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Global Existence, Stability and Blow—up of
Solutions for p-Biharmonic Hyperbolic
Equation with Weak and Strong Damping
Terms

Billel Gheraibia, Nouri Boumaza, and Aimene Imad

In this paper, we study the initial boundary value problem for the follow-
ing p-biharmonic hyperbolic equation with weak and strong damping terms:

2 k—2
Vi + Apv — pAp v + v = wlv|" v,

Under some assumptions on the initial data, the constants p,m and k, we
prove the global existence, stability and blow-up results of solutions. The
global solution is obtained by using potential well method and the stabil-
ity based on Komornik’s inequality. We also prove that the solution with
negative initial energy blows up in finite and in infinite time.
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1. Introduction

In this paper, we study the following p-biharmonic hyperbolic equation with
weak and strong damping terms:
’kaU

vtt—l-Agv—,uAmvt—l-vt:w\v , r€Q, t>0,

v(x,t) = iv(m,t) =0, x €0, t>0, (1.1)
'U(l',()) = UO(x)a Ut(x70) = 'Ul(w)7 T E Q7

where 2 C R” is a bounded domain with sufficiently smooth boundary 0f2,
% denotes the unit outer normal derivative, p, m, k, u, and w are positive
constants, vg, v are given functions belonging to suitable spaces, AIQ, is the fourth-
order operator called the p-biharmonic operator, which is defined by AIQ)U =
A (]Av|p_2Av), and the operator A,v is the classical p-Laplacian given by Ajv =
div (|[Vo[P~2Vv).

Fourth-order differential equations arise in the study of deflections of elastic
beams on nonlinear elastic foundations. Therefore, they have important appli-
cations in engineering and physical sciences [11,18,19]. In recent years, a great
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attention has been focused on the study of fourth-order differential problems
involving biharmonic and p-biharmonic operators.

Nonlinear elliptic equations of p-biharmonic type have been studied by many
authors, especially on the existence of ground state solutions, positive solutions,
infinitely many solutions, sign-changing solutions and multiplicity of standing
wave solutions (see, for instance, [3,5,6,9,14,15,21,24,27] and references therein).

For parabolic and hyperbolc problems involving the p-biharmonic operator,
there are few papers that studied the existence, asymptotic behavior and blow-
up of solutions, see [7,8,12,16,17,25] and references therein. Liu and Guo [12]
considered the following p-biharmonic parabolic equation:

vt+AI2,U+)\|v|p72v =0, (1.2)

where A > 0 and p > 2. Under some assumptions on the initial value, they estab-
lished the existence of weak solutions by the discrete-time method. The asymp-
totic behavior and the finite speed of propagation of perturbations of solutions
were also discussed. Hao and Zhou [8] investigated the blow-up, extinction and
non-extinction of the solutions for the following p-biharmonic parabolic equation:

1
vp + A?)v = |v]? — ’Q|/Q lv|?dex, (1.3)

77%:4 < p < 2and ¢ > 0. Liu and Li [16] considered the p-

biharmonic parabolic equation with logarithmic nonlinearity

v+ AZo = X[~ log (Ju]) (1.4)

where max {1

where A > 0,p > ¢ > § + 1 and p > §. They established the well-posedness
of local weak solution and proved the long-time behavior and the propagation
of perturbations, based on the methods of difference and variation. Liu and
Fang [17] studied (1.4) with strong damping term (Awv;) and max {1, ]\%—JL} <p<

q<p (1 + %) . They established the local and global existence of solutions by
using the Galerkin approximation combined with the potential well method. They
also proved the blow-ups and growth rate of weak solvability, infinite- and finite-
time blow-up phenomena of weak solutions in different energy levels. Moreover,
they obtained the growth, lifespan and extinction phenomenon of the solutions.
Recently, Ferreira et al. [7] studied the nonlinear beam equation with a strong
damping and the p(x)-biharmonic operator

v+ A;(x)v — Avy = f(z,t,v) (1.5)

and proved the existence of local solutions by using the Faedo—Galerkin method
and the decay of energy based on the method of Nakao under assumptions on the
variable exponent p(-).

Particularly, when p = 2, problem (1.1) is reduced to the Petrovsky equation,
which has already been discussed by many authors. For example, Messaoudi [20]
studied the following problem:

vy 4+ A% 4 o™y = |u[P 20, (1.6)
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and established an existence result and showed that the solution continues to
exist globally if m > p and blows up in finite time if m < p and the initial
energy is negative. Wu and Tsai [26] proved the global existence and blow-
up of the solution to problem (1.6). Chen and Zhou [4] extended the blow-up
result of [20,23] to the solution with positive initial energy. Li et al. [13] studied
(1.6) with strong damping term (Av;) and proved the global existence of the
solution under conditions without any relation between m and p and established
the exponential decay rate. Piskin and Polat [23] proved the decay estimate of
solutions by using Nakao’s inequality to the problem considered in [13].

In the present paper, we are concerned with the global existence, stability,
and blow-up results to the initial boundary value problem for the p-biharmonic
hyperbolic equation with weak and strong damping terms.

The plan of the paper is as follows. In Section 2, we introduce the Lebesgue-
Sobolev spaces and give some notations and preliminary lemmas. In Section 3,
we establish the global existence of the solution. Section 4 is aimed to state and
prove the stability result. In Section 5, we prove the blow-up of solutions.

2. Preliminaries

In this section, we give some notations, assumptions, and lemmas which will
be used throughout this paper. We denote by ||v||; and (-,-) the usual L7((2)
norm and the inner product in 1?(f2), respectively. Moreover, we also denote

(vi,v2)u = / (Vv Vg + v1v9) d,
Q
and the norm induced by the product (vq,vz), is

ol = (v, 0),.

Then ||v||, is an equivalent eccentric module over Hg () due to u > 0.
For the Sobolev spaces norms, we use the notations

[vllg == [vllype = [IVollg and [vllag == [Jvlly20 = [|Av]lg, 1 <g < o0,

Let ¢, and ¢, be the optimal constants of Sobolev embedding which satisfies the
inequalities
[vllq < cqllVoll2, v e Hy(), (2.1)

and
IVolly < el Avflz, v e HF(Q). (2.2)
To state and prove our results, we need the following assumptions:

(Hy) 2<p<m<Ek;
(H2) 2 <p <k

(H3) p<k<

, N2> p.
n-—p
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Now we are ready to state the local existence of problem (1.1), whose proof can
be found in [ [1,2,22].

Theorem 2.1. Assume that (Hy), (H3) hold. Then, for every vy € WOQ’p(Q)
and vy € L*(Q), problem (1.1) admits a unique local solution in the class

ve L= (0, TEWeP(Q)), v e £ (0,73 2@) N L™ ([0, 71 Wy ™(2))
We define the energy function associated with problem (1.1) as follows:
1 1 w
E(t) = 5”%”% + EHA’UHIIZ - EHU”’/? (2.3)
Lemma 2.2. The functional E(t) defined in (2.3) satisfies

E'(t) < —pl Vol — o3 < 0. (2.4)

Proof. Multiplying the first equation in (1.1) by v:(¢) and integrating over £2,
we get (2.4). O

Lemma 2.3 (Komornik, [10]). Let E : Rt — R™ be a nonincreasing function,
assume that there are constants a, ¢ > 0 such that

+oo
/ E“TY(t)dt < AE(S), S >0.
S

Then
AE(0)

E(t) < q L+t
AE(0)e™¢t, ¢t >0, ifa =0,

t>0, ifa>0,

where k and ¢ are positive constants independent of the initial energy E(0).

3. Global existence

The aim of this section is to prove the global existence of solutions for problem
(1.1). For this goal, we put the following functionals:

I(t) = || Av|p — w]oll}, (3.1)
1 w k
J(t) = ];IIAUIIZ - Ellka- (3.2)
Then we have ]
E(t) = 5”%”% + J(1). (3.3)

Lemma 3.1. Assume that (Hy), (H3) hold. For any uy € Wg’p(ﬂ) and uy €
L2(Y) such that

I(0) >0 and ~=wckcke [ ( k]‘“_pp)E(O)] <1, (3.4)

we have
I(t) >0, t>0. (3.5)
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Proof. By continuity of v(t), there exists a time T, < T such that
I(t) >0, tel0,T,]. (3.6)
From (3.1), (3.2) and (3.4), we have

70 = 110 + Co D au = EoDyau, (3.7)

By using (3.7) and Lemma 2.2, we obtain

k'p

80l < () < 2 Blt) < 2 E(0) (3.8)

Exploiting (2.1), (3.2), (Hy1), and (3.4), we obtain

wlvllf < wepll Volly < wegellAvls < wegcie]| Avlly

k—p
_kaCkaHAUHpHAUHk P < wc Fep [(kk_pp)E(O)] ! |Av][D
=7[|Av|]F < [|Av|[D, € [0,T7]. (3.9)
Therefore, we conclude that
I(t) >0, Vte|[0,Ty].
By repeating the procedure, T} is extended to T ]

Remark 3.2. According to (3.3), (3.7), (H1), and Lemma 3.1, we deduce that
E(t) is positive.

Theorem 3.3. Assume that the conditions of Lemma 3.1 hold, then the so-
lution of (1.1) is global and bounded.

Proof. By virtue of (2.4), (3.3) and (3.7), we obtain

1 1 (k—p)
E(0) > E(t) = Slluell3 + J(t) > Sluell3 + A7, (3.10)
2 2 kp
which means
w3 + Aol < KE(0), (3.11)
and this shows that the local solution is global and bounded. O

4. Stability

In this section, we state and prove the stability result of solution to problem
(1.1) by using Komornik’s method.
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Theorem 4.1. Assume that the conditions of Lemma 3.1 hold. Then there
exist two positive constants \ and  such that

E(t)<(>\)l/a £>0, ifo>0,
E(t) < Xe™ t>0, ifoc =0.

Proof. Multiplying the first equation in (1.1) by v,E°(t) (¢ > 0) and inte-
grating over 2 x (5,7, we have

T T
/ Ea(t)/ [vtt—Aiv—MAmvt—i—vt vdx dt = Uw/ E°(t) |v\kdxdt, (4.1)
S Q S Q
which gives

/E” /[ (vpv) — \vt]2+|Av\p+u]V’ut\m_2VvtVU+vtv—w\vlk]d:rdt—0.

(4.2)
Using the definition of E(t), we see that

o o d p 2
/ E°(t) dt = / E ()/Q{—dt(vtv)wt(2+1) [
m—2 p k
— p|Vuyl VoV — nv +w (1 — %) ] } dx dt. (4.3)

On the other hand, we have

CZ [Ea( ) /Q vtvd:c] — o () E° (1) /Q vtvdac—i—E”(t)% [ /Q vtvdx}

Then inequality (4.3) becomes

T T T g4
p/ EoTN(t) dt:a/ E"l(t)E'(t)/ vtvdac—/ [E"( )/ vtvdaz] dt
s s Q s di Q
T
]3 o 2 . B e k
+<2+1)/S E (t)/Q|vt| dwdt +w (1 k>/s E (t)/Qm dz dt
T T
—,u/ E”(t)/ |Vvt]m_2Vvthdmdt—/ E”(t)/ vodrdt. (4.4)
s Q s Q

In what follows, we will estimate the right-hand side terms in (4.4). Exploiting
(2.4), (3.3), (3.8), and (3.9), we obtain

/ E7(t)|jve||3 dt < / E°(t) (E'(t)) dt < c1 [E7T(S) — E7TH(T)]
< clE"“(S) < c1E7(0)E(S) (4.5)

and

k T
/ Bt ||v]kdt<7/ o @avipde <o [ BT Wd (40
S
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By using Young’s inequality, (4.5) and (4.6), we get
g g K/ (k1)
/ Ecr(t)/ v de dt < / B (1) [eloll} + eelludl [543 at
S Q S
T k 2
< [ B [Eloll + cocglnl] o
r r k/2(k—1)
gch/ EU+1(t)dt+c€cg/ E°(t) (-E'(t)) dt
S S
T
< (e+c)ea / E°TYE(t) dt + c.c3E(S), (4.7)

S

where ¢, is the best embedding constant of L?(Q) — L¥/(*=1)(().
Analogously to (4.7), we have

a/T E"l(t)E'(t)/Qvtvdxdt

S

T
<o [ B (<EW) [sloll + cocelonl o] de

° T
< (et eden [ B0+ BTN ) (<E ) de
S
< (e+ce)sE(S) (4.8)

and
_ L Tjt [E"(t) /Q Utvdx] dt
_ E7(S) /Q o (S)o(S)dx — E7(T) /Q o (T)o(T) dae

< E°(S) /Q e (S)0(S)| da + E° (T) /Q lor(TYo(T)| da

(e + coce) [ETTH(S) + E7TH(T)]

<
<(e+c)uE(S) < (e+ce) e E(S). (4.9)

For the last term of (4.4), by using Young’s inequality, (2.2), (H1), (2.3), (3.11),
and Lemma 2.2, we obtain

T T
u/ E"(t)/ \Vvt]””‘QVvthda:dtgu/ B () [ Vol + co || Vi) dt
S Q S
T
< u/ E°(t) [sc’*”cmHAvHZ1 —I—CEHVthﬁ] dt
S
T T
—cucl'e” [ B Auly P Avlde + con [ B (0Tl d
S S

T T
< epcme™ (KE(0))™" [5 B (1) Alf? dt + - /S E(t) (~E'(1)) dt
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= ¢ecs /ST E°TYt) dt 4 c. /ST E°(t) (_E/(t)) dt
< ecs /T E°TN () dt + c.c B (0)E(S). (4.10)
S

Inserting (4.5)—(4.10) into (4.4), we get

T
(p(1 =) — (= + c)er} / EH(t) dt < esB(S). (4.11)
S
Since 0 < v < 1, then p(1 —«) > 0. We choose € small enough such that

p(1 —7) —ecy > 0.

Then inequality (4.8) becomes

/T E7TN(t)dt < AE(S).
S

By taking T' — oo, we get
o
/ EoTN(t) dt < ME(S).
S
Thus Komornik’s lemma provides the desired result. ]

5. Blow-up

5.1. Finite-time blow-up: case m > 2

Theorem 5.1. Let (H;), (H3) and E(0) < 0 hold. Then the solution of
problem (1.1) blows up in finite time T™.

Proof. Set
H(t) = —E(t). (5.1)
Then (2.3) and (2.4) give us
H'(t) = —E'(t) > u|Vor|m + o3 = 0 (5.2)
and w
0 < H(0) < H(t) < L |lvlli, ¢ €0, 7). (5-3)
Next, we define
O(t) = H%) + 5/ vuydz, (5.4)
Q

where ¢ > 0 is a small constant that will be chosen later and 0 < 6 < 1.

2
Differentiating (5.4) with respect to ¢ and using (1.1), we have

L'(t) = (1= O)H (O H'(t) + ellvel)3 — ell Aulh + ewlv]|
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—u/ V|2V Vo d —/vtvdx. (5.5)
Q Q
Similarly to (4.7) and (4.10), for any n > 0, we obtain

v m72v \V4 775” Vo™ m—1 _mwil \V4 m
1% | Ut‘ Vg vdz < 2 || U||m+u UA H Ut”m
Q m m

m m—1 —zm
< per Mol + "Ly B (56)
and
T e 2
[ vwds < B oll+ ey}
Q

T S S

< Bl + " (W) HHE). (57)

Inserting (5.6) and (5.7) into (5.5) and using (5.1), we get

—1 _m E—1 -k
r'(t) > {(1 —0)H(t) — em 1 Tl — e, 172 ot } H'(t)
refsa }Wﬂb+s{ }|Amw+ew{1—§}nw&
m 772 —k/(k—1)
— et Avl = Rjjollf + e (¢ — e, HE (59)
for any & > 0.
By taking
_m—1 k _k:T
m m
= H? = |ho———H(t
m [mm — (t)] and 79 [/@2 el — 1) ( )] ;

where k1 and kg are positive constants to be specified later, we see that
() > {(1—0) —e (k1 +r2)y HO()H'(t) + ¢ {g + 1} [vell3

+e{§‘1}!AM@+ew{1‘i}Hw@—c%fwvﬁwkﬂamAw@

— gy O @)Jollf + e (€ - esny ) H), (5.9)
where co and c3 are positive constants, which depend only on m and k, respec-

tively.
Exploiting (5.3), (3.9) and (3.11), we get

o( ) ( )
e HO D (1) < ey (2 |olf < oo (L]Av|?
k k
0(m—1)
< e <%KE(O)> = . (5.10)
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In a similar way, we obtain

O(k—1)
CgHe(k_l) (t) S C3 (% >
Substituting (5.10) and (5.11) into (5.9), we have

I'(t) > {(1— ) — e (w1 +r2)} H (1) H'(2)

ve (6= aond ) HO+ 2 {§ + 1]
—i—e{f}—l—cmnl m}HAv|p+5{w (1—]§> — Cpky” ’“}||vy§. (5.12)

At this point, we choose our constant carefully. First, we choose p < £ < k such

KE(0) = Cj. (5.11)

that
§—1>0 and 1—§>0.
P k
For any fixed &, we choose k1 and ko so large that
5 1-m

= —=1-cpr; " >0 and w(l—i)—ckka;k>0.
b

Once k1 and ko are fixed, we choose € > 0 small enough such that

(1-0)—e(k1+K2) >0 and T(0)=H"%0)+ 5/ vouy d.
Q

Then inequality (5.12) becomes
©(0) 2 7 (ol + 180l + ol + H (D) (5.13)

where v is a positive constant.
On the other hand, we have

Ffle(t) < cp {H(t) + [/Q VU dx] 119} . (5.14)

Applying Hélder’s and Young’s inequalities, we have

‘/ VU da:

Taking 0 = 2(1 — ¢), which gives %5 = 155, we deduce that

[ 1—29’
1
‘/ U’Utdx < c3 <HvH1 04 \Ut\@) . (5.15)

Exploiting (3.9), (3.11) and (5.3), we obtain

1
= v 9
< sl el < e (!vll,i" n W;e) |

H(t)
H(0)

2
vl e <7’CHAUIIM1 <yt (KE(0) T < calfollf- (5.16)
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A substitution of (5.15) and (5.16) into (5.14), gives us
_1
e (t) < A (el + ollf + H@) - (5.17)

It follows from (5.13) and (5.17) that

1

I'(t) > k10 (t), t>0, (5.18)
where £ is a positive constant. A simple integration of (5.18) over (0,t) yields
1

I S
7 (0) — £2

' (t) >

Therefore, I'(t) blows up in a finite time 7% and 7% < 1 -6/ (H@F%(O)). On
the other hand, from the definition of I'(¢) and (5.3), it follows that the norm of
||v||x of the solution blows up in a finite time. This completes the proof. O

5.2. Infinite-time blow-up: case m = 2

Theorem 5.2. Assume that (Hz)—(Hz) hold. For any (vp,v1) € WOQ’p(Q) X
L?(Q), the solution of problem (1.1) blows up as time t goes to infinity.

Proof. Suppose that the solution v is global. Then, for any 7" > 0, we define
the following auxiliary function:

D(t) = T(v) = ||v]3 +/0 lo(r)II5 dr + (T = t) [|vol[- (5.19)

It is clear that I'(¢t) > 0 for all ¢ € [0,7]. By the continuity of I'(¢), we obtain
that there is £ > 0 such that

I(t) >k forallte0,T], (5.20)

where k is independent of T. Taking a derivative of (5.19) with respect to t,
using (1.1) and (3.1), we obtain

() —2/vitdx—|—(\vHi— HUOH,%) —Q/Qz)vtd:r—i—?/o (U(T),vt(T))MdT (5.21)
and

" (t) = 2| wel3 + 2{ver, v) + 2(v, v1)
= 2|juel|3 — 2l Avlf + 2wlv]l§ = 2]lwell3 - 21(2). (5.22)

On the other hand, from (5.21), we have

(T'(6))% = 4 </Q - dx>2 44 (/Ot (0(7), (), d7>

2
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-+gévwdx4ﬂp@)mu»#m:

By using Holder’s and Young’s inequalities, we obtain

2
(LUW¢Q < o3l

(/Ot (v(7), ve(7)),, dT)2 < /Ot ||v(r)||idr/0t lou(7)|2 dr

(5.23)

(5.24)

(5.25)

/mm/ m<mp/m mm+mm/u DI dr.

By (5.24)—(5.26), inequality (5.23) becomes

o) <afiol+ [ 1o ar] [+ [ i o

<400 [l + [ (o)1 ]

It follows from (5.19) and (5.27) that

(5.26)

(5.27)

Hﬂfﬁw—(W@D222NﬂUWM%—I@ﬂ—4F@)Hw%%:£Hwhﬂﬁdﬂ

=F@ﬂ—%w%—ﬂﬂw—4ﬁHw&ﬂ%h]=ﬂﬁdm

where
((t) = 23 - 200 /wtmm
Using (3.1), (3.2), (3.11), and Lemma 2.2, we obtain

C(t) = 4J(t) — AE(t) — 2I(t /QHW )2 dr

:Qw(k )

> 2w

%; MM@2<K;2+2>Emy

Since k, p > 2 and E(0) < 0, we conclude that
¢(t)y>v>0.
Then, by using (5.31), we get

T () — (I'(1)* > Tty >0, te0,T).

t
lollf — 222 IIA 15— —4/ o (7|7, dr
p 0

O]

(5.28)

(5.29)

(5.30)

(5.31)

(5.32)
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It is clear that o
(InT(t)) = F((t)) (5.33)

and

) _ DOI(1) — ((1)?
(T(1))?

From (5.34), we deduce that (InT'(¢))" is increasing on ¢. A simple integration of
(5.33) over (to,t) yields

(InT(#)) > 0. (5.34)

t

InT'(t) — InT'(tp) = / (InT'(7)) dr

_ [T o Do),
_/to P(T)d > (o) (t—to), 0<ty<t. (5.35)

Then

I (to)
[(t) > T'(to) exp (t—to) |- (5.36)
I'(to)
If we take to sufficiently small such that I''(tg) > 0 and I'(¢y) > 0, then, from
(5.36), we deduce sufficiently large ¢,
lim T(t) = +oo. (5.37)

t—+00
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I'smobasibHe icHyBaHHsI, CTIIKIiCTh Ta PYHYBaHHS
PO3B’s3KiB i p-OirapMoHIYHOTO rinep060JiYHOro
PiBHSIHHS 31 CJIAOKMMU TAa CUWJIbHUMU JieMdyBaIbHUMU
qIeHaMu

Billel Gheraibia, Nouri Boumaza, and Aimene Imad

YV 1mifi crarTi MU JOCTIPKYEMO IMOYATKOBO-KPAWOBY 3aJady I  p-
6irapMOHIIHOTO TirepOOTIYHOTO PIBHAHHS 31 CJIAOKUMU Ta, CHUJIBHUMHI JIEM-
1 yBaJbHIMYI YJIEHAMU:

vy + A?}v — uA vy + vy = w20,
IIpu nmestkmx TPUIYIIEHHSIX HA MOYATKOBI JaHi, ctaji p, m Ta k, MA 10Be-
s ro0aJibHe iCHyBaHHS, CTIHKICTH Ta pPe3yJbTaTH CTOCOBHO DPYITHYBAHHS
po3B’a3kiB. [mobambHnit pO3B’I30K OE€PKAHO METOIOM MTOTEHITIAJILHOI SIMH,
a CTifiKicTb I'pyHTyeThca Ha HepiBHOCTi Komopnika. Takoxk joBeseHo, 110
PO3B’SI30K 3 BiJI €MHOIO [TOYaTKOBOIO €HEprieo BUOyXa€ 3a CKIHUeHHMIT Ta 33
HECKIHYeHHUI Jac.

KrouoBi cioBa: p-6irapMoHituHe PiBHSHHS, JeMII(yBaIbHI YUIEHU, TJI0-
OaJibHe iCHYBaHHSI, CTIHKICTD, pyWHYBAHHS
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