
Journal of Mathematical Physics, Analysis, Geometry, 21 (2025), No. 3, 346–350
doi:

On Centralizers of Belavin–Drinfeld

r-Matrices
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The paper provides a structural result about centralizers of Belavin–
Drinfeld r-matrices. This result appears to be useful in computing Belavin–
Drinfeld cohomology, which was introduced earlier for classificalion of certain
Lie bialgebras and quantum groups.
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1. Introduction

Belavin–Drinfeld cohomology was introduced in [4] and further studied in
[1, 5–8, 10] et. al. It was introduced and used as an instrument to classify Lie
bialgebra structures on simple Lie algebras over non-algebraically closed fields
via reduction to the algebraically closed case, where, in particular, the Belavin–
Drinfeld classification [2] is applicable. The case when the base field is the field
of formal Laurent series appears to be closely related to classification of quantum
groups, and some partial results in this direction was obtained in the above cited
papers.

Belavin–Drinfeld cohomology is defined for an r-matrix r with respect to a
certain “gauge group” G in terms of the centralizer of r in G. In particular,
the untwisted Belavin–Drinfeld cohomology is in most important cases fully con-
trolled by the structure of this centralizer.

The purpose of this note is to generalise the results on the structure of cen-
tralizers of Belavin–Drinfeld matrices obtained in [7]. In particular, this result
shed more light on the structure of Belavin–Drinfeld cohomology.

The paper is organized as follows. After making the setup and recalling
necessary definitions and results in Section 2, we present the main result on the
centralizer structure, Theorem 3.1, in Section 3. Finally, in Section 4 we provide
more details on the centralizer structure via dealing with split simple Lie algebras
case by case.

2. Notation and setting

Let F be a field of characteristic zero. We fix an algebraic closure of F, which
will be denoted by F. The Galois group of the extension F/F will be denoted by
G.
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If K is an affine algebraic group over F, then the corresponding (non-abelian)
étale Galois cohomology will be denoted by H1(F,K) (see [9] for details). We
recall that H1(F,K) coincides with the usual non-abelian continuous cohomology
of the profinite group G acting naturally on K(F).

Let g be a split finite dimensional simple Lie algebra over F. In what follows
G will denote a split connected simple algebraic F-group with the Lie algebra g.

We fix a Killing couple (B,H) of G, whose corresponding Borel and split
Cartan subalgebras will be denoted by b and h respectively. This Killing couple
defines a root system ∆ with a fixed set of positive roots ∆+ and the set of simple
roots Γ = {α1, . . . , αn}.

Let us recall the structure of the Belavin–Drinfeld r-matrices [2]. With respect
to (b, h), any Belavin–Drinfeld r-matrix depends on a discrete and a continuous
parameter. The discrete parameter is an admissible triple (Γ1,Γ2, τ). Namely,
Γ1,Γ2 ⊂ Γ, and τ : Γ1 → Γ2 is an isometry such that for any α ∈ Γ1 there exists
k ∈ N satisfying τk(α) /∈ Γ1. The continuous parameter is a tensor r0 ∈ h ⊗F h
satisfying r0 + r21

0 = Ω0 and (τ(α)⊗ 1 + 1⊗ α)(r0) = 0 for any α ∈ Γ1. Here Ω0

denotes the Cartan part of the quadratic Casimir element Ω ∈ g⊗F g. Then the
corresponding Belavin–Drinfeld r-matrix is

rBD = r0 +
∑
α∈∆+

eα ⊗ e−α +
∑

α∈(Span Γ1)+

∑
k≥1

eα ∧ e−τk(α).

where eα and e−α are parts of a fixed Chevalley system of g in the sense of [3,
Ch. VIII, §2 and §12], (Span Γ1)+ is the subset of all positive roots in the set of
roots generated by Γ1, and τ is expanded by linearity.

By a string of an admissible triple (Γ1,Γ2, τ) (or the corresponding r-matrix
rBD) we mean a subset of Γ of the form {α, τ(α), . . . , τ l−1(α)}, where α 6∈ Γ2 and
τ l−1(α) 6∈ Γ1. The number l is the lengths of the string. If α 6∈ Γ1 ∪ Γ2 then we
have a string {α} of lengths 1. Thus, Γ is a disjoint union of strings.

Let rBD be a Belavin–Drinfeld r-matrix. We denote by C(G, rBD) the cen-
tralizer of rBD in G under the adjoint action. I.e., if R is a commutative ring
extension of F then

C(G, rBD)(R) = {X ∈ G(R) : AdX(rBD) = rBD}.
It was shown in [5, Theorem 1] that C(G, rBD) is a closed subgroup of H. More-
over, by [5, Theorem 2] the centralizer C(G, rBD) can be described as follows: for
any commutative ring extension R ⊃ F and h ∈ H(R), we have h ∈ C(G, rBD)(R)
if and only if for any string of rBD the corresponding characters of H take the
same values on h.

We also recall the definition of untwisted Belavin–Drinfeld cohomology. Let
rBD be a Belavin–Drinfeld r-matrix. An element X ∈ G(F) is called a Belavin–
Drinfeld cocycle associated to G and rBD if for any γ ∈ G we have X−1γ(X) ∈
C(G, rBD)(F). Denote by Z(G, rBD) the set of all Belavin–Drinfeld cocycles
associated to G and rBD. Two cocycles X1, X2 ∈ Z(G, rBD) are called equivalent
if there exists Q ∈ G(F) and C ∈ C(G, rBD)(F) such that X1 = QX2C. The set
of equivalence classes of cocycles in Z(G, rBD) is called the untwisted Belavin–
Drinfeld cohomology associated to G and rBD and is denoted by H(G, rBD).
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3. Main result

Let Q ⊂ P be the root and weight lattices of g with respect to h. Let χ(H)
be the group of (algebraic) characters of the torus H. The map λ 7→ dλ, where
d is the differential at the identity, is an isomorphism of χ(H) onto a lattice X
with Q ⊂ X ⊂ P .

Let γ1, . . . , γn be a Z-basis of X, t1, . . . , tn ∈ χ(H) the corresponding charac-
ters. Then the map h 7→ (t1(h), . . . , tn(h)) defines an isomorphism H → (Gm)n

of algebraic tori.
Denote by µm the finite multiplicative F-group of m-roots of unity.

Theorem 3.1. Write X/Q = Z/m1Z× . . .× Z/msZ. Let rBD be a Belavin–
Drinfeld r-matrix. Then C(G, rBD) = T × C′, where T is a split torus over F
and C′ is a finite F-group isomorphic to a subgroup of µm1 × . . .× µms.

Proof. Since C = C(G, rBD) is a closed subgroup of H, it is of the form C =
T×C′, where T is a split torus over F and C′ is a finite commutative F-group.

Let K be the torus corresponding to Q. We have a quotient map π : H→ K
induced by the inclusion Q ⊂ X, and Kerπ ' µm1 × . . .× µms .

Let q1, . . . , qn ∈ χ(K) be the characters corresponding to the Z-basis
α1, . . . , αn of Q, where αi are simple roots. Applying [5, Theorem 2], we see
that π(C) ⊂ K ' (Gm)n is defined by equations of the form qi1 = . . . = qik for
any string

{αi1 , αi2 = τ(αi1), . . . , αik = τk−1(αi1)}
of the r-matrix rBD. Therefore, π(C) ' (Gm)n(rBD), where n(rBD) is the number
of strings of rBD. In particular, π(C) is connected, and thus C′ ⊂ Kerπ.

As a direct corollary, we recover the statement of [7, Proposition 6.1]:

Corollary 3.2. Let X = Q, i.e. the group G is of adjoint type. Then
C(G, rBD) is connected for any Belavin–Drinfeld r-matrix rBD.

Remark 3.3. Write αi =
∑

j nijγj with nij ∈ Z. Let h = (h1, . . . , hn) ∈ H(R)
for a commutative ring extension R ⊃ F. According to [5, Theorem 2], we have
h ∈ C(G, rBD)(R) if and only if it satisfies the system of equations∏

j

h
nij

j =
∏
l

hnkl
l , (3.1)

where αi ∈ Γ1 and τ(αi) = αk.

Write C′ = µn1 × . . .× µns . Then

H1(F,C(G, rBD)) = F×/(F×)n1 × . . .× F×/(F×)ns .

Assume F is of cohomological dimension 1. Then, by [8, Corollary 4.13] we
have H(G, rBD) = H1(F,C(G, rBD)). I.e., in this case we have

H(G, rBD) = F×/(F×)n1 × . . .× F×/(F×)ns .

In particular, if F = C((t)) then we get

H(G, rBD) = Z/n1Z× . . .× Z/nsZ.
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4. Examples

Assume that X = P , i.e., G is simply connected. Then the fundamental
weights $1, . . . , $n can be taken as a Z-basis of P , and αi =

∑
j aij$j , where

aij are the entries of the corresponding Cartan matrix.
If g is of the type An, i.e., G = SL(n+ 1), then it was shown in [4, Theorem

7] that for F = C((t)) the number of elements in H(G, rBD) is always a divisor
of n + 1. Since in this case P/Q = Z/(n + 1)Z, the result is in total accordance
with Theorem 3.1.

Now let g be of the type Bn, i.e., G = Spin(2n + 1). In this case P/Q =
Z/2Z. However, we have the following

Proposition 4.1. Let G = Spin(2n + 1). Then C(G, rBD) is connected for
any Belavin–Drinfeld r-matrix rBD.

Proof. Enumerate the simple roots in a standard way, so that αn is a short
root. For any admissible triple (Γ1,Γ2, τ), since τ is an isometry, we see that
αn 6∈ Γ1 ∪ Γ2. Write a1 = h2

1h
−1
2 , ai = h−1

i−1h
2
ih
−1
i+1 for i = 2, . . . , n − 1. In this

notation the system of equations (3.1) that defines C(G, rBD) can be written as

ai1 = aj1 , . . . , aim = ajm ,

where i1 < j1, . . . , im < jm and 2 ≤ j1 < . . . < jm ≤ n − 1. This system can be
solved rationally for hj1+1, . . . , hjm+1. Thus C(G, rBD) is connected.

If g is of the type Cn, i.e., G = Sp(2n), then it was shown in [5, Theorem
4.3] that for F = C((t)) the Belavin–Drinfeld cohomology H(G, rBD) is always
trivial. Thus the situation in this case is similar to what we have for the Bn case.

For the type Dn the situation is more subtle. In this case P/Q = Z/4Z for
n odd, and P/Q = Z/2Z × Z/2Z for n even. For n even, examples show that if
C(G, rBD) is not connected, then both C′ = µ2 and C′ = µ2 × µ2 are possible.
For n odd, no examples with C′ = µ4 are known; only the case C′ = µ2 has been
observed.

In the examples below the simple roots are enumerated in a standard way, so
that in particular αn−1 and αn are incident to αn−2.

E.g., consider n = 4. If we take Γ1 = {α1}, Γ2 = {α3}, τ(α1) = α3, then from
(3.1) one easily gets C′ = µ2. Similarly, if Γ1 = {α1, α3}, Γ2 = {α3, α4}, τ(α1) =
α3, τ(α3) = α4, then C′ = µ2 × µ2.

Generally, if we consider Γ1 = {αn−1}, Γ2 = {αn}, τ(αn−1) = αn, then we
get C′ = µ2.

The complete answer in this case is yet unknown and can be a subject of
further research.

Finally, the exceptional simple Lie algebras were considered in [7, Appendix
B]. For the type E6, we have P/Q = Z/3Z. In this case, C′ = µ3 indeed occurs,
and the complete list of the respective r-matrices is given in [7, Appendix B]. For
the type E7, we have P/Q = Z/2Z. However, in this case C(G, rBD) is always
connected. In all other exceptional cases we have P = Q, so C(G, rBD) is also
always connected.
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Про централiзатори r-матриць Белавiна–Дрiнфельда
Eugene Karolinsky

У статтi наводиться структурний результат про централiзатори r-
матриць Белавiна–Дрiнфельда. Цей результат є корисним для обчисле-
ння когомологiй Белавiна–Дрiнфельда, якi були введенi ранiше для кла-
сифiкацiї деяких бiалгебр Лi та квантових груп.

Ключовi слова: Белавiн–Дрiнфельд, квантова група, бiалгебра Лi
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