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1. The setting of the problem. The basic matricial inequalities

connected with the problem

Let D = f� 2 C : j � j< 1g be the opened unit disk of the complex plane,

q 2 N, and let C q�q be the set of square matrices of order q with complex entries.

Denote by Cq the set of matrix-valued functions F(�) analytical in D with values

in C
q�q and satisfying the inequality

ReF(�) =
1

2
(F(�) + F�(�)) � 0

for all � 2 D . The Carath�eodory problem generalized to the matrix case (see, e.g.,

[1, 2]) is formulated in the following way.

Assume that c0; c1; : : : ; cn 2 C
q�q . Problem:

a) to �nd necessary and su�cient conditions of existence of a matrix-valued

function F(�) 2 Cq such that c0; c1; : : : ; cn are the �rst coe�cients of its

Maclaurin series:

F(�) = c0 + c1� + : : : + cn�
n + : : : ; (1:1)
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b) to describe all function F(�) 2 Cq of the form (1.1).

The Carath�eodory problem in the scalar case (i.e., in the case q = 1) was

investigated in the papers [3, 4].

Set An = Cn + C�n, where

Cn =

2664
c0 0 : : : 0

c1 c0 : : : 0

� � � � � � � � � � � �
cn cn�1 : : : c0

3775 : (1:2)

The matrix An plays an important role when we study this problem. Namely, the

following theorems are true (see, e.g., [2, 5, 6]).

Theorem 1.1. Let fckg
1
k=0 2 C

q�q and a function F(�) is of the form (1.1).

Then F(�) 2 Cq if and only if

An =

2664
c0 + c�0 c�1 : : : c�

n

c1 c0 + c�0 : : : c�
n�1

� � � � � � � � � � � �
cn cn�1 : : : c0 + c�0

3775 � 0 (1:3)

for all n 2 N [ f0g.

This theorem is supplemented by the following

Theorem 1.2. Let An � 0 for fckg
n

k=0 2 C
q�q . Then there exists F(�) 2 Cq

such that its expansion in the Maclaurin series has the form (1.1).

Theorems 1.1, 1.2 give us the answer to the �rst question of the Carath�eodory

problem. To give an answer to the second question V.P. Potapov proposed a

special approach (see, e.g., [1, 2, 5, 7, 8]). According to this approach the basic

matricial inequality (BMI) and the dual one are corresponded to each interpo-

lation problem. The solution of each of these inequalities gives us a description

of all solutions of the problem. The BMI and the dual one for the matricial

Carath�eodory problem have the form (1.4) and (1:40) respectively.

Theorem 1.3. ([1, 2]) Let fckg
n

k=0 2 C
q�q and let F(�) be a matrix-valued

function analytical in the unite disk D . Then F(�) 2 Cq and can be represented

in the form (1.1) if and only if for the function F(�) the inequality266666664

c0 + c�0 c�1 : : : c�n F�(�) + c0
c1 c0 + c�0 : : : c�

n�1 ��[F�(�) + c0 +
c1
��
]

� � � � � � � � � � � � � � � � � � � � � � � �
cn cn�1 : : : c0 + c�0 ��n+1[F�(�) + c0 +

c1
��
+ : : : + cn

��n
]

� F(�)+F�(�)

1�� ��

377777775
� 0 (1:4)
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holds everywhere in D or the following inequality266666664

c0 + c�0 c�1 : : : c�
n

1
�
[F(�)� c0]

c1 c0 + c�0 : : : c�
n�1

1
�2
[F(�)� c0 � c1�]

� � � � � � � � � � � � � � � � � � � � � � � �
cn cn�1 : : : c0 + c�0

1
�n+1

[F(�)� c0 � c1� � : : : � cn�
n]

� F(�)+F�(�)

1�� ��

377777775
� 0

(1:40)
holds everywhere in D .

Here and further the block denoted by � in the inequations of the form (1.4),

(1:40) is with the block which is adjoint to the upper right block.

Note that the matrix An of the form (1.3) is the upper left block in inequali-

ties (1.4) and (1:40). It turns out that the method of solving of these inequalities

depends on the property of the matrix An to be degenerate or not. In the case of

the nondegenerate matrix An the corresponding Carath�eodory problem is called

nondegenerate, otherwise it is called degenerate. First the nondegenerate matri-

cial Carath�eodory problem was solved constructively (i.e., directly in the terms

of the interpolation data) in [1]. In this paper V.P. Potapov's approach of solving

of the matricial interpolation problems was used (see, e.g., [7�11]. It is based on

the theory of analytical J -expansive matrix-valued functions. Note that the non-

degenerate matricial Carath�eodory problem is solved in [6] in the di�erent way.

First the constructive method of solving of the degenerate matricial interpolation

problems was obtained by investigating of the Schur problem [12]. The methods

of this paper play an important role in the Sect. 3. This section is main in the

present paper. There a constructive method of solving of the degenerate matricial

interpolation Carath�eodory problem is obtained. The main results of the paper

are formulated in Theorems 3.1 and 3.2 of this section.

In V.P. Potapov's approach the elementary multiple factor corresponding to

the BMI and the dual one plays a very important role. The parametrization of

the elementary multiple factor of the full rank connected with the nondegenerate

Carath�eodory problem is given in [1]. This parametrization is directly connected

with the parametrization of the elementary multiple factor of the full rank corre-

sponding to the nondegenerate Schur problem (see [13]). The parametrization of

an arbitrary elementary multiple factor corresponding to the Carath�eodory prob-

lem is obtained in the diploma work of L.V. Mihailova �The parametrization of

the elementary multiple factor of the nonfull rank in the Carath�eodory problem�

(Kharkov National University, 1981). There the results of the paper [14] were

used substantially. The proof of this parametrization (see the proof of Theo-

rem 2.2) is given in the present paper to deal with the main results formulated in

Theorems 3.1 and 3.2.
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2. The parametrization of an arbitrary elementary multiple

factor

Let j be a constant hermitian involutive matrix of order N , i.e., j � = j,

j2 = I.

De�nition 2.1. (See, e.g., [1, 9]) Let B(�) be an analytical matrix-valued

function of the order N . And let it have a single pole of an arbitrary multiplicity

on the extended complex plane. B(�) is called a j-elementary multiple factor if it

is j-expansive in the unit disk and j-unitary on its boundary, i.e.,

B(�)jB�(�)� j � 0; j � j< 1 (2:1)

and

B(�)jB�(�)� j = 0; j � j= 1 (2:2)

or, equivalently,

B�(�)jB(�)� j � 0; j � j< 1

and

B�(�)jB(�)� j = 0; j � j= 1:

The Carath�eodory problem is connected with the matrix j of the form:

j = J =

�
0 Iq
Iq 0

�
: (2:3)

It can be explained, e.g., by the fact, that the matrix block standing in the lower

right angle of the left part of inequalities (1.4) and (1:40) can be presented in the

following form:

F(�) + F�(�)

1� � ��
=

1

1� � ��
[F(�); Iq]

�
0 Iq
Iq 0

� �
F�(�)
Iq

�
:

Consider a J-elementary multiple factor B(�) of the order N = 2q. Assume

that B(�) has the single pole at the point � = 0 and

B(�) = d0 +
d1

�
+ : : : +

dn+1

�n+1
; di 2 C

2q�2q ; i = 0; 1; : : : ; n+ 1: (2:4)

From conditions (2.1), (2.2) we conclude that B(�) is determined up to a J-unitary

multiplier u (uJu� = J). Further we shall assume that the following normalization

condition is ful�lled: B(1) = I.

It follows from conditions (2.1), (2.2) that rank dn+1 � q (see, e.g., [10]). If

rankdn+1 = q then B(�) is called the J-elementary multiple factor of the full

rank.
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Theorem 2.1. (On a parametrization [1]) Let B(�) be a matrix-valued func-

tion of the form (2.4). It is a J-elementary multiple factor of the full rank if and

only if

B(�) = I +
1� �

�
J

�
�q;n(1) 0

0 �q;n(1)

�
H

"
��
q;n

(1�� ) 0

0 ��
q;n

(1�� )

#
;

where

�q;n(�) = [Iq; �Iq; : : : ; �
nIq]; (2:5)

H =

�
C�

I

�
(C + C�)�1 [C; I] : (2:6)

Here C is the matrix satisfying the conditions

C + C� > 0; (2:7)

CVq;n = Vq;nC (2:8)

and Vq;n is the square matrix of the (n+ 1)q-th order having the form

Vq;n =

2666664
0 : : : : : : : : : 0

Iq 0 : : : : : : 0

0 Iq 0 : : : 0
...

...
. . .

. . .
...

0 0 : : : Iq 0

3777775 : (2:9)

Moreover, the matrix C is de�ned by B(�) uniquely.
R e m a r k 2.1. One can easily see that (2.8) holds if and only if the matrix

C is a lower-triangle matrix of the form (1.2). This fact determines the connec-

tion of the J-elementary multiple factor of the full rank with the interpolation

Carath�eodory problem.

Let Q be an arbitrary hermitian matrix of the p-th order. Consider the canon-

ical basis ek = (Æik)
p

i=1, k = 1; 2; : : : ; p in C
p , where Æik is the Kronecker symbol,

i.e., Æik =

�
1; if i = k

0; if i 6= k
: We identify the matrix Q and the operator in C

p

de�ned on the basis (ek)
p

k=1 by this matrix (we denote it also by Q). Let �Q and

KerQ are the range and the kernel of the operator Q respectively. It is well-known

(see, e.g., [5]) that the operator (matrix) of the form

Q[�1]f =

�
(Q j�Q)

�1f; if f 2 �Q

0; if f 2 KerQ
(2:10)

is called the Moore�Penrose inversion of the operator (matrix) Q.
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Theorem 2.2. 1) Let B(�) be a J-elementary multiple factor of the form

(2.4). There exist unique matrices P , C 2 C
q�q such that

P � = P; P 2 = P; (2:11)

V �
q;nP = PV �

q;nP; (2:12)

CVq;n = PVq;nC; (2:13)

C = PC; (2:14)

PC� + CP � 0; rank (PC� + CP ) = rankP: (2:15)

Moreover, B(�) can be represented in the following form:

B(�) = I +
1� �

�
J

�
�q;n(1) 0

0 �q;n(1)

�
H

"
��q;n(

1
��
) 0

0 ��q;n(
1
��
)

#
; (2:16)

where

H =

�
C�

P

�
(PC� + CP )[�1] [C;P ] ; (2:17)

�q;n(�) and Vq;n are matrices of the form (2.5) and (2.9) respectively.

2) Let conditions (2.11)�(2.15) be satis�ed and let B(�) be a matrix-valued

function of the form (2.16). Then B(�) is a J-elementary multiple factor. More-

over,

B�(�)JB(�)� J

=
1� j � j2

j � j2

"
�q;n(

1
��
) 0

0 �q;n(
1
��
)

#
H

"
��
q;n

(1�� ) 0

0 ��q;n(
1
��
)

#
: (2:18)

R e m a r k 2.2. Conditions (2.11) mean that P is an orthoprojector. In

addition, (2.12) implies that orthoprojectors projecting in C
(n+1)q on invariant

with respect to operator V �
q;n subspaces are admissible. From (2.15) we conclude

that the case of the full rank (see Theorem 2.1) is characterized by the condition

P = I(n+1)q. In fact equalities (2.11), (2.12) and (2.14) are automatically ful�lled

and relations (2.13), (2.15) transfer into relations (2.7), (2.8) in this case.

P r o o f o f T h e o r e m 2.2. Let B(�) be a J-elementary multiple factor

of the form (2.4) satisfying the normalization condition B(1) = I. This condition

allows us to represent B(�) in the form

B(�) = I +
1� �

�
�2q;n(1)D��2q;n(

1
��
);
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where

D =

2664
d1 d2 : : : dn+1
d2 d3 : : : 0

: : : : : : : : : : : :

dn+1 0 : : : 0

3775 ;
and �2q;n(�) has the form analogical to (2.5). As we know ([11]), B(�) satis�es
the BMI of splitting o�264 D eJD� 1

�
D��2q;n(

1
��
)

� B�(�)JB(�)�J
1�j�j2

375 � 0; � 2 D ; (2:19)

and also the dual inequality264 D� eJD 1
��
D���2q;n(

1
�
)

� B(�)JB�(�)�J
1�j�j2

375 � 0; � 2 D nf0g; (2:20)

where

eJ =

26664
J 0 : : : 0

0 J : : : 0
...

. . .
...

0 0 : : : J

37775 ;
and J has the form (2:3). Solving inequalities (2.19) or (2.20), we obtain the

factor coinciding with B(�).
Due to [13, 14] let us simplify these inequalities before to solve them. Introduce

unitary matrix S of the form

S =

266666666664

Iq 0 0 : : : 0 0 0 : : : 0

0 0 0 : : : 0 Iq 0 : : : 0

0 Iq 0 : : : 0 0 0 : : : 0

0 0 0 : : : 0 0 Iq : : : 0

0 0 Iq : : : 0 0 0 : : : 0

: : : : : : : : : : : : : : : : : : : : : : : : : : :

0 0 0 : : : Iq 0 0 : : : 0

0 0 0 : : : 0 0 0 : : : Iq

377777777775
;

such that

J1 = S� eJS =

�
0 I(n+1)q

I(n+1)q 0

�
: (2:21)
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Let � = S�DS. Then �J1�
� = S�D eJD�S. Taking into account inequal-

ity (2.19), we have �J1�
� � 0. Denote �J1�

� =

�
a b

b� c

�
, where a; b; c 2

C
(n+1)q�(n+1)q . By analogy with [13, p. 214] we obtain the following repre-

sentation:

�J1�
� =

�
I(n+1)q X�

0

0 I(n+1)q

� �
0 0

0 eC
� �

I(n+1)q 0

X0 I(n+1)q

�
; (2:22)

where X0 is a solution of the equation cX0 = b�: Then

rankD = rank� = rank eC; eC � 0: (2:23)

In accordance to decomposition (2.21) of matrix J1 let us decompose matrix �

into blocks

� =

�
X Y

Z W

�
:

Then from (2.22) we obtain

WZ� + ZW � = eC: (2:24)

This equality implies

rankWZ� = rankZW � = rankZ = rankW = rank eC: (2:25)

It follows from (2.24) and (2.25) that

�W = �Z = �
eC
: (2:26)

Let PL be the orthoprojector in C
(n+1)q�(n+1)q onto a subspace L. Consider

the nondegenerate operator W0 = W j�W�
: �W � ! �W and a nondegenerate

transformation W1 : KerW ! KerW �. Put

Q =W�1
0 P�W +W�1

1 PKerW � :

Obviously,

Q�1 =W0P�W�
+W1PKerW :

Now de�ne the matrices C and P required in the conditions of Theorem 2.2 in

the following way:

C = QZ; P = P�W�
:

Then equalities (2.11) are ful�lled because P is a orthoprojector.
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In contrast to the Schur problem (see [14]) the matrix C corresponding the

Carath�eodory problem satis�es the following condition

PC� + CP = PZ�Q� +QZP = Q(Q�1PZ� + ZPQ��1)Q�

= Q(WZ� + ZW �)Q� = Q eCQ�:
Taking into account (2.23) and (2.26), we get relations (2.15) of Theorem 2.2.

Condition (2.14) immediately follows from the de�nition of matrix C. Proper-

ties (2.12), (2.13) are established as in [14, p. 61].

To prove necessity of the conditions of Theorem 2.2 it remains to obtain (2.16).

Let

R =

�
I(n+1)q �Y Q

0 Q

�
:

According to [14], we obtain that splitting o� inequality (2.19) is equivalent to

the inequality 264 RS�D eJD�SR� 1
�
RS�D��2q;n(

1
��
)

� B�(�)JB(�)�J
1�j�j2

375 � 0: (2:27)

We have R� =

�
0 0

C P

�
. It follows from here that

RS�D eJD�SR� = R�J1�
�R� =

�
0 0

0 PC� + CP

�
;

RS�D��2q;n(
1
��
) =

�
0 0

C P

�"
��
q;n

(1�� ) 0

0 ��q;n(
1
��
)

#
:

Then (2.27) can be rewritten in the form26664
�
0 0

0 PC� + CP

�
1
�

�
0 0

C P

�"
��q;n(

1
��
) 0

0 ��q;n(
1
��
)

#

� B�(�)JB(�)�J
1�j�j2

37775 � 0: (2:28)

Put

X =

�
0 0

(PC� + CP )[�1]C (PC� + CP )[�1]P

�
:

It is evident that X is a solution of�
0 0

0 PC� + CP

�
X =

�
0 0

C P

�
:
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Now, using V.P. Potapov's approach, we solve by the standard method inequal-

ity (2.28) (see, e.g., [13]) and obtain representation (2.16). The necessity is proved.

Let B(�) is of the form (2.16) and conditions (2.11)�(2.15) be satis�ed. It

follows from (2.11)�(2.14) that

H

�
��
q;n

(1) 0

0 ��
q;n

(1)

�
J

�
�q;n(1) 0

0 �q;n(1)

�
H

= H

�
Dq;n 0

0 Dq;n

�
+

�
D�
q;n 0

0 D�
q;n

�
H �H;

where Dq;n = Iq + Vq;n + V 2
q;n

+ : : :+ V n
q;n
: Hence (2.18) is true. Relations (2.15)

and (2.17) implies that H � 0. With regard to (2.18) we obtain that B(�) is a
J-elementary multiple factor. Using again (2.18), we conclude that the matrix H

is determined uniquely by B(�). Therefore C and P are also determined uniquely

by B(�). Theorem 2.2 is proved.

Let bj = �
�Iq 0

0 Iq

�
: De�ne

bB(�) = bjB��1
��

�bj = bj �d�0 + d�1� + : : :+ d�n+1�
n+1

�bj = bd0+ bd1�+ : : :+ bdn+1�n+1:
(2:29)

Since B(�) is a J-elementary multiple factor with the pole of multiplicity n + 1

at the point � = 0, then bB(�) is a J-elementary multiple factor with the pole of

multiplicity n + 1 at the point � = 1. In terms of the J -elementary multiple

factor bB(�) Theorem 2.2 can be reformulated in the following way.

Theorem 2.3. 1) Let bB(�) be a J-elementary multiple factor of the form

(2.29). There exist unique matrices P , C 2 C
q�q satisfying conditions (2.11)�

(2.15). Moreover, bB(�) can be represented in the following form:

bB(�) = I + (1� �)bj � �q;n(�) 0

0 �q;n(�)

�
H

�
��
q;n

(1) 0

0 ��q;n(1)

�bjJ; (2:30)

where H has the form (2.17).

2) Let conditions (2.11)�(2.15) be satis�ed and let bB(�) be the matrix-valued

function of the form (2.30). Then bB(�) is a J-elementary multiple factor. More-

over, bB(�)J bB�(�)� J

= (1� j � j2)bj � �q;n(�) 0

0 �q;n(�)

�
H

�
��
q;n

(�) 0

0 ��q;n(�)

�bj; (2:31)

where �q;n(�) has the form (2.5).
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3. Solving of the basic matricial inequalities

Let E be a unitary space of dimension q and [E] be the set of linear oper-

ators acting on E. Denote by C[E] the class of operator-valued functions F(�)
analytical in D , such that for all � 2 D we have F(�) 2 [E] and ReF(�) =
1
2
(F(�) + F�(�)) � 0: Let an orthonormal basis in E be �xed. We identify

matrix-valued functions F(�) 2 Cq of the form (1.1) and corresponding to them

operator-valued functions from C[E].
Taking into account the block structure of the matrix Cn (see (1.2)), we con-

clude that the block matrix An of the form (1.3) can be considered as an operator

acting in the space

E(n) = E �E � : : :�E| {z }
n+1

:

We embed E(k�1) into E(k) in the following way E(k) = E(k�1)�E, k = 1; 2; : : : ; n,

E(0) = E.

Subspace of the type K introduced in [12] plays an important role when we

solve the degenerate Carath�eodory problem. In the case of the Carath�eodory

problem this subspace is de�ned in the following way.

De�nition 3.1. A subspace L � E(n) is said to be a subspace of the type K if:

1) L is the complement to the kernel of An, i.e., LuKerAn = E(n);

2) L is an invariant with respect to V �
q;n

, where Vq;n is de�ned by equality (2.9).

Note that in the case of the degenerate Carath�eodory problem the existence

of a subspace of the type K for the matrix An of the form (1.3) is proved in the

same way as in the case of the degenerate matricial Schur problem [12].

Let L be an arbitrary subspace of the type K, let P = PL be the orthoprojec-

tor onto L and C = PCn, where Cn has the form (1.2). With regard to de�ni-

tion 3.1, taking into account properties of the orthoprojector P and the equality

PC�+CP = PAnP , we obtain, that conditions (2.11)�(2.15) are satis�ed for the

matrices P and C.

The operator eAn = (PC� + CP ) jL = PAnP jL : L ! L is a nondegenerate

operator. The orthogonal decomposition E(n) = L�L? allows us to consider the

block representation

An =

� eAn B

B� D

�
=

�
I 0

X� I

� � eAn 0

0 0

� �
I X

0 I

�
; (3:1)

where X is a solution of the equation eAnX = B. Using this decomposition

E(n), we conclude that the operator PC� + CP has the form

� eAn 0

0 0

�
. Then
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(PC� + CP )[�1] has the following block representation

� eA�1n 0

0 0

�
. It follows

from (3.1) that KerAn = �

�
�X
I

�
. Hence Ker [�X�; I] = �An

:

Now let us solve the matricial inequalities (1.4) and (1:40). Rewritten them in

the form "
An B(�; n)

� F(�)+F�(�)

1�� ��

#
� 0; � 2 D (3:2)

and "
An eB(�; n)
� F(�)+F�(�)

1�� ��

#
� 0; � 2 D nf0g (3:20)

respectively. Here

B(�; n) = ��q;n(�)F
�(�) + Cn�

�
q;n(�);

eB(�; n) = 1

�
��
q;n

�
1
��

�
F (�)�

1

�
Cn�

�
q;n

�
1
��

�
:

With regard to [12, p. 48, 49] we can show that inequality (3.2) holds if and only

if

[�X�; I]B(�; n) = 0; � 2 D ; (3:3)

F(�) + F�(�)

1� j � j2
�B�(�; n) (PC� + CP )[�1]B(�; n) � 0; � 2 D ; (3:4)

and that inequality (3:20) holds if and only if

[�X�; I] eB(�; n) = 0; � 2 D nf0g; (3:30)

F(�) + F�(�)

1� j � j2
� eB�(�; n) (PC� + CP )[�1] eB(�; n) � 0; � 2 D nf0g: (3:40)

Consider (3.3), (3.4). Inequality (3.4) may be solved as in the nondegenerate case

(see [2, 12]). Since

F(�) + F�(�)

1� j � j2
= [F(�); I]

J

1� j � j2

�
F�(�)
I

�
;

B(�; n) = [I; Cn]

�
��q;n(�) 0

0 ��q;n(�)

� �
F�(�)
I

�
;

then (3.4) can be represented in the form

[F(�); I]

�
J

1� j � j2
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�J

�
�q;n(�) 0

0 �q;n(�)

�
H

�
��q;n(�) 0

0 ��
q;n

(�)

�
J

��
F�(�)
I

�
� 0; � 2 D ;

(3:5)

where

H =

�
C�

P

�
(PC� + CP )[�1] [C;P ] :

Since for the matrices P and C conditions (2.11)�(2.15) are ful�lled, then

Theorem 2.2 implies that

B(�) = I +
1� �

�
J

�
�q;n(1) 0

0 �q;n(1)

�
H

"
��
q;n

(1�� ) 0

0 ��
q;n

(1�� )

#

is a J-elementary multiple factor. In addition, equality (2.18) take place. We

have

B�1(�) = JB�(
1
��
)J; � 6= 0;

because B(�) is a J-unitary on the boundary of the unit disk. It follows from (2.18)

we get

J � B�1(�)JB��1(�)

1� j � j2
= J

�
�q;n(�) 0

0 �q;n(�)

�
H

�
��q;n(�) 0

0 ��
q;n

(�)

�
J:

By substitution the last expression into (3.5), we obtain

[F(�); I]B�1(�)JB��1(�)

�
F�(�)
I

�
� 0; � 2 D : (3:6)

Let us de�ne the pair of the matrix-functions [u(�); v(�)] in the following way:

[u(�); v(�)] = [F(�); I]B�1(�); � 2 D : (3:7)

In a way analogous to that used in the nondegenerate case (see [2, 12]) we prove

that the pair [u(�); v(�)] satis�es the following conditions:

(1) the matrix-functions u(�), v(�) are analytical in D ;

(2) the pair [u(�); v(�)] is a J-nonexpansive pair in D , i.e., for each � 2 D

[u(�); v(�)]J

�
u�(�)
v�(�)

�
� 0; (3:8)

(3) for all � 2 D the following inequality holds

[u(�); v(�)]

�
u�(�)
v�(�)

�
> 0; (3:9)
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i.e., the pair [u(�); v(�)] is nonsingular in D .

Let us decompose B(�) into the blocks according to the block representa-

tion (2.3) of matrix J

B(�) =

�
a(�) b(�)

c(�) d(�)

�
:

Then using (3.7), we obtain

F(�) = u(�)a(�) + v(�)c(�); I = u(�)b(�) + v(�)d(�):

Hence,

F(�) = [u(�)b(�) + v(�)d(�)]�1[u(�)a(�) + v(�)c(�)]: (3:10)

The converse is also true. Let [u(�); v(�)] be an arbitrary nonsingular J-nonexpan-

sive pair of analytic matrix-functions in D . Then the matrix u(�)b(�) + v(�)d(�)

is invertible in D and F(�) satis�es condition (3.6). Hence it also satis�es inequa-

lity (3.4). Thus, the following lemma is proved.

Lemma 3.1. The general solution F(�) of inequality (3.4) is represented

in the form of the linear fractional transformation (3.10), where the parameter

[u(�); v(�)] is a nonsingular J-nonexpansive pair of analytical matrix-functions in

D . The J-elementary multiple factor

B(�) =

�
a(�) b(�)

c(�) d(�)

�
of the form (2.16) with the pole of multiplicity n + 1 at the point � = 0 is the

matrix of coe�cients of the linear fractional transformation. In (2.16) P is the

orthoprojector onto one of subspaces of the type K and C = PCn.

Recall, that nonsingularity (J-nonexpansibility respectively) in D of the pair of

matrix-functions

� bu(�)bv(�)
�
means nonsingularity (J-nonexpansibility respectively)

in D of the pair [bu�(�); bv�(�)].
Analogously to Lemma 3.1 due to Theorem 2.3 we obtain

Lemma 3.2. The general solution F(�) of inequality (3:40) is represented in

the form of the linear fractional transformation:

F(�) = [ba(�)bu(�) +bb(�)bv(�)][bc(�)bu(�) + bd(�)bv(�)]�1; (3:100)

where the parameter

� bu(�)bv(�)
�
is a nonsingular J-nonexpansive pair of analytical

matrix-functions in D . The J-elementary multiple factor

bB(�) = " ba(�) bb(�)bc(�) bd(�)
#
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of the form (2.30) with the pole of multiplicity n+ 1 at the point � =1 is a the

matrix of coe�cients of the linear fractional transformation. In (2.30) P is the

orthoprojector onto one of subspaces of the type K and C = PCn.

Now let us choose solutions satisfying condition (3.3) ((3:30) respectively) in
the set of solutions of the form (3.10) ((3:100) respectively) of inequality (3.4)

((3:40) respectively) .
Let P0 be an orthoprojector in E(n) onto KerAn: Repeating the reasonings of

the paper [12, p. 51, 52], we get that condition (3.3) is equivalent to the condition

P0[I; Cn]

�
��q;n(1) 0

0 ��
q;n

(1)

� �
u�(�)
v�(�)

�
= 0; � 2 D ; (3:11)

and (3:30) is equivalent to the condition

P0[I;�Cn]

�
��q;n(1) 0

0 ��q;n(1)

� � bu(�)bv(�)
�
= 0; � 2 D ; (3:110)

respectively. Equalities (3.11) and (3:110) we can rewrite in the form

u(�)�q;n(1)P0 � v(�)�q;n(1)CnP0 = 0; � 2 D ; (3:12)

bu�(�)�q;n(1)P0 + bv�(�)�q;n(1)CnP0 = 0; � 2 D ; (3:120)

respectively.

Note, that ��
q;n

(1)�q;n(1) = Fq;n + F �
q;n

+ I; where

Fq;n =

2666664
0 : : : : : : : : : 0

Iq 0 : : : : : : 0

Iq Iq 0 : : : 0
...

...
. . .

. . .
...

Iq Iq : : : Iq 0

3777775 :

Taking into account Fq;nCn = CnFq;n and An = Cn + C�n, we obtain

P0C
�
n�

�
q;n(1)�q;n(1)P0 + P0�

�
q;n(1)�q;n(1)CnP0

= P0
�
C�n(Fq;n + F �q;n + I) + (Fq;n + F �q;n + I)Cn

�
P0

= P0(AnFq;n + F �q;nAn +An)P0 = 0;

i.e.,

P0C
�
n�

�
q;n(1)�q;n(1)P0 + P0�

�
q;n(1)�q;n(1)CnP0 = 0: (3:13)
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Consider the operators r = �P0C
�
n
��
q;n

(1) and s = P0�
�
q;n

(1) acting in E on

KerAn. Then (3.13) can be rewritten in the form

[r; s]J

�
r�

s�

�
= 0; (3:14)

where J has the form (2.3).

Let eJ =

�
�Iq 0

0 Iq

�
and � = 1p

2

�
�Iq Iq
Iq Iq

�
. Note that � = �� = ��1 and

�J�� = eJ . It follows from here that

[r; s]J

�
r�

s�

�
= [r; s]�� eJ� � r�

s�

�

=
1

2
[�r + s; r + s] eJ � �r� + s�

r� + s�

�
=

1

2
(�(�r + s)(�r� + s�) + (r + s)(r� + s�)) = 0;

i.e., condition (3.14) is equivalent to the equality

(�r + s)(�r� + s�) = (r + s)(r� + s�): (3:15)

Let M0 and N0 be the ranges of the operators (�r
� + s�) and r� + s� respec-

tively. Relation (3.15) allows us to de�ne the unitary operator U : M0 ! N0,

such that

U(�r� + s�) = r� + s�: (3:16)

Now let us rewrite condition (3.12) for the pair [u(�); v(�)] in terms of the operator

U . Note that (3.12) is equivalent to the equality

[u(�); v(�)]J

�
r�

s�

�
= [u(�); v(�)]�� eJ� � r�

s�

�

=
1

2
[�u(�) + v(�); u(�) + v(�)] eJ � �r� + s�

r� + s�

�
=

1

2
(�(�u(�) + v(�))(�r� + s�) + (u(�) + v(�))(r� + s�)) = 0; � 2 D :

Taking into account (3.16), we can rewrite this condition in the form

(�(�u(�) + v(�)) + (u(�) + v(�))U) (�r� + s�) = 0; � 2 D : (3:17)

From (3.8), (3.9) we obtain

(u(�) + v(�))(u�(�) + v�(�))
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= (u(�)v�(�) + v(�)u�(�)) + (u(�)u�(�) + v(�)v�(�)) > 0; � 2 D :

Hence for all � 2 D the matrix u(�) + v(�) is invertible. Then (3.17) is equivalent

to the condition

(v(�) + u(�))�1(v(�)� u(�))jM0
= U; � 2 D : (3:18)

Hence (3.12) is also equivalent to this condition. Analogously, we obtain that

(3:120) is equivalent to the equality

(bv�(�) + bu�(�))�1(bv�(�)� bu�(�))jN0
= U�; � 2 D : (3:180)

Thus, the following statements are proved.

Theorem 3.1. Let fckg
n

k=0 � C
q�q , the matrix Cn have the form (1.2) and

let for the matrix An = Cn + C�
n
condition (1.3) hold. Then the general solution

F(�) of basic matricial inequality (1.4) is represented in the form of the linear

fractional transformation:

F (�) = [u(�)b(�) + v(�)d(�)]�1[u(�)a(�) + v(�)c(�)];

where the parameter [u(�); v(�)] is a nonsingular J-nonexpansive pair of analytical

matrix-functions [u(�); v(�)] in D and satis�es the condition

(v(�) + u(�))�1(v(�)� u(�))jM0
= U; � 2 D :

Here U is determined by the problem data from the equality

U(�q;n(1)CnP0 +�q;n(1)P0) = ��q;n(1)CnP0 +�q;n(1)P0;

where P0 is the orthoprojector onto KerAn, �q;n(�) has the form (2.5). Moreover,

U is a unitary mapping of M0 to N0, where M0 is the range of the operator

�q;n(1)CnP0 + �q;n(1)P0 and N0 is the range of the operator (��q;n(1)CnP0 +
�q;n(1)P0). The J-elementary multiple factor

B(�) =

�
a(�) b(�)

c(�) d(�)

�
of the form (2.16) with the pole of multiplicity n + 1 at the point � = 0 is the

matrix of coe�cients of the linear fractional transformation. In (2.16) P is the

orthoprojector onto one of subspaces of the type K and C = PCn.

Theorem 3.2. Let fckg
n

k=0 � C
q�q , the matrix Cn have the form (1.2) and

let for the matrix An = Cn + C�n condition (1.3) hold. Then the general solution

F(�) of dual matricial inequality (1:40) is represented in the form of the linear

fractional transformation:

F(�) = [ba(�)bu(�) +bb(�)bv(�)][bc(�)bu(�) + bd(�)bv(�)]�1;
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where the parameter

� bu(�)bv(�)
�
is a nonsingular J-nonexpansive pair of analytical

matrix-functions in D and satis�es the condition

(bv�(�) + bu�(�))�1(bv�(�)� bu�(�))jN0
= U�; � 2 D :

Here the operator U is determined as in Theorem 3.1. The J-elementary multiple

factor bB(�) = " ba(�) bb(�)bc(�) bd(�)
#

of the form (2.30) with the pole of multiplicity n + 1 at the point � = 1 is the

matrix of coe�cients of the linear fractional transformation. In (2.30) P is the

orthoprojector onto one of subspaces of the type K and C = PCn.

R e m a r k 3.1. Assume that there exists a point �0 2 D such that matrix

v(�0) is invertible. Then analyticity of v(�) in D implies invertibility of the matrix

v(�) everywhere in D excepting, may be, some set G of isolated in D points.

Let !(�) = v�1(�)u(�), � 2 D nG. From (3.8) it follows that

Re!(�) =
1

2
(v�1(�)u(�) + u�(�)(v�1(�))�)

=
1

2
v�1(�)(u(�)v�(�) + v(�)u�(�))(v�1(�))� � 0; � 2 D nG:

Therefore the matrix I + !(�) is invertible for all � 2 D nG and the function

s(�) = (I + !(�))�1(I � !(�)) (3:19)

is analytical in D nG and satis�es to the condition (see, e.g., [5, point 1.3])

ks(�)k � 1; � 2 D nG: (3:20)

Relation (3.19) is equivalent to

!(�)(I + s(�)) = I � s(�); � 2 D nG:

Hence the matrix I + s(�) is invertible for all � 2 D nG and the representation

!(�) = (I � s(�))(I + s(�))�1; � 2 D nG; (3:21)

is valid.

Denote by Sq the set of matrix-valued functions S(�) analytical in D with

values in C
q�q and satisfying the inequality kS(�)k � 1 for all � 2 D . From (3.20)

we conclude, that all points of set G are removable singular points for the matrix-

function s(�). Extending the s(�) to the points of G by continuity, we obtain
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function S(�) 2 Sq. From (3.21) it follows that 
(�) = (I � S(�))(I + S(�))�1

belongs to the class Cq and it is the extension of the matrix-function !(�), � 2
D nG, to D .

Now (3.18) can be rewritten

(I +
(�))�1(I � 
(�))jM0
= U; � 2 D : (3:22)

Thus, if there exists a point �0 2 D such that the matrix v(�0) is invertible, then

the corresponding solution F(�) of Carath�eodory problem (see Theorem 3.1) is

represented in the form of the linear fractional transformation F(�) = [
(�)b(�)+

d(�)]�1[
(�)a(�) + c(�)] of the matrix-function 
(�) 2 Cq, satisfying condi-

tion (3.22). Moreover, this condition holds if and only if 
(�) admits the repre-

sentation


(�) = (I � S(�))(I + S(�))�1;

where S(�) 2 Sq and S(�)jM0
= U , � 2 D . Note that from invertibility of the

matrix I + S(�), � 2 D it follows that �1 does not belong to the spectrum of the

operator U .

Analogous remark can also be made in the case of Theorem 3.2.
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