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Exploring the Properties of f-Harmonic
Vector Fields
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In this paper, our objective is to explore specific characteristics of f-
harmonic vector fields. Firstly, we delve into the properties of an f-harmonic
Killing vector field when it acts as an f-harmonic map between a Rieman-
nian manifold denoted as (M, g) and its tangent bundle (T'M,gs), which
is equipped with the Sasaki metric. We emphasize this investigation when
(M, g) takes the form of either an Einstein manifold or a space form. Sec-
ondly, we study the traits exhibited by an f-harmonic vector field between
a Riemannian manifold (M, g) and its tangent bundle TM equipped with
either a deformed Sasaki metric gpg or a Mus—Sasaki metric ggr. Lastly, we
conclude this article by providing insightful examples of f-harmonic vector
fields in the context of the Heisenberg group.
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1. Introduction

Harmonic maps between Riemannian manifolds act as critical points for the
energy functional. They minimize the energy or mathematical action linked to
the mapping process and provide solutions to the Laplace—Beltrami equation.
Harmonic maps find applications in various areas, including physics, such as in
the study of minimal surfaces. This concept has been the subject of extensive
research. Additionally, mathematicians have developed variations of harmonic
maps, including p-harmonic maps and exponentially harmonic maps. p-harmonic
maps generalize harmonic maps by taking into account more general elliptic par-
tial differential equations. The Laplace-Beltrami equation corresponds to the
case when p = 2. p-harmonic maps are solutions to the p-Laplace equation, and
they provide a broader framework for studying mappings between manifolds.
Exponential harmonic maps introduce nonlinearity to the harmonic map equa-
tion using exponential functions. They find applications in geometric analysis
and have been studied extensively in relation to geometric flows. f-harmonic
maps represent a broader and more generalized category compared to harmonic
maps, p-harmonic maps, or exponentially harmonic maps in the field of differen-
tial geometry and mathematical analysis. They are critical points of an energy
functional that involves a general function denoted as f (hence, f-harmonic).
This function f can introduce additional complexities and variations into the
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harmonic mapping problem. The specific properties and behavior of f-harmonic
maps depend on the choice of this function and the underlying Riemannian man-
ifolds. f-harmonic maps serve as a versatile tool for studying mappings between
Riemannian manifolds with diverse and customizable properties. Researchers
explore various facets of f-harmonic maps to gain insights into their behavior,
properties, and applications across a wide array of mathematical contexts. Their
versatility makes them a valuable subject of research in the realm of differential
geometry and mathematical analysis.

f-harmonic vector fields are significant in the study of Riemannian manifolds
and mappings between them. This paper explores various aspects of f-harmonic
vector fields analyzing and drawing conclusions for each situation.

Given a smooth map ¢ : (M™, g) — (N", h) between two Riemannian mani-
folds, the second fundamental form of ¢ is defined by

(Vde)(X,Y) = Vidp(Y) — dp(VxY).

Here, V represents the Riemannian connection on M™, and V¢ denotes the pull-
back connection on the pull-back bundle ¢~ 'T'N. The f-tension field is defined
as

74(¢) = Trg Vfdo = f7(¢) + do(grad, f),

where f : M — R4 is a smooth positive function and 7(¢) = Tr, Vdo (see
[3,11,12,19]). Here, Tr, represents the trace operation with respect to the metric
tensor g. Also, ¢ is said to be f-harmonic if and only if 7;(¢) = 0 or equivalent
to

7(¢) = —dg(grad, In f). (1.1)

The existence and explicit construction of f-harmonic mappings between Rie-
mannian manifolds (M™, g) and (N, h) represent fundamental problems in the
theory of f-harmonic mappings [5,6,9,13,14,18,21,24]. Nonetheless, the absence
of a comprehensive existence theory for f-harmonic mappings adds intrigue to the
quest for f-harmonic maps represented by vector fields functioning as mappings
from the Riemannian manifold (M™, g) to its tangent bundle 7M.

The contributions of this article are as follows. Firstly, the paper explores the
properties of f-harmonic vector fields under specific assumptions. It investigates
the case where (M™,g) is an Einstein manifold. Particularly, it focuses on f-
harmonic Killing vector fields as f-harmonic maps from (M™,g) to its tangent
bundle (T'M, gs) equipped with the Sasaki metric. The results are presented
in Theorem 3.2 to Theorem 3.4. Secondly, the paper extends its study to f-
harmonic vector fields between (M™,g) and its tangent bundle (T'M, gpg) (or
(T'M, gsr)), which are equipped with deformed Sasaki metrics (or Mus-Sasaki
metrics). The properties and characteristics of these f-harmonic vector fields are
examined and outlined in Theorem 4.4 to Theorem 4.6 (respectively, Theorem
5.3 to Theorem 5.4). The paper concludes by providing illustrative examples of
f-harmonic vector fields on the Heisenberg group, offering practical insights into
these concepts and their applications. This paper delves into the properties and
characteristics of f-harmonic vector fields, focusing on specific scenarios such as
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Einstein manifolds and Riemannian manifolds equipped with deformed Sasaki
or Mus—Sasaki metrics. These investigations contribute to the understanding of
f-harmonic mappings and provide valuable insights into their behavior in various
mathematical contexts.

2. Preliminaries

Consider an m-dimensional Riemannian manifold M™ endowed with a Rie-
mannian metric g and let T'M represent its tangent bundle denoted by 7 : TM —
M™. When a system of local coordinates (U, x') is established within M™, it nat-
urally gives rise to a system of local coordinates on T'M . These coordinates can be

expressed as <7r_1 U),zt, 2l = u2> ,i=m+i=m+1,.. 2m. Here, (u') repre-

sents Cartesian coordinates within each tangent space TpM at a point P € M™.
These coordinates are defined in relation to the standard basis { 8?01' P}, where
P denotes an arbitrary point within U and is characterized by coordinates (z?).

For a vector field X = X* 8(2:i on M™, the vertical lift, denoted as VX, and
the horizontal lift, denoted as X, with respect to the induced coordinates, are
expressed as follows:

VX =X, X = X0, — wT! X"0..

Here, 9; represents 8% and 0; represents %, while ng denotes the coefficients

of the Levi-Civita connection V associated with the Riemannian metric g [22].

Specifically, we define the vertical spray, denoted as ", and the horizontal
spray, denoted as fu, on TM as follows:

Vu = u'V(0;) = u'o;, Ay, = utH(9;) = ulo;,

where 0; = 0; — u’I'7 O Y is also known as the canonical or Liouville vector
field on T M.

The bracket operation between vertical and horizontal vector fields is deter-
mined by the following formulas [8,22]:

X, 7y ] = H1x,v] =Y (R(X,Y)w),
[HX’ VY] - V(VXY)a
VX,Y] =0

for all vector fields X and Y on M™, where R represents the Riemannian curva-
ture tensor associated with the metric g.

Lemma 2.1 ([12]). Let ¢ : (N,h) — (N, h) constitute a Riemannian immer-
sion. Then, for any smooth map ¢ : (M™,g) — (N,h), the tension field 7(¢)
corresponds to the projection of the tension 1 o ¢ onto N.
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3. The tangent bundle with the Sasaki metric

First, we consider the vector field ¢ as a map from the Riemannian manifold
(M™ g) into its tangent bundle (T'M, gs) equipped with the Sasaki metric. In
this section, we will give the necessary and sufficient conditions for ¢ to be the
f-harmonic map. Also, some special cases (Killing vector field, constant norm,
real space form) are considered.

The Sasaki metric is a well-established Riemannian metric for the tangent
bundle of a Riemannian manifold. It was first introduced by mathematician
Sasaki in 1958 and has since become a fundamental concept in Riemannian ge-
ometry. The metric provides a powerful framework for understanding the geom-
etry and properties of tangent bundles associated with Riemannian manifolds.
The Sasaki metric, denoted as gg, on the tangent bundle TM of a Riemannian
manifold (M™, g) is uniquely determined by the following set of properties:

gS(HXaHY) :g(X,Y),
gS(VXa HY) = gS(HX> VY) =0,
gS(VX7VY) :g(X,Y)

for all vector fields X,Y on M™ (see [10,15]).

Lemma 3.1 ([10,15]). Consider a Riemannian manifold (M™,g). If we have
vector fields X,Y on M™, as well as a point (xz,u) in the tangent bundle T M,
with the property Y, = u, then we can express this relationship as follows:

dCCX(YﬂU) = H}/(ac,u) + V(va)(z,u)u
7(X) = — Try {"R(V. X, X) + =V VX }.

From (1.1) and Lemma 3.1, we have the following theorem.

Theorem 3.2. Suppose we have a Riemannian manifold (M™,g) and its
tangent bundle (T'M, gs) equipped with the Sasaki metric. In this context, the
vector field ¢ : M™ — TM s considered as an f -harmonic vector field if and
only if the following conditions are satisfied:

Try R(V.(, ¢)* = grad,(In f), (3.1)
Try V3¢ = =V grad (n £)C- (3.2)

As a partial case. If ( : M™ — TM is a Killing vector field, then ¢ is an
f-harmonic vector field if and only if the following conditions are satisfied:

Trg R(V*C7 C)* = gradg(ln f)7
Q(C) = Vgraudg(lnf)g'

Proof. The proof comes directly from the fact that if ¢ is a Killing vector
field, then Tr, V¢ = —Q(¢) [1]. O
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Corollary 3.3. Consider a Riemannian manifold (M™, g) and its tangent
bundle (T'M, gs) equipped with the Sasaki metric. If ( : M™ — T'M is a vector
field with constant norm (|| = const), then ¢ is an f-harmonic vector field if and
only if ¢ is parallel and f = const.

Proof. Since |g(¢, ()| = const, we can conclude that

9(V3¢,¢) = —|V¢)?

and
g(vgradg(ln f)Cv C) =0.

Thus, from (3.2), we deduce that V{ = 0 and from (3.1), we can infer that f is
a constant. O

Theorem 3.4. Let (M™(c),g) represent a real space form manifold and
(TM,gs) denote its tangent bundle equipped with the Sasaki metric. In this con-
text, the vector field { : M™ — T M 1is an f-harmonic vector field if and only if
the following conditions are satisfied:

cV( —cTrg g(Vi(, ¥)¢ = grad,(In f), (3.3)
Tl"g V2C = _vgradg(lnf)C‘

Furthermore, if the vector field ¢ : M™ — TM 1is a Killing vector field, then the
relations (3.3) and (3.4) can be simplified as follows:

cVe( = gradg(ln ),
c(m - 1)C = *vgradg(lnf)Cv

and ¢ is an f-harmonic vector field if and only if f = const, and (M™, g) is flat
orm =1, and ( is itself parallel.

Proof. Let {E;}i=1,.. m be an orthonormal basis on (M™,g). By employing
for all vector fields X,Y and Z on M™, we can derive the following:

= CZ [9(¢, E)VEC—9(VEC E)C

=cVe( —cTry g(Vi(, *)C.

Referring to the Killing vector fields properties, we can observe that the re-
lations (3.3) and (3.4) transform into the relations (3.5) and (3.6), respectively.
Additionally, we can establish the following relationship:

C(m - 1)’(’2 = g(vgradg(lnf)g7 C)
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By manipulating this equation, we can further deduce:
c(m = 1)[¢]* = —c| V¢

This implies that ¢ = 0, or m = 1, and V{ = 0. Consequently, from (3.5), we
can conclude that f is a constant. O

4. The tangent bundle with a deformed Sasaki metric

In this section, our focus shifts towards the investigation of f-harmonic vector
fields when they serve as mappings from the Riemannian manifold (M™, g) to
its tangent bundle. The tangent bundle is equipped with a particular class of
Riemannian natural metrics, which are derived through the vertical deformation
of the Sasaki metric. We refer to this specific metric as to a deformed Sasaki
metric. It is worth noting that this class of metrics encompasses the Cheeger-
Gromoll metric as a special case providing a broader framework for our study
(for more comprehensive details, see [7]).

Definition 4.1. We define a deformed Sasaki metric, denoted as gpg,
on the tangent bundle TM of a Riemannian manifold (M™,g) using smooth
functions o and 3, both defined on the positive real numbers R™. This metric is
defined as follows:

gps("X, 1Y), = g2(X,Y),
gps("X,'Y), = 0,
g5 ("X, YY)y = a(r)go(X,Y) + B(r)g.(X, u) gz (Y, w),
where X and Y belong to the space of smooth vector fields on M™, p = (z,u) €
TM, r=g(u,u), o>0anda+ Br >0 (see [7]).
Remark 4.2.

1) If « =1 and 8 =0, then gpg is the Sasaki metric [20].
2) If B =0, then gpg is one case of the Mus—Sasaki metric [23].

1
) fa=p= g then gpg is the Cheeger—Gromoll metric [2].
r

Let us establish our notations:

o/ B—d

aff! —2d/3

A=a+f8r, a:E’ B:a+rﬁ’ 6= (ot 15) (4.1)
and
1= 1D +a(f — ') + (aff —26a")r] = [a+ 5 +57].

Applying Definition 4.1 and utilizing the Koszul formula, we derive the fol-
lowing lemma.
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Lemma 4.3 ([7]). When considering the Levi-Civita connection V (respec-
tively, V) of the Riemannian manifold (M™, g) (respectively, the tangent bundle
(TM,gps)) and denoting R as the Riemannian curvature tensor of (M™, g), we
can express the following relationships:

+ [B92(X,Y) + 69:(X, u) g (Y, 1) | Up,

where X, Y are vector fields on M™, p = (z,u) € TM and U, is the canonical
vertical vector at p, defined as U, = ui% e T,(TM).

By utilizing Theorem 4.3 and (1.1), we obtain the following lemma.

Lemma 4.4. Consider a Riemannian manifold (M™, g) and its tangent bun-
dle TM equipped with the deformed Sasaki metric gps. For a smooth vector field
C: M™ — TM, we have the following relationship:

7(¢) = VTry [V + 2ag(V.(, O Vi€ + BIV.C*C
+09(V+¢,¢)*Cl + [ Try R(¢, V.0)4,

where r = g((,¢) and @, 3 and & are smooth functions defined by (4.1).

Proof. Let (z,u) € TM, ¢ be a vector field on M™ with the property
that (; = u and let {E;},_17; be a local orthonormal frame on M™ such that
(V%{Ez)x = (0. Then

(e = Y _{(VEdC(E:))2 — dC(VE Ei)a}
=1
= > V) W (E ) = DAV #m, 479,00 ("Ei + (VE) o)
=1

i=1

i=1

By using Lemma 4.3, we obtain

NE

7(¢) = {V(VEiVEZ() + aR(¢, Vg, O FE; +2ag(VEg,C, OV (VEC)

1
+ (BIVECR +39(VEC 0N

o
I
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m

= > [ VEVEC+ 2a9(T 8¢ OV + BIVECEC

i=1
+09(Vi,C, O%¢| + |aR(C, VEQE.
Hence, Lemma 4.4 follows. ]

Theorem 4.5. Consider a Riemannian manifold (M™,g) and its tangent
bundle T M equipped with the deformed Sasaki metric gpg. In this context, a
vector field ¢ : M™ — TM is an f-harmonic vector field if and only if the
following conditions are satisfied:

a'Try R(V.C, O = —grad,(In f),
Trg[B [VC[* +09(V¢, O)?I¢ = = Trg [V + 2a9(VE, O VE] = Vgraa, (n )¢ (4:2)
When [(| = const, the relation (4.2) becomes
Try[B |VC[P¢ + V(] = —Verad, (in £)C-
From Theorem 4.5, we can state the following proposition.

Proposition 4.6. Under the hypotheses of Theorem 4.5 and if ( : M™ —
TM 1is a Killing vector field, then ( is considered as an f-harmonic vector field
if and only if the following conditions hold:

aTrg R(V.(,()x = —grad,(In f), (4.3)
B (Trg [V¢*)C = Q) = 3 [Vl ¢ =28 Vo€ = Viraa,au ¢ (44)

Moreover, if (M™,g) is a real space form manifold M™(c), then equations (4.3)
and (4.4) become

caV¢( = —grady(In f),
B¢(¢) = c¢(m —1)¢,
where B¢ is a real operator given for any vector field X on M™ by
BeX = B (Trg [VC*)X 48 [VeC X + 20 Vo e X + Vgrad, (1n ) X-

Therefore, ¢ is an eigenvector of the operator B¢ corresponding to the eigenvalue
c(m—1).

Proof. We deduce the proof from Q(¢) = — Trg[VQC]. Additionally, by the
Killing vector fields properties, we obtain

Trg 9(V¢,Q)* = 3 9(VG, Q9(ViC, O) = 9(Ve(, VeO)

and

Trg g(V¢. OV =D 9(VEC( OVES = Vol

Moreover, if M™(c) is a real space form manifold, we can deduce that Q(¢) =
c(m —1)¢. Additionally, we get Try R(V.(, ()% = cV (. O
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5. The tangent bundle with a Mus—Sasaki metric

This section is dedicated to the study of the vector field ¢, which represents
the mapping between (M™,g) and the tangent bundle TM equipped with an
alternative class of natural metric known as the Mus—Sasaki metric ggp.

Consider a Riemannian manifold (M™,g) and its tangent bundle TM
equipped with the Mus—Sasaki metric denoted as ggp. This metric is defined
as follows:

95 ("X, 1Y)y = g2(X,Y),

gsr ("X, 1Y), = gsr ("X, 1Y), =

g5r ("X, YY)y = Fa(x), B(r))g ( Y)
for all vector fields X,Y on M™, where F : (s,t)

smooth function, « € C>*(M™), 8 € C*(R), r
(see [16,23]).

€ R? — F(s,t) €]0, 400 is a
g(u,u) and p = (z,u) € TM

Theorem 5.1 ([16,23]). Consider a Riemannian manifold (M™,g) and its
tangent bundle TM equipped with the Mus—Sasaki metric gsp. If we denote V (re-
spectively, §) as the Levi-Civita connection of (M™, g) (respectively, (TM, gsr)),
we can express the following relationships:

SV(Ra(X,Y ),

@y )y =V (Oxv), + DD, v x)

; Ta a 87F alx r v
+2F(a(x)75("”))gx(g A2z 2 5) 83( A

(ﬁHXHY)p - H(VXY)p -

(Fvxtir), = DD 1 g, (0, )

2
SR e 0.V G (). A1),
= v B'(r) OF v
(Vvx"V)o = Fratm go or @@ A0 g% 1) (X0p)

+ 0 (X, D)V )y) = 02X, Y)'U |
— 50X 2 a2, () gracy ),

for all vector fields X, Y on M™ and p = (z,u) € TM, where R denotes the
Riemannian curvature tensor of (M™,g).

Lemma 5.2 ([16]). Consider a Riemannian manifold (M™,g) and its tangent
bundle TM equipped with the Mus—Sasaki metric gsp. If X, Y are vector fields
on M™ and (x,u) is a point on T M, then we have the following relationship:

— 1 8FV r V, . H, .
70 = (Fa 507 2 @ ) Vi€ ) + V(T A(Q) + 515, BO),



Exploring the Properties of f-Harmonic Vector Fields 241

where A(C) and B(C) are bilinear maps defined by

2 —(T) OF a\xr r -
AQ) = V3 + pe g0y ar (@) 800 20096, OVE = g(9¢, V)],
B(C) = F(a(a), A(r)R(C. V >*—1g<v< VO 2L (o), Br) mradyy(0).

2

Theorem 5.3. In the context of a Riemannian manifold (M™,g) and its
tangent bundle TM equipped with the Mus—Sasaki metric gsp, a vector field ¢ :
M™ — TM 1is considered as an f-harmonic vector field if and only if the following
conditions are satisfied:

~Vgrad, (n )¢ = Trg {V2C T ngg%w(a(x)a B(r)) [QQz(VCa V¢

t
& (a(x), B(r))
— 92(V¢, VC)C} } + mvgrad(a)c (5.1)
—grad,(In f) = F(a(x), B(r)) Try R(¢, V{)*
10F

= 55 (@), (1) Trg g:(V¢, VC) grady(a), (5.2)

where = g(Cay C) = |||
In the case where ( : M™ — T'M is a vector field with a constant norm, C is
an f-harmonic vector field if and only if ¢ is parallel or

p'r) oF
F(a(z),5(r)) ot

Proof. Equations (5.1) and (5.2) immediately follow from (1.1) and Lemma
5.2.
Given that |g(¢, ()| = const, we can infer the relationships

9(V3¢,¢) = —|V¢)?

1+ (a(x), B(r))I¢* = 0. (5-3)

and
g(VYC7 C) =0
for any vector field Y on M™. Hence, from (5.1), we arrive at
p'r) OF
F(a(z), B(r)) ot

Theorem 5.4. In the context of a real space form manifold M™(c) repre-
sented as (M™,g) and its tangent bundle TM equipped with the Mus—Sasaki
metric gsg, if C: M™ — TM is a Killing vector field, then  is an f-harmonic
vector field if and only if the following conditions are met:

L¢(¢) = ¢(m = 1)¢,
grady(In f) = —cF(a(x), B(r)) V¢ + 5

0 =Ty {9.(VC, V) (1 + (a(@). 8P} O

10F

5 5 (@), B(r) Try [VC|* grad (o),
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where L¢ is a real operator given for any vector field Y on M™ by

p'(r)
F(a(z),5(r)) 0

+ vgradg(ln f)Y +

oF

LY = S (@l@), B(r) T, { [wwy - yvgﬁy} }

1 oF
F(a(z),B(r)) 0s
Therefore, ¢ is an eigenvector of the operator L¢ corresponding to the eigenvalue

c(m—1).

Proof. The proof comes directly from Theorem 5.3, taking into account the
properties of a real space form manifold M™(c) and the Killing vector field (. [

(a(‘r)’ B(T))vgrad(a)y

6. Applications and examples

In this section, our focus turns towards studying the necessary and sufficient
conditions for certain vector fields (such as Killing vector fields, vector fields with
constant norm and gradient vector fields) on the 3-dimensional Heisenberg group
Hj to be f-harmonic maps (for more comprehensive details, see [4,17]).

First, we recall some basic results on the geometry of the 3-dimensional
Heisenberg group Hs. Let Hs be the 3-dimensional Heisenberg group. Hs is
realized as a Lie group

1 =z =2
Hs = 01 y z,Y,2 €R
0 0 1
equipped with a left-invariant metric
g = dz* 4 dy?® + (dz — xzdy)>. (6.1)

An orthonormal basis on (Hs, g) is given by

- 5T 8y Yoz

The non-zero coefficients of the Levi-Civita connection are given by

1 1 1
Vee2 = Vo1 = _5637 Ve €3 = Vege1r = 5627 Ve,e3 = —Vegea = 561.

The Riemannian curvature tensor is expressed as

R(ey,ez)e; = R(ey,ez)es =

7

1 1

T4 4°

1 1
R(ei,e3)e; = ——e3, R(ei,e3)ez = —eq,

4 4

3 3
R(eg, e3)es = 71 R(ez, e3)es =3
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The left-invariant Killing vector fields on (Hs, g) are given by

1
¢ = a(g( 2 1 9?)er + yes — ze3) + b(yer + ea) + c(—xey + e3) + d(er),

where a, b, c and d are constants, which means that the Killing vector fields are
provided by

G =e1, CG=yer+e, (3=—ze;+es,
1

G4 = 5(552 +y?)e1 + yea — wes.

Consider a left-invariant vector field V = aeq + bes + ce3, where a, b and ¢ are
constants. V' is a vector field with a constant norm as follows:

1 1 1
Ve,V = 5(662 —bes), Ve,V = 5(661 —ae3), VeV = 5(%2 — bey).

After a straightforward computation, we obtain

1 1
Try R(V,V, V) = %(beg —cen), Ty [VVP = S|V, Tr, V'V = —2V. (6.2)

Let X be a left-invariant vector field defined by X = grad,(vy), where v is a
smooth function on H3 that depends on z and y. The vector X can be described

as

_ O Iy
X = ax($7y)62 + ay(%y)e& (63)

6.1. With the Sasaki metric

Theorem 6.1. Let (Hs,g) be the 3-dimensional Heisenberg group with the
left-invariant metric g given by (6.1) and let (THs,gs) be its tangent bundle
equipped with the Sasaki metric. In this context, we can state the followings:

1. The vector field V with a constant norm cannot be an f-harmonic vector field
from (Hs,g) into (T Hs, gs).

2. The vector field X given in (6.3) is an f-harmonic vector field from (Hs,g)
into (T'Hs, gs) if and only if the following system holds:

oy (P 0P\, Oy ((09\'(0v)*) _,

Oy O0x \ Oy?  Ox? Oxdy \ \ Oz oy ’

sor (#4002 (00, oh ) 1on
4 0z \ Ox2 0y? Oxdy N 0x3  0x0%y 20x’ ’
30y (B0 (B0 (F, P, 100

4 9y \ 0x2 0y? 0x0y N oy?  0x%0y 2 Oy

and f satisfies the equation

3 (627 oy 0%y 8’y> 3 (827 oy 0%y 87)
€ + Z €3.

oy2 0x  Oxdy dy

020y  0zdy Oz

grad,(In f) = 1
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Proof. 1. One can easily notice that the non-zero vector field V' is not parallel.
Thus, by virtue of Corollary 3.3, V is not an f-harmonic vector field with respect
to the Sasaki metric.

2. Let X be the vector field given in (6.3). By developing the left sides of
equations (3.1) and (3.2) provided in Theorem 3.2, we obtain

Pyoy 0%y 87) 3 (827 oy 9%y (97)
€9 €3,

3

0x2 9y  Oxdy dx

(6.5)
0y 0y 1 87) <637 03y 1 87)
e + es.

923 + 0xd?*y 20x

oy? + Oyo2xr 20y

Tr, V2X = (
(6.6)
From (3.1) and (6.5), we find

2 2 2 2
gradg(lnf) = Z <8 gl i 87) €2 +Z <8 7197 O 87) €s.

oy2 0x  Ozdy dy

0x2 0y  Ozdy Oz

Then we compute

Voapx <3200 (B _Fr\ | &y [(00\  (07Y?
sty NN =5\ Gy o o2 ~ 002wy \\ae) ~\ay) )) @

30y [ 0%y 0%y 0%y 2
e e
4 0x \ 0z2 Oy? Ox0y

30y (9% 0 9%y \’
R A Y -t I (6.7)
40y \ 0x? dy 0xdy
Upon comparing equations (3.2), (6.6) and (6.7), we can derive the system (6.4).
0

Numerous examples can be generated based on Theorem 6.1. As an illustra-
tion, we give an example.

Example 6.2. Consider the Heisenberg group (Hs,g) with the left-invariant
metric g defined by (6.1). Let (T'Hs, gs) be its tangent bundle equipped with the

Sasaki metric. Suppose X = grad, (), where v(z,y, 2) = %(ﬁ + %) + 1z +
coy +k and ¢, co, k are constants. Then the vector field X : (Hs,g) — (T'Hs, gs)

is an f-harmonic vector field with f(x,y,z) = exp (2—\\//%7(1:, v, z))

6.2. With the deformed Sasaki metric

Proposition 6.3. Consider the 3-dimensional Heisenberg group (Hs, g) with
the left-invariant metric g given by (6.1). Let (T'Hs,gps) be its tangent bundle
equipped with the deformed Sasaki metric. Then the vector field V = aey + bes +
ces, where a,b, ¢ are constants, is an f-harmonic vector field if and only if B =

5;% = ﬁ, and either (a =0) or (b=c=0), with f being a constant.
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Proof. From Theorem 4.5, a vector field V is an f-harmonic vector field if
and only if the following conditions hold:

aTry R(V.V,V)x = —grad,(In f), (6.8)
Trg[B IVVPV + VZV} = _vgradg(lnf)v-
Substituting the above results into (6.8), we get the system

ao
grad,(In f) = Z<662 — bes),

1 o (6.9)
Vrad, (in )V = 5(1 - BIV[F)V.
On the other hand, we have
ax
Vgradg(lnf)V = g[(c2 + b2)61 — abey — aces). (6.10)
By using (6.10), the second equation of the system (6.9) yields
aq —
< @+ =1 -F[V[)a,
- b= (1—=B1[VI[)b, (6.11)
a’a —
-5 c=01-8 Ve,
_ B-d
The solution of the system (6.11) is § = = 5. Again, by substituting
B a+rp VI
B into the system (6.11), we find a =0 or b= c = 0. O

Remark 6.4. The Killing vector field (1 = e; is an f-harmonic vector field
with respect to gpg if and only if =1 and f = const.

6.3. With the Mus—Sasaki metric

Theorem 6.5. Consider the 3-dimensional Heisenberg group (Hs,g) with
the left-invariant metric g given by (6.1). Let (T Hs,gsr) be its tangent bundle
equipped with the Mus—Sasaki metric. If V is a vector field on Hs with a constant
norm, then V' is an f-harmonic vector field if and only if the system (6.12) holds

UV pra,p)

+ (VPG @) + gy (@) eate) — ceafe) =0,
“F(a.8)

+ (VPG + gy (@) (o) + aeafa)) =0, "
- “CF ()

+ (VPG @8 + s G (@) Geate) + aeafer) =0
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and f satisfies the equation

grad, (In ) = F(a(z), 50r))  (bes — ce2) + 1V P2 (a(a). A7) grad, (0).

Proof. Initially, our task is to derive equations (5.1) and (5.2) presented in
Theorem 5.3. With direct standard calculations and by using (5.3) and (6.2), we
find

grad, (1 ) = Pla(x), B(0r)) (bes — ce2) + V2 (aa), () grad, (o)
1 oF
— (VES @@ sta@) o

+(~Fa@. s + JVES @) s ) @

+ (Flate) B + VG (ale), Besta) ) e

and

Visad, 00V = ST 5] g (@) B (Ges(e) = cea(a)es

— (cer(@) + aes(a))es + (bei(a) + aea(a))es). (6.13)
On the other hand, from (6.13), we have

vgmd (In f)V

[(\vrzaF< (2), B(r))(cea(a) — bes(a)) — aF(a(z), B(r)) (& + b?))el

L OF

+ (@ (a@). 501 + IV (o) B eer(@) +aca(a) ) e

+ (der(aga). s <>>+rvr?aF< (@), 80 ) bex (@) + acafa) Jea . (610

Hence, from (6.13) and (6.14), we obtain the system (6.12). O

From Theorem 6.5, we can state the following.

Corollary 6.6. Let (Hs,g) be the 3-dimensional Heisenberg group with the
left-invariant metric g given by (6.1) and let (T'Hs,gsr) be its tangent bundle
equipped with the Mus—Sasaki metric. The Killing vector field {1 = ey is an
f-harmonic vector field if and only if

10F 1 OF
(Za(aw@) + W@(aaﬂ))e?»(a) =0,
10F 1 OF
(ZE(OQB) + mg(aaﬁ))@(a) =0
and f satisfies the following equation:

grad,(In f) = £ 2 (a(a), 6(r)) grad (o).
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Example 6.7. Consider the Heisenberg group (Hs,g) with the left-invariant
metric g given by (6.1). Let (T'Hs, gsr) be its tangent bundle equipped with the
Mus-Sasaki metric, where F(s,t) = 4%. In this context, the Killing vector field
(1 = e; is an f-harmonic vector field with f(z,y,2) = a(z,y, 2).

Corollary 6.8. Consider the 3-dimensional Heisenberg group (Hs,g) with
the left-invariant metric g given by (6.1). Let (T'Hs,gsr) be its tangent bundle
equipped with the Mus—Sasaki metric, with a(x,y,z) = h(bx + cy), where h(t) is
an arbitrary smooth function and b, c are real constants. In this context, the vector
field V- = bes + ces is an f-harmonic vector field from (Hs,g) into (T Hs, gsr),
where f satisfies the following equation:

28F

grad(In f) = ([VI*-(a(e), B0r)) (ea(a)es + esla)es)

Proof. The proof directly comes from Theorem 6.5 taking into account a =
0 and a(z,y, z) = h(bx + cy), where h(t) is an arbitrary smooth function and b, ¢
are real constants. O

The aforementioned corollary enables the construction of numerous examples.

Example 6.9. Consider the Heisenberg group (Hs,g) with the left-invariant
metric g given by (6.1). Let (T'Hs, gsr) be its tangent bundle equipped with the
Mus—Sasaki metric, where F'(s,t) = st, f = e_ﬁ, and a(x,y,z) = ehtbztey)
where h(t) is an arbitrary smooth function. Then, for the vector field V' = bey +
ces, it is an f-harmonic vector field with In f = b2 +C exp(2h(bz + cy)) + k, where
k is a constant.
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JocitigzkeHHs1 BJIAaCTUBOCTE! f-rapMOHIYHUX BEKTOPHUX
MOJIiB

Fethi Latti, Nour Elhouda Djaa, and Aydin Gezer

VY miit craTTi MU CTABUMO 3a MeTy JOCTIIUTH crerudivyai XapakTepu-
CTUKH f-TapMOHIYHUX BEKTOPHHX MOJiB. [lo-miepime, Mu JOC/TiIKYEMO BiIa-
ctuBOCTi f-rapMoOHiYHOTO BeKTOpHOrO 1oJisi Kiuriara, Koau BOHO Ji€ gK f-
rapMOHIYHe BioOparkeHHsS MiK PIMAHOBHM MHOTOBHJIOM, ITO3HAYEHUM STK
(M, g), Ta itoro goruunum nyukoMm (T'M,gs), sxuit mae merpuky Cacaxi.
Mu marosontyemo Ha Tomy, 1o (M, g) Mae Buris abo afHIITARHIBCLKOrO
MHOroBH Iy, 00 mpocTopoBol (hopmu. [lo-apyre, Mu KOCTIIKYEMO BIACTHBO-
cri f-rapMOHIYHOIO BEKTOPHOTO 110Jist MiK piManosum Muorosuiom (M, g) Ta
itoro goruanum myakom 1M, sikuit mae abo nedopmosany merpuky Cacaxi
gps, abo merpuky Myca—Cacaki gsp. HacaMkinens Mu 3aBepIIyeMo CTaTTIO
PO3IJISIZIOM TPUKJIAJIB f-rapMOHIYHIUX BEKTOPHHX IOJIB Y KOHTEKCTI rpyIu
Taitzenbepra.

Kuirouosi ciioBa: f-rapmoniune BekTopHe mojie  Kijinra, Muorosu Aiin-
mTaiHa, JOTUYHUHN IIy40K
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