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We study the growth of the resolvent of a Toeplitz operator Tb, defined
on the Hardy space, in terms of the distance to its spectrum σ(Tb). We are
primarily interested in the case when the symbol b is a Laurent polynomial
(i.e., the matrix Tb is banded). We show that for an arbitrary such symbol
the growth of the resolvent is quadratic (3.1), and under certain additional
assumption it is linear (2.1). We also prove the quadratic growth of the
resolvent for a certain class of non-rational symbols.
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Introduction

Let T be a bounded linear operator on a Hilbert space. The complex number
λ is said to lie in the resolvent set ρ(T ) of T if there exists a bounded inverse
operator (T − λ)−1. The latter is known as the resolvent of T . The spectrum
σ(T ) of T is by definition the complement of the resolvent set. The spectrum
of T is known to be a compact set on the complex plane. Recall also that the
essential spectrum of T , σess(T ) ⊂ σ(T ), is the set of complex numbers λ so that
T − λ is not a Fredholm operator.

The spectrum and resolvent are the key concepts of the whole operator theory.
An enormous amount of effort has been devoted to their study for over a hundred
years. In particular, the study of the behavior of the resolvent norm ‖(T −λ)−1‖,
as λ varies over the resolvent set, has attracted much attention. Such norm grows
unboundedly as the point λ approaches the spectrum σ(T ). What is more to the
point, there is a universal lower bound

‖(T − λ)−1‖ ≥ 1

dist
(
λ, σ(T )

) , λ ∈ ρ(T ), (0.1)

which actually holds for any closed operator on a Hilbert space.
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In this paper we focus on upper bounds for the norm of resolvent of the form

‖(T − λ)−1‖ ≤ Φ
(
dist

(
λ, σ(T )

))
, λ ∈ ρ(T ), (0.2)

for particular functions Φ on the positive half-line, see variety of examples of
such bounds in [17, Section 5] and references therein. Apart from an intrinsic
beauty, such bounds appear in at least two problems of analysis. The first one
concerns the existence of hyperinvariant subspaces for a linear operator T , that
is, subspaces invariant for any operator commuting with T . The key tool here
is a celebrated result of Lyubich and Matsaev, which relies heavily on bounds
of the form (0.2), see [22]. The second one is the problem from perturbation
theory related to the discrete spectrum of the trace (or general Schatten-von
Neumann) class perturbation of certain operators, see, e.g., [7, 17]. The point
is that such discrete spectrum (counting algebraic multiplicities) agrees with the
zero set (counting multiplicities) of a certain analytic function, known as the
perturbation determinant. The bound (0.2) implies a similar bound for the per-
turbation determinant, and one obtains the so-called generalized Blaschke-type
conditions for its zero set, see recent results by Borichev–Golinskii–Kupin [2, 3],
Favorov–Golinskii [15–17], and others.

In this paper we deal with two cases of Φ

Φ(x) = Φl(x) :=
C

x
, Φ(x) = Φq(x) :=

C

x

(
1 +

1

x

)
,

where C is a positive constant depending on T . Note that, in view of (0.1), bound
(0.2) with Φ = Φl is optimal. We refer to the first case as a Linear Resolvent
Growth (LRG) condition, see (2.1) and also Benamara–Nikolski [1], Nikolski–Treil
[21], and to the second one as a Quadratic Resolvent Growth (QRG) condition,
see (3.1).

Toeplitz operators have been enjoying immense popularity for many decades.
They appear in a number of problems in different areas of analysis. They give rise
to interesting and difficult problems, and lead to beautiful results; see Grenander–
Szegő [19], Böttcher–Silbermann [5, 6], and Nikolski [20] for an account on the
topic. Given a function b ∈ L∞(T), the functional realization of a Toeplitz
operator Tb on H2(T) is

(Tbf)(t) = P+

(
b(t)f(t)

)
, f ∈ H2(T),

where P+ is the orthogonal projection from L2(T) onto H2(T), b is a symbol of
Tb. The matrix realization of the operator is

Tb = [bi−j ]i,j≥1 : `2(N)→ `2(N),

or, in words, this is a semi-infinite matrix with constant diagonals. Here bn are
the Fourier coefficients of the symbol b.

Among the results concerning the resolvent growth for general Toeplitz ope-
rators, let us mention the following one, which states that the LRG condition
holds for Tb as long as σ(Tb) is a convex set (for an extended version of this
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result see [4, Theorem 4.29]). Notice also that the study of the resolvent growth
for Toeplitz operators, the main theme of this article, is closely related to the
”model theory” for these operators. The classical results in this direction are
given in Clark [9, 10], Clark–Morrel [11], and Wang [25]. For a modern state-of-
art on the subject, see Yakubovich [26,27].

We say that a Toeplitz operator is banded, iff bn = 0 for all |n| large enough. It
is clear that these are Toeplitz operators with symbols being Laurent polynomials

b(z) :=
b−m
zm

+ . . .+ b0 + . . .+ bkz
k, m, k ∈ N, b−mbk 6= 0.

In the paper we focus on two classes of such symbols. The class of Laurent
polynomials with Jordan property (see Definition 1.1) is defined in terms of the
image b(T) of the unit circle. The class of regular Laurent polynomials (see
Definition 1.5) is defined in terms of the zeros of the algebraic equation

zm
(
b(z)− w

)
= b−m + . . .+ (b0 − w)zm + . . .+ bkz

m+k = 0.

Section 1 of the paper is devoted to the discussion of certain properties of Laurent
polynomials with Jordan property and regular Laurent polynomials. For instance,
the former is a proper subclass of the latter, see Theorem 1.7. Our main result,
obtained in Section 2, states that the LRG condition (2.1) holds as long as b is a
regular Laurent polynomial, see Theorem 2.1. In the final Section 3, we study the
class of (non-rational) symbols subject to (3.2) and show that the corresponding
Toeplitz operators Tb obey the QRG condition, see Theorem 3.1.

The class of symbols b for which the bound (0.2) holds with T = Tb (and
a single function Φ within the whole class) is small enough. By the result of
Treil [24], given a sequence {λn} of points on the unit disk, and a sequence {An}
of positive numbers, An →∞, there is a continuous and unimodular symbol b so
that

‖(Tb − λn)−1‖ > An.

So, (0.2) is certainly false for the class of all continuous symbols.
As usual we let T = {z : |z| = 1} to be the unit circle of the complex plane,

and D = D+ = {z : |z| < 1}, D− = {z : |z| > 1}.

1. Jordan property and regular Laurent polynomials

For now, the main object under consideration is a Laurent polynomial

b(z) :=
b−m
zm

+ . . .+ b0 + . . .+ bkz
k, m, k ∈ N, b−mbk 6= 0. (1.1)

1.1. Laurent polynomials with Jordan property.

Definition 1.1. Let b(T) be the image of the unit circle T under the mapping
b, a closed curve on the complex plane. A Laurent polynomial b is said to possess
the Jordan property (or, in short, b is a LJ-polynomial) if b(T) is a Jordan curve
(no self-intersections), and b′(t) 6= 0, t ∈ T (no cusps).
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It is quite unlikely that there exist transparent necessary and sufficient condi-
tions in terms of the Laurent coefficients for a polynomial b to be LJ-polynomial.
Here is a simple sufficient one.

Proposition 1.2. Assume that max(m, k) ≥ 2, and one of the two conditions
holds

|b±1| ≥ |b∓1|+
k∑
j=2

j|bj |+
m∑
j=2

j|b−j |. (1.2)

Then b(T) is a Jordan curve. Moreover, if one of the strict inequalities holds

|b±1| > |b∓1|+
k∑
j=2

j|bj |+
m∑
j=2

j|b−j |, (1.3)

then b is a LJ-polynomial.

Proof. Suppose, on the contrary, that there are two different points ζ1 6= ζ2

on T, so that b(ζ1) = b(ζ2). Then

b1(ζ1 − ζ2) =
∑
j 6=1

bj(ζ
j
2 − ζ

j
1) = b−1

ζ1 − ζ2

ζ1ζ2
+
∑
|j|≥2

bj(ζ
j
2 − ζ

j
1).

Assume that (1.2) holds with the upper sign. For ζ1 6= ζ2 on T one has∣∣∣∣∣ζj1 − ζj2ζ1 − ζ2

∣∣∣∣∣ < |j|, |j| ≥ 2,

and we come to the inequality

|b1| < |b−1|+
k∑
j=2

j|bj |+
m∑
j=2

j|b−j |,

which contradicts (1.2). The case of the lower sign in (1.2) is the same, so the
first statement is proved.

Concerning the second one, we write

b′(ζ) =

k∑
j=1

jbjζ
j−1 −

m∑
j=1

jb−jζ
−j−1

= b1 − b−1ζ
−2 +

k∑
j=2

jbjζ
j−1 −

m∑
j=2

jb−jζ
−j−1.

If b′(ζ0) = 0 for some ζ0 ∈ T, then

|b±1| ≤ |b∓1|+
k∑
j=2

j|bj |+
m∑
j=2

j|b−j |,

in contradiction with (1.3), and the second statement follows.
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The case m = k = 1 will be discussed later in Example 2.4.

Example 1.3. Let b1(z) = nz−1 − zn, so that (1.2) holds, and there is no
self-intersection in b1(T). On the other hand,

b′1(z) = −n(zn+1 + 1)

z2
,

and there are n+ 1 cusps. Next, let b2(z) = z−1 + z2, so

b2

(
e±

πi
3

)
= b2(−1) = 0,

and b2(T) is not a Jordan curve. On the other hand, b′2(z) = 2z − z−2 6= 0 on T.

The following example is discussed in [12, Example 4.4.3]. Let q ≥ 2, and

b3(z) = zq+1 + 4z + z−q+1, b3
(
eiθ
)

= 2eiθ(2 + cos qθ),

so b3(T) is a Jordan curve. Moreover,

b′3(ζ) = ζ−q
(
(q + 1)ζ2q + 4ζq − (q − 1)

)
6= 0, ζ ∈ T,

so b3 is a LJ-polynomial. The example shows that sufficient condition (1.3) is not
necessary for b to be a LJ-polynomial.

1.2. Regular Laurent polynomials. Given a Laurent polynomial b and
w ∈ C, consider the algebraic equation, which plays a key role in what follows

b(z)− w =
P (z, w)

zm
= 0, P (z, w) = zm

(
b(z)− w

)
, (1.4)

P (z, w) = b−m + . . .+ (b0 − w)zm + . . .+ bkz
m+k = bk

m+k∏
j=1

(z − zj(w)).

Denote by Z(w) = {zj(w)}m+k
j=1 the zero divisor (i.e., roots with multiplicities)

of P . Each such divisor splits naturally in three parts: interior, exterior, and
unimodular ones

Zin(w) := Z(w) ∩ D, Zext(w) := Z(w) ∩ D−, Zun(w) := Z(w) ∩ T.

Under |Z(w)| we mean the number of points in Z(w), counting multiplicities, so
|Z(w)| = m+ k.

Denote by Ω(b) an open set on the plane so that

Ω(b) := {w ∈ C\b(T) : wind(b(t)− w) = 0, t ∈ T}, (1.5)

or, in words, the winding number of the curve b(T) around w is zero.

Lemma 1.4. We have:
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1. For any Laurent polynomial b and for each w ∈ Ω(b),

Zin(w) = {0 < |z1(w)| ≤ . . . ≤ |zm(w)| < 1}, |Zin(w)| = m,

Zext(w) = {1 < |zm+1(w)| ≤ . . . ≤ |zm+k(w)| <∞}, |Zext(w)| = k, (1.6)

and Zun(w) = ∅.

2. For each w′ ∈ b(T) and each LJ-polynomial b, there are positive constants 0 <
r1 < 1 < r2, rj = rj(b) independent of w′, with

Zin(w′) ⊂ {|z| ≤ r1 < 1}, Zext(w
′) ⊂ {|z| ≥ r2 > 1}, w′ ∈ b(T). (1.7)

3. The function |Zin(w′)| is constant on b(T), and

|Zin(w′)| = m− 1 or m, |Zext(w
′)| = k or k − 1, w′ ∈ b(T). (1.8)

Proof. Clearly, Zun(w) = ∅ for any w /∈ b(T). The first statement (1.6) now
follows directly from the Argument Principle, cf. [14].

To prove (1.7), note that Zun(w′) = {λ(w′)} is a single, simple (of multiplicity
one) point on T. This is exactly the Jordan property for Laurent polynomials,
that is, there are no self-intersections and no cusps, respectively. When w′ tra-
verses b(T), the point λ(w′) traverses T. For each w′ ∈ b(T), the divisors Zin(w′)
and Zext(w

′) are separated from the unit circle. Because of continuity of divisors
and compactness of b(T), (1.7) follows.

Let us now shift w′ = w a bit into Ω(b), while the point λ(w′) moves either
inside D, or inside D− (it cannot stay on the unit circle), and remains a simple
point. So,

|Zin(w)| = |Zin(w′)|+ 1 or |Zin(w)| = |Zin(w′)|.

But, by (1.6), |Zin(w)| = m, and the first equalities in (1.8) follow. Since
|Zun(w′)| = 1 and |Z(w′)| = m+ k, the second equalities in (1.8) follow.

Definition 1.5. A Laurent polynomial b is called regular, if either the interior
divisor Zin(w) is contained strictly inside D, or the exterior divisor Zext(w) is
contained strictly inside D−, when w varies over Ω(b). In other words, there are
two constants 0 < r(b) < 1 < R(b), independent of w, so that either

Zin(w) ⊂ {|z| ≤ r(b) < 1}, w ∈ Ω(b), (1.9)

or

Zext(w
′) ⊂ {|z| ≥ R(b) > 1}, w′ ∈ Ω(b). (1.10)

Equivalently,

sup
Ω(b)
|zm(w)| ≤ r(b) < 1 or inf

Ω(b)
|zm+1(w)| ≥ R(b) > 1.

It is worth comparing (1.9), (1.10) to (1.6), which holds for any Laurent
polynomial, and to (1.7), which holds for any LJ-polynomial.
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Remark 1.6. For an arbitrary Laurent polynomial b both conditions (1.9),
(1.10) hold automatically as long as |w| is large enough. Indeed, assume that

|w| > 2m+k‖b‖W = 2m+k
k∑

j=−m
|bj |.

Then

w zmm(w) =
k∑

j=−m
bjz

m+j
m (w), |w| |zm(w)|m ≤ ‖b‖W ,

and by the assumption,

2m+k‖b‖W |zm(w)|m ≤ ‖b‖W , (2|zm(w)|)m ≤ 2−k ≤ 1, |zm(w)| ≤ 1

2
.

Similarly, we see that |zm+1(w)| ≥ 2. Hence, given a Laurent polynomial, to
check its regularity, it is sufficient to assume that

|w| ≤ 2m+k‖b‖W = C1. (1.11)

In the sequel Cj , j = 1, 2, . . ., stay for positive constants which depend only on b.

Theorem 1.7. Each LJ-polynomial is regular.

Proof. According to Lemma 1.4, two situations may occur.
1. Assume first that |Zin(w′)| = m, w′ ∈ b(T). If w′ = w is shifted into a

small strip Ωε := {w ∈ Ω(b) : dist(w, b(T)) < ε}, ε = ε(b), the only point λ(w′) ∈
Zun(w′) moves inside D− (or, otherwise, |Zin(w)| = m+ 1, that would contradict
(1.6)). So, due to continuity and compactness, there is a number r2 = r2(b), r1 <
r2 < 1 with

Zin(w) ⊂ {|z| ≤ r2}, w ∈ Ωε.

Next, consider the set

Ω̃ε := {w ∈ Ω(b) : dist(w, b(T)) ≥ ε, |w| ≤ C1},

see (1.11), and assume, on the contrary, that for a certain sequence {wn} in Ω̃ε

one has
|zm(wn)| → 1.

Due to compactness of Ω̃ε we could let wn → w̃ ∈ Ω̃ε and zm(wn) → z̃ ∈ T, so
z̃ ∈ Zun(w̃). But the latter is impossible since w̃ /∈ b(T). Hence, for some r2 <
r3 < 1, depending on b,

Zin(w) ⊂ {|z| ≤ r3}, w ∈ Ω̃ε.

For the rest see Remark 1.6.
2. Assume next, that |Zin(w′)| = m − 1, w′ ∈ b(T). If w′ = w is shifted into

a small strip Ω′ε := {w ∈ Ω(b) : dist(w, b(T)) < ε′}, ε′ = ε′(b), the only point
λ(w′) ∈ Zun(w′) moves inside D by (1.6). The above argument applies now to
the exterior divisor, and we come to (1.10). The proof is complete.
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As it turns out, the class of regular Laurent polynomials is much wider than
the class of LJ-polynomials.

Given two complex polynomials

P (z) =

n∑
j=0

(
n

j

)
αjz

j , Q(z) =

n∑
j=0

(
n

j

)
βjz

j ,

of the same degree n ≥ 1, we say that P and Q are apolar if
n∑
j=0

(−1)j
(
n

j

)
αjβn−j = 0.

Under a circular region we mean a closed or open half-plane, a disk or the exterior
of a disk. The known result of Grace [23, Theorem 3.4.1] states that given a
circular region C and apolar polynomials P and Q, P has at least one root in C
as long as Z(Q) ⊂ C.

Proposition 1.8. Let b be a Laurent polynomial (1.1) with m = 1. Assume
that

|bk−s| >
(
k + 1

s

)
|b−1| (1.12)

for some s = 0, 1, . . . , k−1. Then b is a regular Laurent polynomial. In particular,
the latter is true, when |bk| > |b−1| (i.e., s = 0).

Proof. We put

P (z) := P (z, w) = b−1 + (b0 − w)z + . . .+ bkz
k+1,

Q(z) := zk+1 +

(
k + 1

s

)
azs, a = (−1)k−s

b−1

bk−s
,

and notice that |bk−s| > 0 under assumption (1.12). It is easy to check that, for
each complex w, P , and Q are apolar. Clearly,

Z(Q) ⊂ C := {|z| ≤ ρ} ⊂ D, ρ =

{(
k + 1

s

) ∣∣∣∣ b−1

bk−s

∣∣∣∣} 1
k+1−s

< 1.

As we know, in the case m = 1, Zin(w) is a single, simple root z1(w) for w ∈
Ω(b). So, by the Grace theorem, z1(w) ∈ C, and (1.9) implies the regularity of b.
The proof is complete.

It is easy to construct a Laurent polynomial b(z) = z−1 + bkz
k with |bk| > 1

such that the curve b(T) has self-intersection, so b is not a LJ-polynomial. Indeed,
take ζ ∈ T with |ζ + 1| < 1 and put

b(z) = z−1 + b2z
2, b2 :=

1

ζ(ζ + 1)
, |b2| > 1.

Obviously, b(ζ) = b(1), as claimed.
There is another way to construct regular Laurent polynomials without the

Jordan property. Precisely, for any regular Laurent polynomial β and an integer
m ≥ 2 put βm(z) = β(zm). The latter Laurent polynomial is still regular, but
not a LJ-one.



On the Growth of the Resolvent of a Toeplitz Operator 489

2. Linear growth of the resolvent

The setting in the previous section was pure function theoretic. It is time
now to bring in our main operator theoretic objects under consideration: Toeplitz
operators, resolvents and spectra, defined in Introduction.

By a theorem of Gohberg (see, e.g., [6, Theorem 1.17]), for each b ∈ C(T) one
has

σess(Tb) = b(T), ρ(Tb) := C\σ(Tb) = {λ ∈ C\b(T) : wind(b(t)− λ) = 0}.

So, ρ(Tb) = Ω(b), and we can freely replace the either of them by the other.

The main result of the section concerns Toeplitz operators with special Lau-
rent symbols and states that the LRG condition holds for such operators.

Theorem 2.1. Let b be a regular Laurent polynomial. Then

‖
(
Tb − w

)−1‖ ≤ C(b)

dist
(
w, σ(Tb)

) , w ∈ ρ(Tb). (2.1)

Proof. Let A be a bounded linear operator on a Hilbert space. The Neumann
expansion for its resolvent is

(A− w)−1 = − 1

w

∑
n≥0

(
A

w

)n
, |w| > ‖A‖,

so

‖(A− w)−1‖ ≤ 1

|w|
∑
n≥0

∥∥∥∥Aw
∥∥∥∥n =

1

|w| − ‖A‖
, |w| > ‖A‖.

If |w| ≥ 2‖A‖, then |w| − ‖A‖ ≥ 1
2 |w|, and

‖(A− w)−1‖ ≤ 2

|w|
, |w| ≥ 2‖A‖.

Furthermore, for z ∈ σ(A),

dist(w, σ(A)) ≤ |w − z| ≤ |w|+ |z| ≤ |w|+ ‖A‖ ≤ 3

2
|w|, |w| ≥ 2

3
dist(w, σ(A))

and finally, with A = Tb,

‖
(
Tb − w

)−1‖ ≤ 3

dist(w, σ(Tb))
, |w| ≥ 2‖Tb‖ = 2‖b‖∞ =: C2. (2.2)

So, we assume in the sequel that |w| ≤ C2.

Recall that

P (z, w) = zm
(
b(z)− w

)
= bk

m+k∏
j=1

(z − zj(w)),
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{zn(w)}m+k
1 are labelled as in (1.6). The Wiener–Hopf factorization for the Lau-

rent polynomial b− w is

b(z)− w = a−(z, w) a+(z, w), (2.3)

where

a−(z, w) := bk

m∏
i=1

(
1− zi(w)

z

)
, a+(z, w) :=

k∏
j=1

(z − zm+j(w)). (2.4)

The bound for the resolvent relies upon the known theorem of Krein, see [6,
Theorem 1.15], which states that(

Tb − w
)−1

= Ta−1
+
Ta−1

−
, ‖

(
Tb − w

)−1‖ ≤ ‖a−1
+ ‖∞ ‖a−1

− ‖∞. (2.5)

At the first stage we obtain the bounds for the factors on the RHS (2.5)
regardless of whether the regularity condition holds or not. Indeed, for t ∈ T,

|a+(t, w)| = |b(t)− w|
|bk|

∏m
i=1 |t− zi(w)|

≥ |b(t)− w|
|bk|

∏m
i=1(1 + |zi(w)|)

≥ |b(t)− w|
2m |bk|

,

and so

‖a−1
+ ‖∞ ≤

2m |bk|
dist(w, b(T))

, w ∈ Ω̃ := Ω(b) ∩ {|w| ≤ C2}. (2.6)

Going over to a−, note that w ∈ Ω̃ implies that all coefficients of the poly-
nomial P (1.4) are uniformly bounded (actually, only one coefficient of P , b0 −
w, depends on w), and b−mbk 6= 0. Hence, all the roots zn(w) are uniformly
bounded for w ∈ Ω̃

max
n
|zn(w)| ≤ C3, |a+(t, w)| ≤

k∏
i=1

|t− zm+i(w)| ≤ C4,

and so

|a−1
− (t, w)| = |a+(t, w)|

|b(t)− w|
, ‖a−1

− ‖∞ ≤
C4

dist(w, b(T))
, w ∈ Ω̃. (2.7)

At this point the regularity condition comes in, and we are able to refine
either (2.6) or (2.7).

1. Assume first that (1.9) holds, that is,

1− |zm(w)| > 1− r(b) > 0, w ∈ Ω̃.

We have then

|a−(t, w)| = |bk|
m∏
i=1

|t− zi(w)| ≥ |bk|
m∏
i=1

(1− |zi(w)|) ≥ |bk|(1− r(b))m = C5,
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and so
‖a−1
− ‖∞ ≤ C−1

5 , w ∈ Ω̃, (2.8)

which together with (2.6) and (2.5) leads to LRG condition.
2. Assume next, that (1.10) holds, that is,

|zm+1(w)| − 1 > R(b)− 1 > 0, w ∈ Ω̃.

Then

|a+(t, w)| =
k∏
j=1

|t− zm+j(w)| ≥
k∏
j=1

(|zm+j(w)| − 1) ≥ (R(b)− 1)k = C6 > 0.

Hence,
‖a−1

+ ‖∞ ≤ C−1
6 , w ∈ Ω̃, (2.9)

which together with (2.7) and (2.5) leads again to LRG condition. The proof is
complete.

In view of the result of Theorem 1.7, the following is obvious.

Corollary 2.2. For LJ-polynomials, the LRG condition holds.

Remark 2.3. The result of the corollary can be derived from an old result
from [11] on the model theory for Toeplitz operators with rational symbols, see
also [22, Theorem 4]. Still, as we mentioned earlier, the class of regular Laurent
polynomials, for which the LRG condition holds, is much wider than the class of
LJ-polynomials.

Example 2.4. Consider tridiagonal Toeplitz matrices with the symbol

b(z) =
b−1

z
+ b0 + b1z.

The image b(T) of the unit circle is an ellipse on the plane as long as |b−1| 6= |b1|.
So b is the LJ-polynomial, and LRG holds for the resolvent (Tb − w)−1 on the
resolvent set ρ(Tb). The equality |b−1| = |b1| means that b(T) is a closed interval
on the plane traversed twice. Although b is not a LJ-polynomial now, it is easy
to check that

b(t) = αb∗(t) + β, b∗(t) = at+ at,

where α, β, a ∈ C. So Tb = αTb∗ + β, Tb∗ = T ∗b∗ (cf. [8]). The latter implies that
Tb is a normal operator, so

‖
(
Tb − w

)−1‖ =
1

dist(w, σ(Tb))
, w ∈ ρ(Tb).

For more information on such Toeplitz operators see [13].
Note also, that the simplest Laurent polynomial b0(z) = z + z−1 is irregular.

Indeed, the roots z1, z2 are explicit, and

0 < z1(w) < 1 < z2(w), w /∈ [−2, 2], lim
w→2+0

zj(w) = 1, j = 1, 2,

as claimed. So, there is no direct relation between regularity and the LRG con-
dition.
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3. Quadratic growth of the resolvent

We say that the Quadratic Resolvent Growth (QRG) condition holds for the
Toeplitz operator Tb if

‖(Tb − w)−1‖ ≤ C(b)

dist(w, σ(Tb))

(
1 +

1

dist(w, σ(Tb))

)
, w ∈ ρ(Tb). (3.1)

Although we do not know whether the result of Theorem 2.1 holds for any
Laurent polynomial, it is clear from (2.5), (2.6), and (2.7) (which have nothing
to do with regularity), that QRG condition holds for an arbitrary polynomial
symbol b. Moreover, it is not hard to make sure, that the same method applies
to an arbitrary rational symbol and gives QRG condition, see [18, Lemma 3.4].

The main result of this section concerns the class of (in general, non-rational)
symbols with infinitely many nonzero Fourier coefficients with positive indices.
On the other hand, we are able to prove the result under the strong assumption
m = 1. As compared to Theorem 2.1, instead of the Wiener–Hopf factorization,
the key role is played now by the well-known formula which relates Toeplitz and
Hankel matrices.

Theorem 3.1. Let b be the symbol of the form

b(t) =
∞∑

j=−1

bjt
j , β = β(b) :=

∑
j≥0

(j + 1)|bj | <∞. (3.2)

Then the QRG condition (3.1) holds for the Toeplitz operator Tb.

Proof. By the Wiener Theorem, the relation w /∈ b(T) implies that

a(t) = a(t, w) :=
1

b(t)− w
=

∞∑
j=−∞

aj(w)tj ,
∞∑

j=−∞
|aj(w)| <∞,

belongs to the Wiener algebra W , and the Toeplitz operator Ta is well defined.
Note, that, in general, Ta 6= (Tb − w)−1. Recall that ρ(Tb) = Ω(b), so

wind(b(t)− w) = wind a = 0

for w ∈ ρ(Tb), and, in particular, both operators Tb − w and Ta are invertible.

The main ingredient of the proof is the following well-known formula, which
relates Toeplitz and Hankel matrices (see, e.g., [6, Proposition 1.12])

Tuv = Tu Tv +HuHṽ, u, v ∈ L∞(T), ṽ(t) := v(t−1). (3.3)

Here Hu is the Hankel matrix of a symbol u

u(t) =

∞∑
j=−∞

ujt
j , Hu = ‖ui+j−1‖i,j≥1. (3.4)



On the Growth of the Resolvent of a Toeplitz Operator 493

With u = a, v = a−1, we come to

Ta Ta−1 = B := I −HaHã−1 . (3.5)

The operator on the LHS is invertible, and so is the one on the RHS. Hence

T−1
a−1 T

−1
a = B−1, T−1

a−1 =
(
Tb − w)−1 = B−1 Ta,

and we come to the following bound for the norm of the resolvent∥∥∥(Tb − w)−1
∥∥∥ ≤ ∥∥B−1

∥∥ ‖Ta‖. (3.6)

The last term equals

‖Ta‖ = ‖a‖∞ =
1

mint |b(t)− w|
=

1

dist(w, b(T))
≤ 1

dist(w, σ(Tb))
,

so ∥∥∥(Tb − w)−1
∥∥∥ ≤ ∥∥B−1

∥∥
dist(w, σ(Tb))

. (3.7)

To obtain the bound for the numerator on the RHS (3.7), we need certain
additional assumption on the symbol.

Since Hankel matrices (3.4) are determined by the Fourier coefficients with
positive indices, we have

dimH
ã−1 = 1, H

ã−1 = 〈·, e1〉 b−1e1,

and

HaHã−1 = 〈·, e1〉ϕ, ϕ := b−1

∞∑
i=1

aiei, ai = ai(w),

B = I − 〈·, e1〉ϕ.

Since B is invertible, it has no zero eigenvalue, so

Bϕ = ϕ− 〈ϕ, e1〉ϕ = (1− b−1a1)ϕ, 1− b−1a1 6= 0.

It is a matter of a direct computation to verify that

B−1 = I +
〈·, e1〉

1− b−1a1
ϕ,

and we come to the bound ∥∥B−1
∥∥ ≤ 1 +

‖ϕ‖
|1− b−1a1|

. (3.8)

We proceed with the numerator in (3.8)

‖ϕ‖2 = |b−1|2
∞∑
i=1

|ai|2 ≤ |b−1|2 ‖a‖2L2(T) = |b−1|2
∫
T

m(dt)

|b(t)− w|2
,
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and hence

‖ϕ‖ ≤ |b−1|
dist(w, σ(Tb))

. (3.9)

The bound for the denominator in (3.8) is more complicated. Recall that

P (z, w) = z(b(z)− w) = b−1 + (b0 − w)z + b1z
2 + . . . , |z| ≤ 1, b−1 6= 0,

so

a(t, w) =
1

b(t)− w
=

t

P (t, w)
.

The function can be extended as a meromorphic function on the unit disk, con-
tinuous up to the unit circle. We also have a(0) = 0, and this is the only root of
a in the closed unit disk. As wind a = 0, by the Argument Principle, there is the
only root ζ0 = ζ0(w) of P there

P (ζ0, w) = 0, |ζ0| < 1, ζ0 6= 0 (P (0, w) = b−1).

Next, for the Fourier coefficient a1 we have

a1(w) =

∫
T
a(t, w)t−1m(dt) =

∫
T

m(dt)

P (t, w)
=

1

2πi

∫
|ζ|=1

dζ

ζ P (ζ, w)
.

By the Residue Theorem,

a1 =
(

Res 0 + Res ζ0

) 1

ζ P (ζ, w)
=

1

P (0, w)
+

1

ζ0 P ′(ζ0, w)

=
1

b−1
+

1

ζ0 P ′(ζ0, w)
.

Hence,

1

1− b−1a1
= −ζ0 P

′(ζ0, w)

b−1
,

1

|1− b−1a1|
≤ |P

′(ζ0, w)|
|b−1|

, ζ0 = ζ0(w) ∈ D.

It remains only to estimate |P ′(ζ0, w)| in “appropriate terms”. Note that

P ′(ζ0, w) = (b0 − w) + 2b1ζ0 + 3b2ζ
2
0 + . . . ,

and, although the coefficients bj do not depend on w, the root ζ0 does, and it can
lie close enough to the unit circle. This is where the assumption (3.2) (i.e., the
convergence of the given series) comes in. We have

|P ′(ζ0, w)| ≤ |w|+ β,
1

|1− b−1a1|
≤ |w|+ β

|b−1|
,

and so, by (3.8) and (3.9),

∥∥B−1
∥∥ ≤ 1 +

|w|+ β

dist(w, σ(Tb))
. (3.10)
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To complete the argument, we distinguish two cases.
1. Let |w| ≥ 2‖b‖∞, then

|b(t)− w| ≥ |w| − ‖b‖∞ ≥
|w|
2
, dist(w, σ(Tb)) ≥

|w|
2
,

and hence,
∥∥B−1

∥∥ ≤ C(b) for w ∈ Ω.
2. Let |w| ≤ 2‖b‖∞. Then

∥∥B−1
∥∥ ≤ C(b)

(
1 +

1

dist(w, σ(Tb))

)
.

Finally, in view of (3.7), we come to the QRG condition (3.1). The proof is
complete.

Problem 3.2. Find an optimal function Φ so that the bound (0.2) for T = Tb
holds for all b ∈W , the Wiener algebra.
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Про зростання резольвенти оператора Теплiца
Leonid Golinskii, Stanislas Kupin, and Anna Vishnyakova

Дослiджено зростання резольвенти оператора Теплiца Tb, визначено-
го на просторi Гардi, через вiдстань до його спектра σ(Tb). Нас в першу
чергу цiкавить випадок, коли символ b є полiномом Лорана, тобто вiд-
повiдна матриця Теплiца Tb є стрiчковою. Доведено, що для довiльного
такого символу зростання резольвенти є квадратичним (3.1), а за деяких
додаткових припущень — лiнiйним (2.1). Доведено також квадратичне
зростання резольвенти для певного класу нерацiональних символiв.

Ключовi слова: оператора Теплiца, простiр Гардi, зростання резоль-
венти, полiном Лорана з властивiстю Жордана, регулярнi полiноми Ло-
рана
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