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Existence Study of Solutions for a System of
n Nonlinear Fractional Differential Equations
with Integral Conditions
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This paper offers a thorough discussion and study of the existence and
uniqueness of solutions proposed for a class of new systems of n nonlinear
fractional differential equations and their main properties using the frac-
tional derivative of Katugampola with n integral conditions. Schauder’s
fixed point theorem, the Banach contraction principle and Leray-Schauder
type nonlinear alternative are applied to attain the desired goal. In order to
exhibit the usefulness of our main results, several examples are also presented
in the paper.
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1. Introduction

Fractional calculus, a mathematical branch, is known to be implemented in
such fields as fluid flow, theory of dynamical systems control, diffusive transport
akin to diffusion, probability and statistics, etc. It studies the properties of
integrals and derivatives of non-integer order. For further reading on the subject,
readers can refer to the following books (Samko et al. 1993 [19], Podlubny 1999
[18], Kilbas et al. 2006 [15], Diethelm 2010 [10]).

The existence and uniqueness of solutions for a single or a system of fractional
differential equations have been investigated in recent years. For a small sample
of such works, we refer readers to [1-9,11, 15-20].

In [2], Ahmed et al. studied the coupled system of fractional differential
equations supplemented with coupled nonlocal and integral boundary conditions:

Doz (t) = f(t,x(t),y(),“Dyt), 1<a<2, 0<y<l1, te[0,T],
Cpﬁy(t):g(t,x(t),%%;(t),y(t)), 1<f<2, 0<d6<1, telo,T],
T
| s =,
0
(s)

T
/0 x (8)ds = uay (£), n,§ € (0,7),

X

(0) =h(y),
y(0) = ¢(x),
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where ©D denotes the Caputo fractional derivative, f,g : [0,T] x R? — R are
given continuous functions, and p1, po are real constants.

In [20], Zhai and Jiang considered a new coupled system of fractional differ-
ential equations with the following integral boundary conditions:

(D% (t) + f (t,v (t)) = a, 0<t<1,
DA (t) + g (t,u(t)) =b, 0<t<l,

u(0) = /¢
00 =0 v(1>:/0 W (s) v (s) ds

where 1 < a, 8 < 2, a,b are constants, D denotes the usual Riemann—Liouville
fractional derivative, f,g € C ([0,1] x R), ¢, € L'[0,1].

In this work, our objective is to study the existence and uniqueness of solutions
of a system of n nonlinear fractional differential equations

(#Djtur (1) = fi (tu(t). "Dt (1) . 1€ 0.7,

“Dtuz (1) = fo (Lu(t), "Dz (1)), te 0,71,

with the integral conditions
("myrrun) (07) = ("I %uz ) (07) =+ = (Ty7"wn) (0F) =0, (1.2)

where u = (ug,u1,...,u,) € R” for n € N* := {1,2,3,...}. Also p,T > 0,
0<fBi <a;<1land f;:[0,T] x R*™ — R are continuous functions for every
i € 1,n := {1,2,...,n}. The symbol #D§, (respectively, PZ{,) presents the
Katugampola fractional derivative (respectively, integral) of order av > 0.

2. Preliminaries

In this section, some of the necessary definitions from fractional calculus the-
ory are given. As in [15], we consider the space X? ([0,7],R) (with c € R, 1 <
p < 00) of those real-valued Lebesgue measurable functions y on [0, T for which
|yll x» < oo, where the norm is defined by

1
. \
ds\ P
Iyl xp = </ |5y (s)[” ) , for 1 < p < oo and ||y ye = esssup ]y (£)]].
0 § ¢ 0<t<T

By C([0,7],R), we denote the Banach space of all continuous functions from
[0,7] into R with the norm

Iyllc = sup |y (t)].
0<t<T
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Remark 2.1 ([3-6]). Let p,c, T € R%, be such that p > 1 and T' < (pc)ﬁ It
is clear that for all y € C'([0,T],R),

TC
1yllxr < 00 19l and [[yllxe < Tyl
pe)r

which implies that C'([0,7],R) < X¢ ([0,7],R) and [[y[|x» < ||yl for all T <

1

(pe)re .

Definition 2.2 (Katugampola’s fractional integral [13]). Katugampola’s
fractional integral of order o € Ry of a function y € X? ([0,7],R) is defined
by

11—« t
Ty (1) = L o /0 (4 — )y (s)ds, tE[0,T],  (21)

for p > 0. This integral is a left-sided integral.

In a similar way, we can define a right-sided integral [13-15]. We also have:

Definition 2.3 (Katugampola’s fractional derivative [14]). The generalized
fractional derivative of order o € R, corresponding to Katugampola’s fractional
integral (2.1), for any ¢t € [0,77], is defined by

D)= (105 )OI @

pa—m+1 d m. et
=L (= / sPTL(tP — sP)™ Oy (s) ds, (2.2)
) dt 0

'im-a«
m = [a] + 1, [a] denote the integer part of a and p > 0 if the integral exists.

Throughout this paper, T, p and c are real constants such that
1
p>1, ¢>0, and T < (pc)re

Lemma 2.4 ([0]). Let 0 < B <a <1, p>0andy, "Dy € C([0,7],R).
We define
pP:={yeC([0,T],R)|("Z,="y) (0*) =0} .

Then (P, ||-||.) is a Banach space and y € P. We have for every t € [0,T] that

Tple—p .
Doy )] < e 1P vl

Lemma 2.5 ([6]). Let a, 3,p > 0, be such that 8 < a < 1. Let y, PDg,y €

C([0,T],R), and f (t, y(t), D0+y( )) is a continuous function. Then the prob-
lem

Dy (t) = £ (ty (O /Dy (), teloT],
("Zy"y) (07) =0,
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1s equivalent to the integral equation

v0 = [ Galt.5)1 (s.(6) D ) s,

where Gy, is a continuous function of s € [0,t) and t € [0,T], which is given by

plfaspfl

S

Go(t,s) =

Lemma 2.6 ([6]). Let T : P — C([0,T],R) be an integral operator defined
by

Ty®) = [ Gat.s)f (500" DLu () ds (23)

equipped with the norm
1Tyl = sup [Ty (@)]
0<t<T

Then T (P) C P.

3. Main results

In what follows, we present some significant lemmas to clarify the principal
theorems.

Lemma 3.1. Let u;, Dyiu; € C([0,T],R) for every i € 1,n. Then the

solution of problem (1.1), (1.2) is equivalent to the n fractional integral equations

(0= [ Gy 4901 (5.006), 7Dt ) s,

ug (t) = /Ot Ga, (L, ) f2 (s,u (s), ngiw (5)> ds, (3.1)

kun (t) = /Ot G, (t,5) fn (s, u(s), ngﬁun (s)) ds,

with Gy, being a continuous function of s € [0,t) and t € [0,T], which is given

by
plfai spfl

G, (t,8) = (1p — gp)>~ 1, 3.2
o (t5) = e (1 = ) (32

Proof. We replace o and j by a1, and BielTv and use the same argument
as that of the proof of Lemma 2.5. For more details, see [6]. O]

Let us introduce the space E = P} X P, X --- X P,,, where

P = {u e C([0,7] ,R)‘ (pIé;aiui) (07) = 0}, ieTn. (3.3)
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with the norm

lullp = sup Juill -
1<:i<

In view of Lemma 2.4, it is clear that (P}, [|-|| )
P;. For every t € [0,T], we have

ieTy are Banach spaces, and Yu; €

Tr(ei—p:)

PP o,
’ D0+u7, (t)‘ S pai_/BiF (1 _’_az _

Lemma 3.2. Let the integral operator A; : E — C ([0,T],R) be defined by

A (t) = /0 t G, (t,5) f; (s, u(s),» DYiu; (s)) ds, (3.5)

where
plfai spfl

I ()
equipped with the norm || Aul, = sup |Awu(t)|. Then A; (E) C P, i € 1,n.
0<t<T

G, (t,5) = (tP — sP)™it

Proof. By the same arguments as those used in the proof of Lemma 2.6, we
are to replace o and 8 by a7 and B, to get the required result. For more
details, see [6]. O

We define an operator A : E — E by

Avu (1)
Aou (t)
Aut) = | T, (3.6)

A ()

where (A;u(t)) are integral operators, which are given by (3.5), with the

norm

i€ln
[Aul| g = sup [Aull, -
1<i<n

We propose the following hypotheses:

(H1) For 1 < k < n, there exist two families of constants A; 5,7 > 0, where

a;—B; _A.
i < % such that

n
| fi () = fi (8 v, wi)| <7 Nk Juw — o] + i s — wil,
k=1

for any u,v € R", z;,w; € R, with i € I,n and t € [0,T].
(H2) For 1 < k < n, there exist three families of positive functions a;, b; i, ¢; €
C ([0, T)Ry) such that
n
| fi (b, a)| < a (8) 4 ¢ () sl + Y b (£) |ug] -
k=1

for any u € R", x; € R, with i € 1,n and ¢t € [0,7].
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We denote \; = max. ik}, bi(t) = max {bik (1)},

p* T (1 + a; — Bi) af
pi=Bil (14 oy — ;) — C;‘Tﬂ(arﬂi) )

i =

and
np® AT (14 a; — B;) b}

pai—ﬁir (1+a; —Bi) — c;‘Tﬂ(@i—ﬁi)’
where 0 < 5; < a; <1 and

P =

a; = sup a;(t), b = sup b;(t), ¢f = sup ¢ (t),

7

0<t<T 0<t<T 0<t<T
with 5
L PP (40— B)
c; < Tl B , 1€1,n.

In what follows, we present the principal theorems.

Theorem 3.3. Assume (H1) holds. If

nATPYT (1 4 o — Bi)
su <1, 3.7
12itn {F (ai +1) [p*T (1 + a; — f;) — yipPiTolei=B] } (3:7)

then problem (1.1), (1.2) admits a unique solution on [0,T].

Proof. To begin the proof, we transform problem (1.1), (1.2) into a fixed
point problem Au (t) = u (t), with A : E — E being defined by (3.6),

Avu (1)
Auty=| |, (3.8)
Anu (t)

with (A;u (t))ieﬁ being the integral operators given by (3.5),
t
A (t) = / Ga, (£, 5) fi (s, u(s), "Dliu; (3)) ds,
0

where
l1—ay Spfl

ps
r (Oéz)
Because problem (1.1), (1.2) is equivalent to the system of n fractional integral
equations (3.8), the fixed point of A is a solution of problem (1.1), (1.2).
Let u,v € E be two functions that satisfy (1.1), (1.2), Then we get

Ga, (t,5) = (tF — ") iedn.

A (t) — A () = /O t Gay (t:9) [ fi (5:u(5) 2 DG (5))
—fi (s, v(s),” Dgivi (s))} ds,
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for each i € 1,n, which implies that
|Aju (t) — Ajv (¢ |</ Ga, (t,5) |PD5iui (s) — PDgivi (s)|ds, i€ T,n. (3.9)
By (H1), we have

‘pD T (t) — pDS‘ivi (t) ‘ =

fi(bu®). D () = £ (Lo ), "D (1))

n
<> N i (6) = v ()] + 7 "D s () = *Dffos (1)

By using (3.4), we get

P D s pDainH <nA;llu—vlg
%Tﬁ(ai—ﬂi)
pi Bl (1 + o —

Hp,DOquZ - ,Dg}vaHoo

Thus

nAip® T (1 + o — Bi)

HPDOJ"UZ_ pD[)+UZ“oo - P BiT (1+Oéz 62) ,YTP o

gy lu—2llg

for each ¢ € 1,n. From (3.9), we have

nA\ TP (1 +a; — /Bz)

Aiju — Ajv u—vlp.
4 oo = T (a;+ 1) [poT (14 o — Bi) — yipPTe(ei=5)] H I
Consequently,
[Au — Av| g
< sup nATT 1 + o = ) Ju — |
T agicn | T (@i +1) [pT (1 + a; — ;) — yipPiTelei=5)] v

This implies that by (3.7), A is a contraction operator.

As a consequence of the Banach fixed-point theorem, using Banach’s contrac-
tion principle [12], we deduce that .4 has a unique fixed point, which is the unique
solution of problem (1.1), (1.2) on [0,77]. O

Theorem 3.4. Assume that hypotheses (H1) and (H2) hold. If we put

N TP

— <1 foreveryicl,n,
pTl (a; + 1) J v

then problem (1.1), (1.2) has at least one solution on [0,T].

Proof. In the proof of the previous Theorem 3.3, we already transformed
problem (1.1), (1.2) into a fixed points problem (3.8).

We show that A satisfies the assumption of Schauder’s fixed point theorem.
This will be proved through three steps.
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Step 1. A is a continuous operator. Let (um),,cy = (ui*,uy’, ..., u;') be n
real sequences such that lim w,, = u in E. Then, for each t € [0,7] and i € 1,n,
m—00
we have

t
| At (t) — Au (t) | < /0 G, (t, )

« | f; (s, tn (s) , DI (s)) s (5, u(s), "Dliu, (s)) ‘ ds, (3.10)

where
oD (t) = fi (£ (1), "D (1))
PO (t) = fi (tu (), D (1))

As a consequence of (H1), we easily find that #Dgiu® — #Djiu; in P, i€ 1,n.
In fact, we get

|"Dgiu;" = Dt (t)] =

£ (t, U (£), PD i (t)) — (7; w(t), "D, (t)))

oD (1) — PDu (1) ‘ .

< ik fuf (8) = ug (8)] + i
k=1

By using (3.4), we have

nAip® T (1 + a; — Bz)
pai*/BiF (14 a; — Bi) — i Tr(ai—Bi)
Since u, — w in E, then, for each i € 1,n, we get PDgiui® (t) — PDyiu; (t) as

m — oo for any t € [0,7].
Now, let K > 0 be such that for each ¢ € [0,7], we have

HPDO"'U DO+U’L”OO <

P ()] < K, [PD%us ()] < K, ieTm
Then we obtain
t
At () = A (®)] < [ G (8.9
0

X fi(s,um (s),” DgiuZm (8)) — fi (S,U (s), ngiUi (5)) ‘ ds,

t
s/"cmuwﬂ%%mﬁ%@—Ppﬁum@!w
0
t
< /0 G, (t, ) HPDS‘iu s)| + "Dt (s)]] ds

t
g/ 2KG,, (t,s)ds.
0

For each i € 1,n, the function s — 2K G, (t,s) is integrable V¢ € [0,7]. Then
the Lebesgue dominated convergence theorem and (3.10) imply that

|Ait, (t) — Aju (t)| — 0 as m — oo,
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and hence
lim | Auy — Aullp = 0.
m—0o0

Consequently, A is continuous.

Step 2. Let
M; TP

>
= pil' (0 + 1) — NP’

1€ 1l,n,

and we define
E,={ueE||uly<r}.

It is clear that E, is a bounded, closed and convex subset of E. Let A : E,. —
E be the integral operator defined in (3.8). Then A (E,) C E,. In fact, by using
(3.4) and (H2), for each t € [0,T], we have

DG (0] = | (tu 0), D (1))
< ai (0)+ i (1) D (1)) + szk ) (¢
c”‘T( i /31)

< a* b* v D € 1,n.

— a/z +n 3 HUHE + pai—ﬁil" (1 +al H 0+uZH ) t ’n
Then

PD25 | P BT (14 a; — Bi) ]

0t oo — ai—ﬁif (1 + oy — 51) — C?‘Tﬁ(ai—ﬁz‘)
np® AT (1 + a; — Bi) b
BT (L4 ai = ) — e Trte )"
< M;+ N;yr, i€1l,n. (3.11)

Thus,

A (1) < /Ot Ga, (1,9) | fi (s,1u(s), "D (s) ) | ds
oM NI
~pol (e +1)  p*T (i +1)
g [0 (i + 1) = NiTP™] rpariy—nogwar + NiTPr
- pil (o +1)
Tt ) - NI N
pil (o +1)

Hence, [[Ajul, <7, i€ 1,n, also | Aul| < r. Consequently, A (E,) C E,.
Step 3. A(E,) is relatively compact. Let t1,ty € [0,T], t; < to and u € E,.
Then, for every i € 1,n, we get

t2

|.A1u (tQ) — .Alu (t1)| =

Ga, (t2,5) f: (5,u(s), “Difi s () ) ds
0
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t1

=] Gait9) f (S,u (s), "Dl u, (s)) ds
< /0 (G (12,5) — G, (11, )] /. (s,u(s), *Dfus (5) )| s

+ G, (t2,5)
t1

t1
< (M; + N;r) [/ |Gq, (t2,8) — Ga, (t1,5)|ds
0

fi (s,u (s), pDOBiui (s)) ‘ ds

: G, (t2, ) ds] . (3.12)

t1

As t9 > t1, we obtain

1—a;
_ :p =1l oyl p phai—l
G (t2,5) = G (t1,5)| = o™ |85 = 7)™ 7 = (1] = o))
11—y
:P "1 p =l p  pya—1
I‘(ai)s [(t1 s) (ty — s") }
d

-1 . .
= — [(t! — ") — (th — s")™].
a;p®T (o) s[(l +) (ty = "))
Then

1

T (g £ 1) (5 — )" 4 (5™ — )] .
3

t1
/ |Ga, (t2,8) — Ga, (t1,8)| ds <
0

We also have

to plfai to 1 o1
G, (t2,s)ds = / sPH(th — sP)M T ds
tl [e% ( ) 1—\ (az) tl ( 2 )
-1 - 1 )
- tp_PO‘12<7tP_t/’az'

Then (3.12) gives
M; 4+ Nyr

[2 (85 — )™ + (t5™ — )]

As t; — t9, the right-hand side of the above inequality tends to zero for every
1€ 1,n.

As a consequence of steps 1 to 3 together, and by means of the Ascoli—Arzela
theorem, we deduce that A : E, — FE, is continuous, compact and satisfies the
assumption of Schauder’s fixed point theorem. Then A has a fixed point which
is a solution of problem (1.1), (1.2) on [0,7]. O

Theorem 3.5. Assume (H1) and (H2) hold. Then problem (1.1), (1.2) has
at least one solution on [0,T].

Proof. Let oy, Bi, p > 0, be such that 8; < o; < 1 for every i € 1,n.

We shall show that the operator A, defined in (3.8), satisfies the assumption
of the Leray-Schauder fixed point theorem (see [12]). The proof will be given in
several steps.
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Step 1. Clearly, A is continuous.

Step 2. A maps bounded sets into bounded sets in E. Indeed, it is enough
to show that for any w > 0 there exists a positive constant ¢ such that for each
u € B, :={u€ E:|u|p <w} we have ||Au|p < ¢. For u € B, we have, for
each i € 1,n and ¢t € [0,7],

i (su(s), D (5) )| ds. (3.13)

A (1)) < /D Ga, (t,5)

By (H2), similarly to (3.11), for each t € [0,T], we have

i (b (t), "D (1) )| < M+ Niw, Vi € T,

Thus, (3.13) implies that

| Al M7 NI e T
U w, 1 n
1Yo = pair (ai + 1) pair (ai i 1) ’ )
and
M. TP N. TP
Aul|» < su . + ! w} =/
Al 19% {paif (i +1)  pT (a; + 1)

Step 3. Clearly, A maps bounded sets into equicontinuous sets of P. We
conclude that A : P — P is continuous and completely continuous.

Step 4. A priori bounds. We now show that there exists an open set U C E
with u # pA (u) for g € (0,1) and u € OU. Let u € E and v = pA (u) for some
0 < pu < 1. Thus, for each i € 1,n and t € [0,T], we have

9 <u/0 G, (1,5)

By (H2), for all solutions u € E of problem (1.1), (1.2) for all ¢ € 1, n, we have

i (s,u (s), ngiui (s)) ’ ds.

05 0= | [ G 095 (5060, *D i ) s

/ Ga, (t,5) |PDSiu; (s)| ds.
Then for each ¢ € [0,7] and for all ¢ € 1,n, we have

"Dy ui ()] =

fi (tu(®), D )|
< ai (0)+ i (1) [P D (1)) + szk )l (¢

C,?Tp(al ﬂz)

< af + b} [lul 5 + sup_ [PDSus (1)].

p® BT (14 o — Bi) o<t<T
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Then

i—Bi ) )
pYi Pl (14+a; — B
sup ["Dpiu; (t)] < —B; ( : *1)( —B:)
0<t<T p BT (14 oy — By) — ;Trli=hi

< M;+ N; sup ||luill, for every i € I,n.
0<i<n

(a7 +nbj [ull )

Hence

0<t<T o<i<n | p¥T (o +1 0<s<T

M T
sup |u; (t)] < sup { /NGQZ (t,s) sup |u; (s)]}ds.

By the Gronwall Lemma, we have

Jug (1)] < { M;TPe < N;TP? > }
sup |u; (t)| < sup { ——————exp| ———— | ¢-
0<t<T ogign P2l (o + 1) P poiT (o +1)

TP TP
|ul|p < sup {MZTexp <W>} = K.
0<i<n pazl“ (Oél‘ + 1) p%F (Oéi + 1)

U={uek:|ullp<k+1}.

Thus

Let

By choosing U, there is no u € U such that v = pA (u) for pn € (0,1).

As a consequence of Leray—Schauder’s theorem (see [12]), A has a fixed point
u in U which is a solution to (1.1), (1.2). O

4. Illustrative Examples

Example 4.1. For t € [0 ] consider the following problem:

cos (t) (m (v/2cos (t) + sin (t)))—l

1D0+u1( ) = 1 )
L4 5 (lur ()] + [uz ()] + |us (t)]) + | Dgyua (t)H
5
2 1 1 1 D12y (t)
"D us (1) = + + + =,
-2 () VT+ur (8] V8+ua(t)] 3+ [us(®)] ™+t
tan (t)

1D0+U3 ( ) =

)

1+ 4 |ur (8)] + 15 |ue (8)] + 15 Jus (£)] + 2

1DO+U3( )‘

(110%1“) (0%) = <1Z§+u2> (0%) = <1I§+u3> (0%) =o. (4.1)

Set:

f <t Uy, u2,us, DOJru > = |:

-1

cos (t) (m (V2 cos (t) + sin (t)))

1+ 3 (Jua] + Jug| + Jus|) +

],

1
14
D0+u1
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5
5 1 1 1 lpliu
o VTt | VB4 lua| 3+ [uz] | mAtt
tan (t)

1
f3 <t7u17u27u37 1D5+u3> -
1+ 1 |ui] + 15 Juo| + 15 |ug| + £ 1D0+u

Because sin (t), cos(t) and tan (t) are continuous positive functions on [0, ﬂ )
the functions f; are jointly continuous for all u;R with ¢ = 1,2,3. For any ¢t €
[0,%], we have ? <cos(t) <1,0<sin(t) < ? and 0 < tan(¢) <1, and thus

1
fi (t uy, U2, us, D0+u1> - h <t7U1,U27U37 1D§+U1>'
3
<2
k=1

5
f2 <t7U1,U27U37 D&i“z) — /2 (75 v1, V2, V3, Dlwz)'
3

9

1
Lk
lug — v | + — ‘ D0+u1 Dy v1

¥

1 1
<§ _ -
< 6+k’uk ’Uk’-i-ﬂ

1
f3 (t,U1,U2,U3, 0+u3> - (t U17U27U37 0+U3>'
3
<3 = g — il +
5k
=1

Hence, condition (H1) is satisfied with A\; = 5=, Ay = 1,
% for any ¢ = 1,2,3 and

1
Y1=7Y2= V3= — =X 0.31831

o —PBi LA, _1
PPt 0 = Bi) _ (my\Ta L (B

i

5 5
112 112
D0+U2 - DO+U2

1
DO"'US_ D§+1)3 .

1
Az =3, and o — B =

S

Also, we have:
nAMTPT (14 a1 — )
[ (a1 +1) [pT (14 ag — B1) — yphrTrlea—F)]

1
% (1)1 (%) — ~ 0.71327,
r@ (-7
nA TPl (1 4+ ap — o)
I (ag +1) [poz2f (14 g — Bo) — 72p/32Tﬂ(0t2—62)]

3(m\3 (2
2 (1)°T(3) ~ 0.60371,

)

P (rd -1

NI
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nAsTPT (14 a3 — fB3)
T (a3 +1) [pT (1+ az — f3) — y3pTrlas=bs)]

3(myir(3) __ ~ 0.81365.
r)(r@ -7

It remains to show that the condition (3.7),

™
4

n\TP*T (1 + oy — 51)
su

~ 0.81365 < 1,
19’23 { [ (a;+1) [poT (14 oy — Bi) — vipPTe(i=5i)] }

is satisfied. It follows from Theorem 3.3 that problem (4.1) has a unique solution.

Example 4.2. For t € [0 ] consider the following problem:

cos () (24 § (b 0]+ s () + | Do+m< )
(V2 cos (t) + sin (t))(l +3 (\m (O] + Juz ()]) + ‘ D () D
lug ()] | |uo (t)l - IDo+“ ()D,

1D0+’LL2( ) = tan (¢) <1 T
(11 +u1> (0%) = < 7, +U,2> (0%) =o. (4.2)
Set:
f <t,u1,uQ, 1D§+u1>
cos (t) (2+ 4 (Jur (8)] + u2 (D)) + )1z>o+u1< ) \)
w<ﬁcos<t>+sin<t>)(1+%<|u1 (0] + s (0]) + | Dy (1))
fo <t,u1,uQ, 1D§+uQ>

i

1
1D§+ uy (1) =

)

ur ()], 2 (1)),
5 * 10

= tan (1) (1 + + - 1D0+u2( )D .

Clearly, for each t € [(), ﬂ , the functions f; are jointly continuous for all u; € R
with ¢ = 1,2. We have

1 1
1y 1y
fi <t,u1,u2, D§+U1> —f <f,U1,112, DS+U1>‘

2
1 1
§Z—\uk—vk|+ ‘ D0+u — 1D04+v1 ,

1 1
112 112
f2 <t,u1,U2, D§+u2) _f2 <t,?]1,?]2, D§+U2>‘
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21 [T
< Z 5 |uk — vg| + - Dgiuz — "Dgiva| .
k=1
Therefore, condition (H1) is satisfied with A\; = %, Ay = % and o; — 5; = % for
any ¢ = 1,2 and

1 pOéi_,BiI‘ (14 i — Bi)
m=mn= o< Toa=B) ~ 0.9628.
Also, we have
1
fl (tvu17u27 1D3+U1>
cos (t) 1 ‘1 ) D

< 24 = (lur (O] + lua(t)]) + "D ur(t)| |,
—ﬂﬂmw+mwﬂ (O] + Jux(®)) + "D (1)

1
f2 (t,ulauz, 1D§+U2> '

1 1 1
<t 1+ = t — t —
< tan (0) (14l (0] + 5 ez 0] + -

1
ID§+ ug (1) D .

Thus, condition (H2) is satisfied with

B 2cos (t) B
a(t) = 7 (V2cos (t) + sin (¢))’ az () = tan (),
by (1) = cos (¢) by (£) = ~ tan (1)
27 (V2 cos (t) +sin (t)) 5 ’
o (t) = cos (t) e (1) = L tan (1)

7 (V2 cos (t) + sin (¢))’ 7T

We also have a} = 2, a} =1, b} = 5 and b3 = £. Thus a; — 8; = 1 for any i =
1,2 and
p* AT (14 ai — Bi)

* * 1
G=d= < e ~ 0.9628
and
N = np® AT (14 aq — Br) b} _ =L@ ~ 0.47551
T p BT (1 + ar — Br) — G TPlea—F) i
p (L+ar—F)—cf ORI
Additionally,

np®2 22T (1 + ag — fBo) b}

2F
2 a2—B2] ( — fB2) — 51 p(az—pBz2) . 3
P 1+« 5 1
2 2 2 I ( ) ( )4

and the condition
N{TP™ NoyT P2

———— ~ 050511 < ——— ~0.54243 < 1.
pT (a1 + 1) p2l (g + 1)

It follows from Theorems 3.4 and 3.5, that problem (4.2) has at least one solution.
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5. Conclusion

Using Schauder’s fixed point theorem, the Banach contraction principle and
the Leray—Schauder type nonlinear alternative, this paper explored the existence
and main properties of at least one solution and its uniqueness for a class of a new
system of n nonlinear fractional differential equations with n integral conditions,
with Katugampola’s fractional derivative being used as the differential opera-
tor, and which is crucial for generalizing Hadamard’s and Riemann—Liouville’s
fractional derivatives into a single form.
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HociainxkeHHs icHyBaHHsI PO3B’I3KiB CUCTEMU N
HeJIIHIMHNX ApoboBux nudepeHniaibHUX PiBHAHb 3
iHTErpaIbHUMHU yMOBaAMU

Bilal Basti and Yacine Arioua
VY 1iit poboTi 0OroBOpPEHO 1 TOCTiIKEHO ICHYBaHHS 1 € IMHICTD PO3B’A3KIB

JI7IsI HOBOTO KJIACY CHUCTEM 7 HeJIHIMHUX AudepeHIliaIbHnX PIiBHAHD 3 JIPO-
0OBUMU TIOXiTHUMM Ta X OCHOBHI BJIACTHBOCTI, BUKOPHUCTOBYIOUU JIPOOOBY


mailto:bilalbasti@gmail.com; b.basti@univ-djelfa.dz
mailto:yacine.arioua@univ-msila.dz

System of n nonlinear FDEs with integral conditions

367

noxigny Karyramposnn 3 n inrerpajgpaumu ymosamu. s mocsaruenns 6a-
KaHol MeTn 3acTtocoBano Teopemu Illaynepa i banaxa mpo HepyxXoMy TOYKY
Ta HesiHiliny anbrepuaruBy tuiy Jlepe-Ilaymepa. s Toro, mob mpome-
MOHCTPYBaTH KOPHUCHICTH HAIUX OCHOBHUX PE3Y/IbTATIB, y pobOTI HaIaHO
JEKLIbKa TPUKJIAJIIB.

KirrogoBi ciioBa: cucrtema, apoboBe mudepeHIiagbHe PiBHAHHS, iHTE-
rpaJibHi YMOBHU, iICHyBaHHS, €JIUHICTH
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