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Arithmetic of a certain convolution
semigroup of probability distributions on the
group R x Z(2)

Gennadiy Feldman

We consider a certain convolution semigroup © of probability distribu-
tions on the group R X Z(2), where R is the group of real numbers and Z(2)
is the additive group of the integers modulo 2. This semigroup appeared
in connection with the study of a characterization problem of mathemat-
ical statistics on a-adic solenoids containing an element of order 2. We
answer the questions that arise in the study of arithmetic of the semigroup
©. Namely, we describe the class of infinitely divisible distributions, the
class of indecomposable distributions, and the class of distributions which
have no indecomposable factors.
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1. Introduction

A number of works are devoted to arithmetic of various semigroups of prob-
ability distributions (see, e.g., [6,8,9]). The purpose of this note is to study the
arithmetic of a certain semigroup of probability distributions on the direct prod-
uct of the group of real numbers and the additive group of the integers modulo
2. This semigroup appears in connection with the study of a characterization
problem of mathematical statistics on a-adic solenoids containing an element of
order 2 ([1], see also [3, §11]).

Let X be a locally compact Abelian group. Denote by Y the character group
of the group X and by (x,y) the value of a character y € Y at an element = €
X. Denote by M!(X) the convolution semigroup of all distributions (probability
measures) on the group X. Let x4 € M!(X). Denote by

Aly) = /X (. 9)du(z), yeY,

the characteristic function of the distribution p. The characteristic function of a
signed measure on the group X is defined in the same way. Denote by myg the
Haar distribution on a compact subgroup K of the group X.
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Recall the following definitions. Let p € M!(X). A distribution p; € M!(X)
is called a factor of y if there is a distribution ps € M!(X) such that the equality

L= 11 % po (1.1)

holds. A distribution with support only at a single point x € X is called degen-
erate and is denoted by E,. A nondegenerate distribution y € M!(X) is called
indecomposable if it has only degenerate distributions or shifts u as factors. A
distribution p € M!'(X) is called decomposable if there are nondegenerate dis-
tributions p1 and po such that (1.1) holds. A distribution u € M!(X) is said to
be infinitely divisible if, for each natural n, there are a distribution s, € M*(X)
and an element z, € X such that p = p* * E;, . We note that this definition
is slightly different from the classical one in the case of the group of real num-
bers. The shift by the element x, is necessary, in particular, for all degenerate
distributions to be infinitely divisible.

Denote by R the group of real numbers and by Z(2) = {0,1} the additive
group of the integers modulo 2. Consider the group R x Z(2). Denote by (¢, k),
where t € R, k € Z(2), its elements. The character group of the group R x Z(2) is
topologically isomorphic to the group R x Z(2). Denote by (s,1), s € R, I € Z(2),
elements of the character group of the group R x Z(2). The value of a character
(s,1) at an element (¢, k) € R x Z(2) is defined by the formula

((t, k), (s,1)) = e™(—1)".

Let u € MY(R x Z(2)) and assume that the support of 4 is contained in the
subgroup Z(2), i.e., u{(0,0)} =a >0, u{(0,1)} =b > 0, where a + b = 1. Then
the characteristic function fi(s,!) is of the form

1 ifseR, 1=0
(s, 1) = ’ ’ 1.2
i) {m ifseR, =1, t2)

where kK = a—b. In particular, the characteristic function of the Haar distribution
mz,2), is of the form

R 1 ifseR, =0,
mm)(s’l):{o ifseR, [=1. (1.3)

Denote by I'(R) the set of Gaussian distributions on the group R.

2. Class ©

Let 11 be a distribution on the group R x Z(2) such that p € T'(R) * M*(Z(2)),
ie, p = v*w, where v € I'(R), w € M}(Z(2)), and the groups R and Z(2)
are considered as subgroups of the group R x Z(2). It is easy to see that the
characteristic function fi(s,[) is of the form

1(s.1) exp{—os® +iBs} ifscR, =0,
s,1) =
a kexp{—os?+ifs} ifsc€R, =1,
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where o > 0, § and k are real numbers, |k| < 1. Let us introduce a class of
distributions on the group R x Z(2) which is much broader than the class I'(R)
M!(Z(2)). For this purpose we need the following assertion proved in [1], see
also [3, Lemma 11.1]. For the sake of completeness, we present here its proof.

Lemma 2.1. Consider the group R x Z(2). Let f(s,l) be a function on the
character group of the group R x Z(2) of the form

(2.1)

£s.0) exp{—os? +iBs} ifseR, [ =0,
s,1) =
kexp{—od's? +if's} ifseR, =1,

where o >0, o' >0 and B8, ', k are real numbers. Then f(s,l) is the character-
istic function of a signed measure j on the group R x Z(2). The signed measure
w is a measure if and only if either

0<o <o, 0<|H|<\/§GXP{—M}, (2.2)

o=o, p=f, |k<L (23)
Moreover, if (2.3) is fulfilled, then u € T'(R) * M (Z(2)).

or

Proof. Let k = 0. Then f(s,1) is the characteristic function of the distribu-
tion p of the form p = v *my ), where v € I'(R). Therefore, we can assume that
k # 0. Multiplying, if necessary, the function f(s,l) by a suitable character of
the group Z(2), we can suppose, without loss of generality, that x > 0. Take a
number a > 0 and denote by v, a Gaussian distribution on the group R with the
density

2
pa(t):%exp{—ia}, teR. (2.4)

It is obvious that
Ya(s) = exp{—as®}, seR.

Let p be the signed measure on the group R x Z(2) which is defined by the
following way

(Vo * Eg + Ky % EBI)(B) if k=0,
(Yo * Eg — ko x Eg)(B) itk =1,

u(B x {k}) = {

N[ N[

where B is a Borel subset of R. Put

1 1
/\0:§(VU*EB+K3'YU’*E,3/)7 AL = 5(70*Eﬁ_KVU'*EB,)'

Taking into account that

~ ~

Ao(s) + A1(s) = Ao (s)e'*
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and R R
Ao(s) = Ai(s) = kA (s)e?s,
we have
i) = [ et due ) = [ due,0)
RXZ(2) Rx{0}

+/ et (=D)ldu(t, 1) = f(s,1).
Rx{1}

Thus, f(s,1) is the characteristic function of the signed measure p. Moreover, the
signed measure p is a measure if and only if the signed measure \; is a measure.
It is obvious that if the signed measure A; is a measure, then either & > 0 and
o' >0o0r o =0 =0. It is clear that if o = ¢/ = 0, then the signed measure p is
a measure if and only if 8 = 3’ and x < 1. In this case the lemma is proved.

Let 0 > 0 and ¢/ > 0. In view of (2.4), the signed measure \; is a measure if
and only if the equality

holds for all ¢ € R. This inequality is equivalent to the following

= \/fexp {_ ‘ 205)2 * ¢ ;06’/)2} ek (25)

Suppose that ¢ = ¢’. Then it follows from (2.5) that 8 = 3’ and k < 1.
Let o # ¢’. Inasmuch as k > 0, we have ¢/ < o. The minimum of the function
on the right side of inequality (2.5) is reached at the point
of —d'B

to = 7
g —0

It follows from the above that the signed measure Ai, and hence the signed
measure p is a measure if and only if either (2.2) or (2.3) is fulfilled. It is also
obvious that if (2.3) holds, then u € T'(R) * M(Z(2)). O

and it is equal to

Definition 2.2. We say that a distribution g on the group R x Z(2) belongs
to the class © if fi(s,l) = f(s,1), where the function f(s,[) is represented in the
form (2.1) and either (2.2) or (2.3) holds.

Since the product of characteristic functions corresponds to the convolution
of distributions, it follows from the Lemma 2.1 that the class © is a convolution
semigroup. The purpose of this note is to answer the main questions that arise
in the study of the arithmetic of the semigroup ©. Namely, we describe in © the
class of infinitely divisible distributions, the class of indecomposable distributions,
and the class of distributions which have no indecomposable factors.
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Remark 2.3. Heyde’s theorem on characterization of the Gaussian distribu-
tion on the real line by the symmetry of the conditional distribution of one linear
form of independent random variables given another is well known ([5, §13.4.1]).
The class of distributions © arises in connection with the study of an analogue
of this theorem for the group R x Z(2).

Let a be a topological automorphism of the group R x Z(2). It is obvious
that @ is of the form a(t, k) = (¢4t, k), where ¢4 € R, ¢4 # 0. We identify a and
Ca, 1.€., we write a(t, k) = (at, k) and assume that a € R, a # 0. The following
group analogue of Heyde’s theorem for the group R x Z(2) was proved in [2], see
also [3, Theorem 11.6]).

Consider the group R x Z(2) and let aj, bj, j = 1,2,...,n, n > 2, be topo-
logical automorphisms of R x Z(2) satisfying the conditions bm{l + bja;1 0
for all i,j. Let §; be independent random variables with values in the group R x
Z(2) and distributions p; with nonvanishing characteristic functions. If the con-
ditional distribution of the linear form Lo = b1&1 + - - 4 bp&, given Ly = a1&1 +
-+ + apéy is symmetric, then all distributions j1; belong to the class ©.

The class of distributions © also arises in connection with the study of an
analogue of Heyde’s theorem on a-adic solenoids containing an element of order
2 ([1], see also [3, Theorem 11.20]). Note also that some problems related to
independent random variables with values in the group R x Z(2) were studied
in [4,10,11].

3. Arithmetic of the semigroup ©

The proof of the main theorem is based on the following lemma.

Lemma 3.1. Let p € O and fi(s,l) = f(s,1), where the function f(s,l) is
represented in the form (2.1) and

0<o <o, |k :\/fexp{—fja__ﬁ;);} (3.1)

is fulfilled. Then p is an indecomposable distribution.

Proof. We break the proof into several steps.
1 Assume p1 = py * pg, where p; € MY (R x Z(2)) and p; are nondegenerate
distributions. We have

ﬂ(sa l) = ﬂl(sa l)ﬂ?(sa l)7 seR, le Z(Q) (32)
Substituting [ = 0 in (3.2), we obtain
exp{—0s® +iBs} = fi1(s,0)fi2(s,0), s€R.

By Cramér’s theorem on decomposition of the Gaussian distribution on the real
line,
fi(s,0) = exp{—oj32 +ifs}, seR,
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where 0; > 0, 3; € R, j = 1,2. It follows from definition of the characteristic
function that fi;(s, 1) is an entire function and
max 5,1)| < max |exp{—ojs®+iB;s}]. 3.3
scC. |S|<T|MJ( )| et \<T’ p{—0; Bjs} (3.3)
It follows from (3.2) that the functions fi;(s, 1) do not vanish in the complex plane
C. In view of (3.3), the entire functions fi;(s, 1) are of at most order 2 and type
o;. Taking into account that ji;(—s,1) = f1;(s, 1), by the Hadamard theorem on
the representation of an entire function of finite order and Lemma 2.1, we obtain
that the characteristic functions fi;(s,{) can be written in the form
2 . .
) exp{—o;s° +ifjs} ifseR, =0,
fi(s,l) = J L o 7 , ] (3.4)
kjexp{—ois® +ifis} ifseR, I =1,

where either

/ /\2
/ [0 (Bj_ﬁj) .
0<UJ<O'], 0<‘K/]‘S ;jexp —W s ]:172’

Bi=0; 0<lrl <1, j=1,2

or

_ /
0<o0; =0y

Moreover, u; € ©.

Note that in this discussion, we used only that u € O, i.e., ii(s,l) = f(s,1),
where the function f(s,!) is represented in the form (2.1) and either (2.2) or (2.3)
holds and the fact that the characteristic function fi(s,[) does not vanish, i.e., in
(2.1) kK #0.

2. It follows from (2.1) and (3.4) that

K=Kiky, O=01+0y, 0 =01+0y B=p+0, B =p01+P5 (35)

Since 0 < ¢/ < o, it follows from (3.5) that for at least one j, say for j = 1, the
inequality o] < o7 holds, i.e., u1 ¢ T'(R) * M'(Z(2)). Hence the inequalities

/
0< o) <01, 0< k< Ulexp{ (Br=pi) } (3.6)
o1 4(o1 — )
are fulfilled.

There are two possibilities for the distribution ps: either po € I'(R)*M!(Z(2))
or 2 ¢ T(R) + M'(Z(2)).

3. Let ug € T'(R) *x M'(Z(2)). Then we have 0 < g9 = ), B2 = 85 and 0 <
|k2] < 1. Moreover, the equality k = k1Ko implies that |k| < |k1|. In view of
(3.1) and (3.6), it follows from this that

R e e T e
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0,/ (,31 /)2
< = L .
i<\ e {00
o] + o2 < ﬁ
or+oy = \ o1’

which is obviously impossible because 0 < 0’1 < o1 and o9 > 0.
4. Let ps ¢ T'(R) * M*(Z(2)). Then the inequalities

/ /1\2
, < % (B2 —5) ‘
0<o0y<o9, 0<|krel < UQGXP{ 74(02_05) (3.7)

hold. Taking into account (3.5)—(3.7), we obtain
o B-8)2\ _ |o)+0} (B1+ B2 — B — B3)°
e = R e R s
B o (B 51) al, (B2 — B3)?

Hence,

ol + o (B1+ B2 — B — By)?
\/;exp {_4(01 +o09— 0 — 0’5)}
4 (81— B1) (B2 — B)*
: \/:1“*’{ T IEC S e B

It is easy to see that the inequalities 0 < 0] < 01 and 0 < 0% < oy imply the

inequality
‘71 o+ (3.9)
o1+ 02

Note that if a,b € R, ¢ > 0, d > 0, then the inequality

Hence,

(a+b)? a® V?
cvd ¢ d (3:10)

is fulfilled. Substituting a = 1 — 8], b = B2 — 5, ¢ = 01 — 0}, d = 03 — 0} in
(3.10), we get from the obtained inequality

eXp{ ff;l _ﬁéi)}exp{—M}
Sexp{—(ﬂﬁ&_ﬂi_ﬁéy}'

(o1 + 09 — 0] — b))

(3.11)
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Note that the inequality (3.8) contradicts the inequality that results when we
multiply (3.9) and (3.11).

We assumed that both distributions g and ps are nondegenerate and came
to a contradiction. Thus, at least one of the distributions p; is degenerate, i.e.,
w is an indecomposable distribution. O

Remark 3.2. Consider the group R x Z(2) and let p € ©. If p is an infinitely
divisible distribution in the semigroup M!(R x Z(2)), then p is an infinitely
divisible distribution in the semigroup O, i.e., distributions u, in the definition
of an infinitely divisible distribution belong to the semigroup ©. Indeed, if the
characteristic function of y does not vanish, it follows from the proof of item 1 of
Lemma 3.1. If the characteristic function of u vanishes, then i can be represented
in the form p = y*mgz ), where v € I'(R). In this case, the statement is obviously
true.

Note that if the characteristic function of y vanishes, then p is decomposable
in the semigroup ©. Hence if p is indecomposable in ©, then the characteristic
function of p does not vanish. Then it follows from the proof of item 1 of Lemma
3.1 that y is also indecomposable in the semigroup M*(R x Z(2)).

As proven in [7, Chapter IV, Theorem 11.3], the following assertion holds.

Let X be a second countable locally compact Abelian group and p € M*(X).
Assume that p has no factors of the form mpg, where K is a nonzero compact
subgroup of the group X. Then the distribution p can be represented as a
convolution of a finite or countable number of indecomposable distributions and
a distribution that has no indecomposable factors.

Using Lemma 3.1, for distributions belonging to the semigroup © this asser-
tion can be considerably strengthened. Note that if 4 € © and the Haar distri-
bution mgz ) is not a factor of u, then the characteristic function (s, 1) does not
vanish. Note also that by the classical Cramér theorem, Gaussian distributions
on the group R have no indecomposable factors.

Proposition 3.3. Let p € © and p be a nondegenerate distribution. Then
either p € T(R) x MY(Z(2)), or u is an indecomposable distribution, or u = v *
v, where v € O, v is an indecomposable distribution, and v is a nondegenerate
Gaussian distribution on the group R.

Proof. Let p ¢ T'(R) * M'(Z(2)). Then j(s,l) = f(s,1), where the function
f(s,1) is represented in the form (2.1) and inequalities (2.2) hold. If (3.1) is
fulfilled, then by Lemma 3.1, i is an indecomposable distribution. Assume that
(3.1) is false. Then the inequalities

0< |k < \/fexp {—M} (3.12)

b:exp{—M}. (3.13)

hold. Put
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We have
O-/
0 < |x| <4/ —=b. (3.14)
g
Put 2 /b2
OR™ — O

It follows from (3.14) that 0 < a < ¢’, and (3.15) implies that

/

g —a

k| =

b. 3.16
p— (3.16)

By Lemma 2.1, we get from (3.13) and (3.16) that there is a distribution v € ©
with the characteristic function of the form

5(s,1) = exp{—(c — a)s® + zﬁs} ?f seR, =0, (3.17)
kexp{—(o' —a)s® +if's} ifseR, I=1.

In view of (3.13) and (3.16), by Lemma 3.1, v is an indecomposable distribution.

Denote by v the Gaussian distribution on the group R with the characteristic

function 4(s) = exp{—as?}. If we consider v as a distribution on the group R x

Z(2), then
—as?} ifseR, 1=0
(o, = g OIS ) R 70 (3.18)
exp{—as®} ifseR, [=1.

In view of fi(s,l) = f(s,1), where the function f(s,!) is represented in the form

(2.1), it follows from (3.17) and (3.18) that

i(s,) = (s, 1)3(s,1), s€R, I €L2).

Hence, p =v x .
It is easy to see that v is the maximal, in the natural sense, Gaussian factor
of the distribution pu. O

Corollary 3.4. Let u € © and p ¢ T'(R) * M(Z(2)). Then the distribution
w has an indecomposable factor.

We will complement Proposition 3.3 with the following assertion.

Proposition 3.5. Let u € O, u ¢ T'(R) « MY(Z(2)), and p be a decomposable
distribution. Then for each natural n there are indecomposable distributions ji; €
0, j=1,2,....n, and a nondegenerate Gaussian distribution v, on the group R
such that

J= L g % % Ve

Proof. In view of Proposition 3.3, it suffices to prove that the distribution
1 can be represented in the form pu = pg * v, where p;,v € 0, pp is an in-
decomposable distribution, and v ¢ T'(R) * M(Z(2)) and v is a decomposable
distribution.
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The condition of the proposition implies that fi(s,l) = f(s,l), where the
function f(s,!) is represented in the form (2.1) and inequalities (3.12) hold. Take

numbers o and o} such that 0 < o] < 01. Put k1 = 4/ % By Lemma 2.1, there
is a distribution pu; € © such that its characteristic function is of the form

) exp{—o15?} ifseR, =0,
fir(s, 1) = ;2 .
rrexp{—ois°} ifseR, [ =1.

By Lemma 3.1, p; is an indecomposable distribution.
Put =0 —o01, 7" =0’ — 0}, ¢ = k/k1. We can assume that o is arbitrarily
small and k4 is arbitrarily close to 1. Then (3.12) implies that the inequalities

0< s < \/?exp{—M} (3.19)

are valid. By Lemma 2.1, it follows from this that there is a distribution v € ©
with the characteristic function

—78% 41 if R, I =
5(s,1) = exp{—7s +26(.S} 1 s €R, 0, (3.20)
sexp{—7's? +if/s} ifseR, =1
Since
a(s,l) = pu(s,Do(s,l), seR, leZ(2),

then p = py * v. It is clear that v ¢ I'(R) * M'(Z(2)). Since (3.19) and (3.20)
hold, the above reasoning shows that v is a decomposable distribution. ]

Remark 3.6. Let a distribution p on the group R x Z(2) belong to the semi-
group ©, and let fi(s,l) = f(s,l), where the function f(s,!) is represented in the
form (2.1), and the inequalities 0 < ¢/ < o and (3.12) are fulfilled. Using Lemma
3.1 and representation (1.2) of the characteristic functions of distributions be-
longing to the semigroup M'(Z(2)), it is easy to check that the distribution x4 can
be represented as = A\#m, where A € © and A is an indecomposable distribution,
and T € MY(Z(2)).

Note that any distribution belonging to the semigroup M!(Z(2)) has no inde-
composable factors.

Let us now prove the main result of the note. Denote by I(0) the class of
infinitely divisible distributions, by Ip(©) the class of distributions which have no
indecomposable factors, and by Ind(©) the class of indecomposable distributions
in the semigroup ©.

Theorem 3.7. The following statements are true:
1. 1(©) =T(R)* MYZ(2));
2. u€Ip(O) if and only if u € T(R) * MY (Z(2)) and p can not be represented
as ji =y * mg(g), where v is a nondegenerate Gaussian distribution on the
group R;
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3. w€Ind(O) if and only if the characteristic function ji(s,l) is represented in
the form

1(s.1) exp{—os? +ifs} ifseR, [ =0,
s, 1) =
. kexp{—o's? +if's} ifseR, =1,

and (3.1) is fulfilled.

Proof. 1. It is easy to see that all distributions belonging to the semigroup
M'(Z(2)) are infinitely divisible. Therefore, if 4 € T'(R) * M'(Z(2)), then p is an
infinitely divisible distribution. Assume that o ¢ T'(R)*M?!(Z(2)). Then ji(s,) =
f(s,1), where the function f(s,!) is represented in the form (2.1) and inequalities
(2.2) are satisfied. Suppose that 4 is an infinitely divisible distribution. Then for
each natural n there is a distribution u,, € © and an element (t,, k) € R x Z(2)
such that p = p3" x E, 1,.). Hence,

fi(s,1) = (fin(s,1)"etns(=1)knl s e R, I € Z(2).
This implies that |f(s,1)| = |fin(s,1)|™. Since p, € ©, we have

exp{—2Zs?} ifseR, I =0,

/
’/i‘% exp{—U—SQ} ifseR, I=1,
n

A~

[fin (s, )| =

and the inequality
1 o’
wlv </ %
o
holds. Since n is an arbitrary natural number, we get a contradiction. Therefore,
1 is not an infinitely divisible distribution.

Thus, the class of infinitely divisible distributions in the semigroup © coincides
with the class T'(R) * M*(Z(2)).

2. Let u € T'(R) * M'(Z(2)) and p is not represented in the form p = ~y *
Mz, 9), Where 7 is a nondegenerate Gaussian distribution on the group R. Two
cases are possible.

2a. The characteristic function fi(s,l) does not vanish. It follows from the
proof of item 1 of Lemma 3.1 and (3.5) that all factors of u also belong to the
class I'(R) * M'(Z(2)), i.e., s has no indecomposable factors.

2b. The characteristic function fi(s,[) vanishes. Then u = Ej, x mz(s), where
b € R. It is obvious that © has no indecomposable factors.

Let u = 7 x mg), where 7 is a nondegenerate Gaussian distribution on the
group R. Then the characteristic function fi(s,[) is of the form

. exp{—as® +ibs} ifs€R, 1 =0,
:U(sa l) = { .
0 ifseR, =1,
where a > 0, b € R. It is easy to see that p has a factor p; such that fi;(s,l) =
f(s,1), where the function f(s,l) is represented in the form (2.1) and (3.1) is
satisfied. By Lemma 3.1, u; is an indecomposable distribution.
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If 1 ¢ T(R)*M'(Z(2)), then by Corollary 3.4, u has an indecomposable factor.

3. Obviously, all nondegenerate distributions belonging to the class I'(R)
M!(Z(2)) are decomposable. Let u be a nondegenerate distribution and let p ¢
['(R)*MY(Z(2)). Then fi(s,1) = f(s,1), where the function f(s, ) is represented in
the form (2.1) and inequalities (2.2) are satisfied. It follows from (2.2) that either
(3.1) is true or inequalities (3.12) hold. As follows from the proof of Proposition
3.3, if inequalities (3.12) hold, then the distribution u is decomposable. Thus,
the validity of (3.1), according to Lemma 3.1, is not only a sufficient condition
for the distribution u to be indecomposable, but also a necessary one. O
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Apudmeruka oaHiel HaMiBrpynu MMoBipHiCHUX
posnoniigiB Ha rpymi R x 7Z(2)
Gennadiy Feldman

Mu posrisigaemMo Jiesiky HaliBrpyily © AMOBIpHICHUX PO3IOIIIB BiHO-
cHO 3roprTky Ha Tpymi R X Z(2), ne R — rpyna aificaux auce, a Z(2) — rpyna
KJIACIB JIMMIKIB 3a MomyseMm 2. [lsg HamiBrpyna BUHUKAE B 3B’SI3KY 3 OJIHIEIO
XapaKTepizaIiiftHo 3a/1a4ei0 MaTeMaTHIHOl CTATUCTUKN HA Q-aJITYHUAX CO-
JIEHOITaX, STKi MICTATD e/leMeHT TopaaKy 2. Mu maemo Biamosiai Ha mpupo i
[UTaHHs, [0 BUHUKAIOTH NP BUBYEHHI apudmernkn Hamsrpymn O. A ca-
Me, JJAEMO TTOBHUI OMUC KJIacy 6e3MeKHO TOIIbHUX PO3IIOMIIJIiB, KIacy He-
PO3KJIAIHUX PO3IMOLIIB Ta KJIACY PO3IMOILTIB, STKi HE MAIOTh HEPO3KIATHIUX
JIJTBHUAKIB.

KirrowoBi ciioBa: 6e3MeKHO TMOMIIbHUI PO3MIOIiJI, HEPO3KITHUN PO3IIO-
JiJ1, HaIliBrpyna po3IOIiJIiB
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