is of the form

µ̂(s, l) =

{
1 if s ∈ R, l = 0,

κ if s ∈ R, l = 1,
(1.2)

where κ = a−b. In particular, the characteristic function of the Haar distribution
mZ(2), is of the form

m̂Z(2)(s, l) =

{
1 if s ∈ R, l = 0,

0 if s ∈ R, l = 1.
(1.3)

Denote by Γ(R) the set of Gaussian distributions on the group R.

2. Class Θ

Let µ be a distribution on the group R×Z(2) such that µ ∈ Γ(R) ∗M1(Z(2)),
i.e., µ = γ ∗ ω, where γ ∈ Γ(R), ω ∈ M1(Z(2)), and the groups R and Z(2)
are considered as subgroups of the group R × Z(2). It is easy to see that the
characteristic function µ̂(s, l) is of the form

µ̂(s, l) =

{
exp{−σs2 + iβs} if s ∈ R, l = 0,

κ exp{−σs2 + iβs} if s ∈ R, l = 1,
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where σ ≥ 0, β and κ are real numbers, |κ| ≤ 1. Let us introduce a class of
distributions on the group R×Z(2) which is much broader than the class Γ(R) ∗
M1(Z(2)). For this purpose we need the following assertion proved in [1], see
also [3, Lemma 11.1]. For the sake of completeness, we present here its proof.

Lemma 2.1. Consider the group R × Z(2). Let f(s, l) be a function on the
character group of the group R× Z(2) of the form

f(s, l) =

{
exp{−σs2 + iβs} if s ∈ R, l = 0,

κ exp{−σ′s2 + iβ′s} if s ∈ R, l = 1,
(2.1)

where σ ≥ 0, σ′ ≥ 0 and β, β′, κ are real numbers. Then f(s, l) is the character-
istic function of a signed measure µ on the group R× Z(2). The signed measure
µ is a measure if and only if either

0 < σ′ < σ, 0 < |κ| ≤
√
σ′

σ
exp

{
− (β − β′)2

4(σ − σ′)

}
, (2.2)

or

σ = σ′, β = β′, |κ| ≤ 1. (2.3)

Moreover, if (2.3) is fulfilled, then µ ∈ Γ(R) ∗M1(Z(2)).

Proof. Let κ = 0. Then f(s, l) is the characteristic function of the distribu-
tion µ of the form µ = γ ∗mZ(2), where γ ∈ Γ(R). Therefore, we can assume that
κ 6= 0. Multiplying, if necessary, the function f(s, l) by a suitable character of
the group Z(2), we can suppose, without loss of generality, that κ > 0. Take a
number a > 0 and denote by γa a Gaussian distribution on the group R with the
density

ρa(t) =
1

2
√
πa

exp

{
− t

2

4a

}
, t ∈ R. (2.4)

It is obvious that

γ̂a(s) = exp{−as2}, s ∈ R.

Let µ be the signed measure on the group R × Z(2) which is defined by the
following way

µ(B × {k}) =

{
1
2(γσ ∗ Eβ + κγσ′ ∗ Eβ′)(B) if k = 0,
1
2(γσ ∗ Eβ − κγσ′ ∗ Eβ′)(B) if k = 1,

where B is a Borel subset of R. Put

λ0 =
1

2
(γσ ∗ Eβ + κγσ′ ∗ Eβ′), λ1 =

1

2
(γσ ∗ Eβ − κγσ′ ∗ Eβ′).

Taking into account that

λ̂0(s) + λ̂1(s) = γ̂σ(s)eiβs
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and
λ̂0(s)− λ̂1(s) = κγ̂σ′(s)eiβ

′s,

we have

µ̂(s, l) =

∫
R×Z(2)

eits(−1)kldµ(t, k) =

∫
R×{0}

eitsdµ(t, 0)

+

∫
R×{1}

eits(−1)ldµ(t, 1) = f(s, l).

Thus, f(s, l) is the characteristic function of the signed measure µ. Moreover, the
signed measure µ is a measure if and only if the signed measure λ1 is a measure.
It is obvious that if the signed measure λ1 is a measure, then either σ > 0 and
σ′ > 0 or σ = σ′ = 0. It is clear that if σ = σ′ = 0, then the signed measure µ is
a measure if and only if β = β′ and κ ≤ 1. In this case the lemma is proved.

Let σ > 0 and σ′ > 0. In view of (2.4), the signed measure λ1 is a measure if
and only if the equality

1

2
√
πσ

exp

{
−(t− β)2

4σ

}
− κ

2
√
πσ′

exp

{
−(t− β′)2

4σ′

}
≥ 0

holds for all t ∈ R. This inequality is equivalent to the following

κ ≤
√
σ′

σ
exp

{
−(t− β)2

4σ
+

(t− β′)2

4σ′

}
, t ∈ R. (2.5)

Suppose that σ = σ′. Then it follows from (2.5) that β = β′ and κ ≤ 1.
Let σ 6= σ′. Inasmuch as κ > 0, we have σ′ < σ. The minimum of the function

on the right side of inequality (2.5) is reached at the point

t0 =
σβ′ − σ′β
σ − σ′

,

and it is equal to √
σ′

σ
exp

{
− (β − β′)2

4(σ − σ′)

}
.

It follows from the above that the signed measure λ1, and hence the signed
measure µ is a measure if and only if either (2.2) or (2.3) is fulfilled. It is also
obvious that if (2.3) holds, then µ ∈ Γ(R) ∗M1(Z(2)).

Definition 2.2. We say that a distribution µ on the group R×Z(2) belongs
to the class Θ if µ̂(s, l) = f(s, l), where the function f(s, l) is represented in the
form (2.1) and either (2.2) or (2.3) holds.

Since the product of characteristic functions corresponds to the convolution
of distributions, it follows from the Lemma 2.1 that the class Θ is a convolution
semigroup. The purpose of this note is to answer the main questions that arise
in the study of the arithmetic of the semigroup Θ. Namely, we describe in Θ the
class of infinitely divisible distributions, the class of indecomposable distributions,
and the class of distributions which have no indecomposable factors.
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Remark 2.3. Heyde’s theorem on characterization of the Gaussian distribu-
tion on the real line by the symmetry of the conditional distribution of one linear
form of independent random variables given another is well known ([5, § 13.4.1]).
The class of distributions Θ arises in connection with the study of an analogue
of this theorem for the group R× Z(2).

Let a be a topological automorphism of the group R × Z(2). It is obvious
that a is of the form a(t, k) = (cat, k), where ca ∈ R, ca 6= 0. We identify a and
ca, i.e., we write a(t, k) = (at, k) and assume that a ∈ R, a 6= 0. The following
group analogue of Heyde’s theorem for the group R×Z(2) was proved in [2], see
also [3, Theorem 11.6]).

Consider the group R × Z(2) and let aj , bj , j = 1, 2, . . . , n, n ≥ 2, be topo-
logical automorphisms of R × Z(2) satisfying the conditions bia

−1
i + bja

−1
j 6= 0

for all i, j. Let ξj be independent random variables with values in the group R×
Z(2) and distributions µj with nonvanishing characteristic functions. If the con-
ditional distribution of the linear form L2 = b1ξ1 + · · ·+ bnξn given L1 = a1ξ1 +
· · ·+ anξn is symmetric, then all distributions µj belong to the class Θ.

The class of distributions Θ also arises in connection with the study of an
analogue of Heyde’s theorem on a-adic solenoids containing an element of order
2 ([1], see also [3, Theorem 11.20]). Note also that some problems related to
independent random variables with values in the group R × Z(2) were studied
in [4, 10,11].

3. Arithmetic of the semigroup Θ

The proof of the main theorem is based on the following lemma.

Lemma 3.1. Let µ ∈ Θ and µ̂(s, l) = f(s, l), where the function f(s, l) is
represented in the form (2.1) and

0 < σ′ < σ, |κ| =
√
σ′

σ
exp

{
− (β − β′)2

4(σ − σ′)

}
(3.1)

is fulfilled. Then µ is an indecomposable distribution.

Proof. We break the proof into several steps.

1 Assume µ = µ1 ∗ µ2, where µj ∈ M1(R × Z(2)) and µj are nondegenerate
distributions. We have

µ̂(s, l) = µ̂1(s, l)µ̂2(s, l), s ∈ R, l ∈ Z(2). (3.2)

Substituting l = 0 in (3.2), we obtain

exp{−σs2 + iβs} = µ̂1(s, 0)µ̂2(s, 0), s ∈ R.

By Cramér’s theorem on decomposition of the Gaussian distribution on the real
line,

µ̂j(s, 0) = exp{−σjs2 + iβjs}, s ∈ R,
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where σj ≥ 0, βj ∈ R, j = 1, 2. It follows from definition of the characteristic
function that µ̂j(s, 1) is an entire function and

max
s∈C, |s|≤r

|µ̂j(s, 1)| ≤ max
s∈C, |s|≤r

| exp{−σjs2 + iβjs}|. (3.3)

It follows from (3.2) that the functions µ̂j(s, 1) do not vanish in the complex plane
C. In view of (3.3), the entire functions µ̂j(s, 1) are of at most order 2 and type

σj . Taking into account that µ̂j(−s, 1) = µ̂j(s, 1), by the Hadamard theorem on
the representation of an entire function of finite order and Lemma 2.1, we obtain
that the characteristic functions µ̂j(s, l) can be written in the form

µ̂j(s, l) =

{
exp{−σjs2 + iβjs} if s ∈ R, l = 0,

κj exp{−σ′js2 + iβ′js} if s ∈ R, l = 1,
(3.4)

where either

0 < σ′j < σj , 0 < |κj | ≤

√
σ′j
σj

exp

{
−

(βj − β′j)2

4(σj − σ′j)

}
, j = 1, 2,

or

0 ≤ σj = σ′j , βj = β′j , 0 < |κj | ≤ 1, j = 1, 2.

Moreover, µj ∈ Θ.

Note that in this discussion, we used only that µ ∈ Θ, i.e., µ̂(s, l) = f(s, l),
where the function f(s, l) is represented in the form (2.1) and either (2.2) or (2.3)
holds and the fact that the characteristic function µ̂(s, l) does not vanish, i.e., in
(2.1) κ 6= 0.

2. It follows from (2.1) and (3.4) that

κ = κ1κ2, σ = σ1 + σ2, σ′ = σ′1 + σ′2, β = β1 + β2, β′ = β′1 + β′2. (3.5)

Since 0 < σ′ < σ, it follows from (3.5) that for at least one j, say for j = 1, the
inequality σ′1 < σ1 holds, i.e., µ1 /∈ Γ(R) ∗M1(Z(2)). Hence the inequalities

0 < σ′1 < σ1, 0 < |κ1| ≤

√
σ′1
σ1

exp

{
− (β1 − β′1)2

4(σ1 − σ′1)

}
(3.6)

are fulfilled.

There are two possibilities for the distribution µ2: either µ2 ∈ Γ(R)∗M1(Z(2))
or µ2 /∈ Γ(R) ∗M1(Z(2)).

3. Let µ2 ∈ Γ(R) ∗M1(Z(2)). Then we have 0 < σ2 = σ′2, β2 = β′2 and 0 <
|κ2| ≤ 1. Moreover, the equality κ = κ1κ2 implies that |κ| ≤ |κ1|. In view of
(3.1) and (3.6), it follows from this that

|κ| =
√
σ′

σ
exp

{
− (β − β′)2

4(σ − σ′)

}
=

√
σ′1 + σ2
σ1 + σ2

exp

{
− (β1 − β′1)2

4(σ1 − σ′1)

}
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≤ |κ1| ≤

√
σ′1
σ1

exp

{
− (β1 − β′1)2

4(σ1 − σ′1)

}
.

Hence, √
σ′1 + σ2
σ1 + σ2

≤

√
σ′1
σ1
,

which is obviously impossible because 0 < σ′1 < σ1 and σ2 > 0.

4. Let µ2 /∈ Γ(R) ∗M1(Z(2)). Then the inequalities

0 < σ′2 < σ2, 0 < |κ2| ≤

√
σ′2
σ2

exp

{
− (β2 − β′2)2

4(σ2 − σ′2)

}
(3.7)

hold. Taking into account (3.5)–(3.7), we obtain

|κ| =
√
σ′

σ
exp

{
− (β − β′)2

4(σ − σ′)

}
=

√
σ′1 + σ′2
σ1 + σ2

exp

{
− (β1 + β2 − β′1 − β′2)2

4(σ1 + σ2 − σ′1 − σ′2)

}

= |κ1κ2| ≤

√
σ′1
σ1

exp

{
− (β1 − β′1)2

4(σ1 − σ′1)

}√
σ′2
σ2

exp

{
− (β2 − β′2)2

4(σ2 − σ′2)

}
.

Hence,√
σ′1 + σ′2
σ1 + σ2

exp

{
− (β1 + β2 − β′1 − β′2)2

4(σ1 + σ2 − σ′1 − σ′2)

}

≤

√
σ′1
σ1

exp

{
− (β1 − β′1)2

4(σ1 − σ′1)

}√
σ′2
σ2

exp

{
− (β2 − β′2)2

4(σ2 − σ′2)

}
. (3.8)

It is easy to see that the inequalities 0 < σ′1 < σ1 and 0 < σ′2 < σ2 imply the
inequality √

σ′1
σ1

√
σ′2
σ2

<

√
σ′1 + σ′2
σ1 + σ2

. (3.9)

Note that if a, b ∈ R, c > 0, d > 0, then the inequality

(a+ b)2

c+ d
≤ a2

c
+
b2

d
(3.10)

is fulfilled. Substituting a = β1 − β′1, b = β2 − β′2, c = σ1 − σ′1, d = σ2 − σ′2 in
(3.10), we get from the obtained inequality

exp

{
− (β1 − β′1)2

4(σ1 − σ′1)

}
exp

{
− (β2 − β′2)2

4(σ2 − σ′2)

}
≤ exp

{
− (β1 + β2 − β′1 − β′2)2

4(σ1 + σ2 − σ′1 − σ′2)

}
. (3.11)
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Note that the inequality (3.8) contradicts the inequality that results when we
multiply (3.9) and (3.11).

We assumed that both distributions µ1 and µ2 are nondegenerate and came
to a contradiction. Thus, at least one of the distributions µj is degenerate, i.e.,
µ is an indecomposable distribution.

Remark 3.2. Consider the group R×Z(2) and let µ ∈ Θ. If µ is an infinitely
divisible distribution in the semigroup M1(R × Z(2)), then µ is an infinitely
divisible distribution in the semigroup Θ, i.e., distributions µn in the definition
of an infinitely divisible distribution belong to the semigroup Θ. Indeed, if the
characteristic function of µ does not vanish, it follows from the proof of item 1 of
Lemma 3.1. If the characteristic function of µ vanishes, then µ can be represented
in the form µ = γ∗mZ(2), where γ ∈ Γ(R). In this case, the statement is obviously
true.

Note that if the characteristic function of µ vanishes, then µ is decomposable
in the semigroup Θ. Hence if µ is indecomposable in Θ, then the characteristic
function of µ does not vanish. Then it follows from the proof of item 1 of Lemma
3.1 that µ is also indecomposable in the semigroup M1(R× Z(2)).

As proven in [7, Chapter IV, Theorem 11.3], the following assertion holds.

Let X be a second countable locally compact Abelian group and µ ∈ M1(X).
Assume that µ has no factors of the form mK , where K is a nonzero compact
subgroup of the group X. Then the distribution µ can be represented as a
convolution of a finite or countable number of indecomposable distributions and
a distribution that has no indecomposable factors.

Using Lemma 3.1, for distributions belonging to the semigroup Θ this asser-
tion can be considerably strengthened. Note that if µ ∈ Θ and the Haar distri-
bution mZ(2) is not a factor of µ, then the characteristic function µ̂(s, l) does not
vanish. Note also that by the classical Cramér theorem, Gaussian distributions
on the group R have no indecomposable factors.

Proposition 3.3. Let µ ∈ Θ and µ be a nondegenerate distribution. Then
either µ ∈ Γ(R) ∗M1(Z(2)), or µ is an indecomposable distribution, or µ = ν ∗
γ, where ν ∈ Θ, ν is an indecomposable distribution, and γ is a nondegenerate
Gaussian distribution on the group R.

Proof. Let µ /∈ Γ(R) ∗M1(Z(2)). Then µ̂(s, l) = f(s, l), where the function
f(s, l) is represented in the form (2.1) and inequalities (2.2) hold. If (3.1) is
fulfilled, then by Lemma 3.1, µ is an indecomposable distribution. Assume that
(3.1) is false. Then the inequalities

0 < |κ| <
√
σ′

σ
exp

{
− (β − β′)2

4(σ − σ′)

}
(3.12)

hold. Put

b = exp

{
− (β − β′)2

4(σ − σ′)

}
. (3.13)
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We have

0 < |κ| <
√
σ′

σ
b. (3.14)

Put

a =
σκ2 − σ′b2

κ2 − b2
. (3.15)

It follows from (3.14) that 0 < a < σ′, and (3.15) implies that

|κ| =
√
σ′ − a
σ − a

b. (3.16)

By Lemma 2.1, we get from (3.13) and (3.16) that there is a distribution ν ∈ Θ
with the characteristic function of the form

ν̂(s, l) =

{
exp{−(σ − a)s2 + iβs} if s ∈ R, l = 0,

κ exp{−(σ′ − a)s2 + iβ′s} if s ∈ R, l = 1.
(3.17)

In view of (3.13) and (3.16), by Lemma 3.1, ν is an indecomposable distribution.
Denote by γ the Gaussian distribution on the group R with the characteristic

function γ̂(s) = exp{−as2}. If we consider γ as a distribution on the group R×
Z(2), then

γ̂(s, l) =

{
exp{−as2} if s ∈ R, l = 0,

exp{−as2} if s ∈ R, l = 1.
(3.18)

In view of µ̂(s, l) = f(s, l), where the function f(s, l) is represented in the form
(2.1), it follows from (3.17) and (3.18) that

µ̂(s, l) = ν̂(s, l)γ̂(s, l), s ∈ R, l ∈ Z(2).

Hence, µ = ν ∗ γ.
It is easy to see that γ is the maximal, in the natural sense, Gaussian factor

of the distribution µ.

Corollary 3.4. Let µ ∈ Θ and µ /∈ Γ(R) ∗M1(Z(2)). Then the distribution
µ has an indecomposable factor.

We will complement Proposition 3.3 with the following assertion.

Proposition 3.5. Let µ ∈ Θ, µ /∈ Γ(R) ∗M1(Z(2)), and µ be a decomposable
distribution. Then for each natural n there are indecomposable distributions µj ∈
Θ, j = 1, 2, . . . , n, and a nondegenerate Gaussian distribution γn on the group R
such that

µ = µ1 ∗ µ2 ∗ · · · ∗ µn ∗ γn.

Proof. In view of Proposition 3.3, it suffices to prove that the distribution
µ can be represented in the form µ = µ1 ∗ ν, where µ1, ν ∈ Θ, µ1 is an in-
decomposable distribution, and ν /∈ Γ(R) ∗ M1(Z(2)) and ν is a decomposable
distribution.
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The condition of the proposition implies that µ̂(s, l) = f(s, l), where the
function f(s, l) is represented in the form (2.1) and inequalities (3.12) hold. Take

numbers σ1 and σ′1 such that 0 < σ′1 < σ1. Put κ1 =
√

σ′
1
σ1

. By Lemma 2.1, there
is a distribution µ1 ∈ Θ such that its characteristic function is of the form

µ̂1(s, l) =

{
exp{−σ1s2} if s ∈ R, l = 0,

κ1 exp{−σ′1s2} if s ∈ R, l = 1.

By Lemma 3.1, µ1 is an indecomposable distribution.
Put τ = σ − σ1, τ ′ = σ′ − σ′1, ς = κ/κ1. We can assume that σ1 is arbitrarily

small and κ1 is arbitrarily close to 1. Then (3.12) implies that the inequalities

0 < |ς| <
√
τ ′

τ
exp

{
−(β − β′)2

4(τ − τ ′)

}
(3.19)

are valid. By Lemma 2.1, it follows from this that there is a distribution ν ∈ Θ
with the characteristic function

ν̂(s, l) =

{
exp{−τs2 + iβs} if s ∈ R, l = 0,

ς exp{−τ ′s2 + iβ′s} if s ∈ R, l = 1.
(3.20)

Since
µ̂(s, l) = µ̂1(s, l)ν̂(s, l), s ∈ R, l ∈ Z(2),

then µ = µ1 ∗ ν. It is clear that ν /∈ Γ(R) ∗M1(Z(2)). Since (3.19) and (3.20)
hold, the above reasoning shows that ν is a decomposable distribution.

Remark 3.6. Let a distribution µ on the group R× Z(2) belong to the semi-
group Θ, and let µ̂(s, l) = f(s, l), where the function f(s, l) is represented in the
form (2.1), and the inequalities 0 < σ′ < σ and (3.12) are fulfilled. Using Lemma
3.1 and representation (1.2) of the characteristic functions of distributions be-
longing to the semigroup M1(Z(2)), it is easy to check that the distribution µ can
be represented as µ = λ∗π, where λ ∈ Θ and λ is an indecomposable distribution,
and π ∈ M1(Z(2)).

Note that any distribution belonging to the semigroup M1(Z(2)) has no inde-
composable factors.

Let us now prove the main result of the note. Denote by I(Θ) the class of
infinitely divisible distributions, by I0(Θ) the class of distributions which have no
indecomposable factors, and by Ind(Θ) the class of indecomposable distributions
in the semigroup Θ.

Theorem 3.7. The following statements are true:

1. I(Θ) = Γ(R) ∗M1(Z(2));

2. µ ∈ I0(Θ) if and only if µ ∈ Γ(R) ∗M1(Z(2)) and µ can not be represented
as µ = γ ∗mZ(2), where γ is a nondegenerate Gaussian distribution on the
group R;
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3. µ ∈ Ind(Θ) if and only if the characteristic function µ̂(s, l) is represented in
the form

µ̂(s, l) =

{
exp{−σs2 + iβs} if s ∈ R, l = 0,

κ exp{−σ′s2 + iβ′s} if s ∈ R, l = 1,

and (3.1) is fulfilled.

Proof. 1. It is easy to see that all distributions belonging to the semigroup
M1(Z(2)) are infinitely divisible. Therefore, if µ ∈ Γ(R) ∗M1(Z(2)), then µ is an
infinitely divisible distribution. Assume that µ /∈ Γ(R)∗M1(Z(2)). Then µ̂(s, l) =
f(s, l), where the function f(s, l) is represented in the form (2.1) and inequalities
(2.2) are satisfied. Suppose that µ is an infinitely divisible distribution. Then for
each natural n there is a distribution µn ∈ Θ and an element (tn, kn) ∈ R×Z(2)
such that µ = µ∗nn ∗ E(tn,kn). Hence,

µ̂(s, l) = (µ̂n(s, l))neitns(−1)knl, s ∈ R, l ∈ Z(2).

This implies that |µ̂(s, l)| = |µ̂n(s, l)|n. Since µn ∈ Θ, we have

|µ̂n(s, l)| =

exp{−σ
ns

2} if s ∈ R, l = 0,

|κ|
1
n exp{−σ

′

n
s2} if s ∈ R, l = 1,

and the inequality

|κ|
1
n ≤

√
σ′

σ

holds. Since n is an arbitrary natural number, we get a contradiction. Therefore,
µ is not an infinitely divisible distribution.

Thus, the class of infinitely divisible distributions in the semigroup Θ coincides
with the class Γ(R) ∗M1(Z(2)).

2. Let µ ∈ Γ(R) ∗ M1(Z(2)) and µ is not represented in the form µ = γ ∗
mZ(2), where γ is a nondegenerate Gaussian distribution on the group R. Two
cases are possible.

2a. The characteristic function µ̂(s, l) does not vanish. It follows from the
proof of item 1 of Lemma 3.1 and (3.5) that all factors of µ also belong to the
class Γ(R) ∗M1(Z(2)), i.e., µ has no indecomposable factors.

2b. The characteristic function µ̂(s, l) vanishes. Then µ = Eb ∗mZ(2), where
b ∈ R. It is obvious that µ has no indecomposable factors.

Let µ = γ ∗mZ(2), where γ is a nondegenerate Gaussian distribution on the
group R. Then the characteristic function µ̂(s, l) is of the form

µ̂(s, l) =

{
exp{−as2 + ibs} if s ∈ R, l = 0,

0 if s ∈ R, l = 1,

where a > 0, b ∈ R. It is easy to see that µ has a factor µ1 such that µ̂1(s, l) =
f(s, l), where the function f(s, l) is represented in the form (2.1) and (3.1) is
satisfied. By Lemma 3.1, µ1 is an indecomposable distribution.
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If µ /∈ Γ(R)∗M1(Z(2)), then by Corollary 3.4, µ has an indecomposable factor.

3. Obviously, all nondegenerate distributions belonging to the class Γ(R) ∗
M1(Z(2)) are decomposable. Let µ be a nondegenerate distribution and let µ /∈
Γ(R)∗M1(Z(2)). Then µ̂(s, l) = f(s, l), where the function f(s, l) is represented in
the form (2.1) and inequalities (2.2) are satisfied. It follows from (2.2) that either
(3.1) is true or inequalities (3.12) hold. As follows from the proof of Proposition
3.3, if inequalities (3.12) hold, then the distribution µ is decomposable. Thus,
the validity of (3.1), according to Lemma 3.1, is not only a sufficient condition
for the distribution µ to be indecomposable, but also a necessary one.
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Арифметика однiєї напiвгрупи ймовiрнiсних
розподiлiв на групi R× Z(2)

Gennadiy Feldman

Ми розглядаємо деяку напiвгрупу Θ ймовiрнiсних розподiлiв вiдно-
сно згортки на групi R×Z(2), де R – група дiйсних чисел, а Z(2) — група
класiв лишкiв за модулем 2. Ця напiвгрупа виникає в зв’язку з однiєю
характерiзацiйною задачею математичної статистики на a-адичних со-
леноїдах, якi мiстять елемент порядку 2. Ми даємо вiдповiдi на природнi
питання, що виникають при вивченнi арифметики напiвгрупи Θ. А са-
ме, даємо повний опис класу безмежно подiльних розподiлiв, класу не-
розкладних розподiлiв та класу розподiлiв, якi не мають нерозкладних
дiльникiв.

Ключовi слова: безмежно подiльний розподiл, нерозкладний розпо-
дiл, напiвгрупа розподiлiв
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