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Suppose a topological semigroupG acts on a topological spaceX . A trans-
formation g 2 G is called an admissible (partially admissible, singular, equi-
valent, invariant) transformation for � relative to � if �g � � (accordingly:
�g 6? �, �g ? �, �g � �, �g = c � �), where �g(E) := �(g�1E). We denote
its collection by A(�j�) (accordingly: AP (�j�), S(�j�), E(�j�), I(�j�)). It
is shown that all these sets are Borel subsets of very bounded types. In par-
ticular, A(�j�) is a GÆ�Æ-subset of G. If G is a Polish group, then A(�j�),
E(�j�) and I(�j�) admit a Polish topology.
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Let X be a measurable space and � a probability measure on X. A transfor-

mation g : X ! X is called admissible for � if �g � � where �g = �g�1. Such

transformations are important for the study of measures. Let X be a topological

group. The simplest transformations of X are translations. Denote by A(�) the

set of admissible translations of �. For example, admissible translations arise

naturally in the theory of stochastic processes. T.S. Pitcher [14] has done the

general de�nition of an admissible translation and the simplest properties of A(�)

for measures which correspond to stochastic processes. In detail some algebraic

and topological properties for admissible translations of measures were considered

by A.V. Skorohod [18] for a Hilbert space and by Y. Okazaki [12] for a separable

metric group.

It turned out that the structure of � depends on the �volume� of A(�) sub-

stantially. In the case X = R and [0;1) � A(�), A.V. Skorohod [17] has proved

that � is absolutely continuous relative to the Lebesgue measure and its support

is of the form [a;1). P.L. Brockett [4] has generalized this fact to the case of
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locally compact �-compact groups. Moreover, the famous Mackey�Weil theorem

[11] asserts that if X is a standard Borel group and A(�) = X, then X admits

a locally compact topology and � is mutually absolutely continuous with respect

to Haar measure.

Transformations which take � to its equivalent (to oneself), constitute an

important special case. We denote the set of such transformations by E(�) (I(�)).

Restricting our considerations to such transformations only, we obtain a classical

object of study in Ergodic theory. Let X be a locally compact group. There exists

a measure (the Haar measure) such that I(�) = X. This fact plays a key role in

Harmonic analysis. At any case, I(�) (the group of invariance) is compact and

plays an important role in arithmetic of probability measures (see history and

details in [8]).

Let X = T be the circle group and � a probability measure on T. E(�) can be

viewed as a group of eigenvalues for a nonsingular dynamical system and belongs

to the class of so-called �saturated� subgroups [1, 9]. This approach demonstrates

an interesting interplay between Harmonic analysis and Ergodic theory.

These results constitute the basement of study of A(�) and similar sets in more

detail. In particular, some algebraic, measure theoretical properties, together with

a Lebegsue-type decomposition of this set have been considered (see [7]). In this

article we study topological properties of the set of admissible transformations.

Let X = G be a separable metric group. Y. Okazaki [12] has shown that the

sets E(�) and A(�) are Borel. Let us consider the group E(�). Two methods of

proving that E(�) is Borel are known. The �rst introduces the strong operator

topology on E(�) and shows that this topolgy is Polish (see [18, 1, 13]). In the

�rst part of the article we generalize this fact to all Polish G-spaces. Note that

in the general case (see Remark 2.3), E(�) is not complete in the strong operator

topology and it is necessary to amplify it by the initial topology. At the end of

the �rst part we present some applications of our results to t-ergodic measures,

which generalize corresponding facts for Abelian groups ([5, 9, 13]). The second

method was used by Y. Okazaki [12]. In the second part of the article we use

the de Possel theorem to prove much more (see Theorem 3.1). In particular, for

X = T we establish that E(�) is the set of the type GÆ�Æ . This give a restriction

on E(�) as well as saturation.

1. Preliminaries and basic de�nitions

Let (X;B) be a Borel space. We can assume without loss of generality that

X is separable, i.e.: if x; y 2 X and x 6= y, then there exists E 2 B such that

x 2 E 63 y.
De�nition 1.1. A pair (G;X) is called a (semi)group of transformations if:

1) G is a (semi)group and X is a Borel space;
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2) the mapping g : (X;B) ! (X;B), x 7! g � x, is Borel for all g 2 G;

(gh) � x = g � (h � x), and if e is the unit in G then e � x = x, 8g; h 2 G, 8x 2 X:
Let G be a topological (semi)group and X a topological space. Then the

(semi)group of transformations (G;X) is said to be topological if the mapping

(g; x) 7! g � x is continuous.

De�nition 1.2. Let (G;X) and (H;Y ) be a (semi)group. A pair (p; �), where

p : G ! H is a homomorphism and � : X ! Y a Borel mapping, is called a

morphism from (G;X) to (H;Y ) if p and � acts as follows

�(g � x) = p(g) � �(x) ; 8g 2 G; 8x 2 X:

If (G;X) and (H;Y ) are topological (semi)groups of transformations then p and

� are supposed to be continuous.

Hence the set of [topological] (semi)groups of transformations form a category.

Let E 2 B. The image and the inverse image of E is denoted by g � E and

g�1E respectively. If G is a group, then g �E is denoted simply by gE.

Let M(X) be the set of all �nite Borel measures on X. The subset of all posi-

tive measures is denoted byM+(X). A measure � 2M+(X) is called probabilistic

if �(X) = 1. The Dirac mass at a point x is denoted by Æx. Let �; � 2 M(X).

We write �� � if j�j is absolutely continuous relative to j�j, and � ? � if j�j and
j�j are mutually singular. Equivalence � � � means that � � � and � � �. If

� = �1 + �2 whith �1 ? �2, then �1 and �2 are called parts of �.

Let � 2 M(X) and g 2 G. Denote by �g the measure on (X;B) determined

by the relation

�g(E) = �(g�1E); E 2 B:
Then (�g)h(E) = �g(h

�1E) = �(g�1h�1E) = �hg(E), i.e., (�g)h = �hg.

Let �, � 2M(X). One can represent them in the form

� = �1 + �2; � = �1 + �2; where �1 � �1; �2 ? �; �2 ? �:

This decomposition is called the Lebesgue decomposition of measures � and �.

Denote by d�

d�
the derivative of � with respect to �. Then

d�

d�
=
d�1

d�1
; �1 � a.e. ; and

d�

d�
= 0; (�2 + �2)� a.e.

Denote by mG the left Haar measure of a locally compact group G.

For a function f(x) we put: f+(x) = maxff(x); 0g, f�(x) = minff(x); 0g.
Then f(x) = f+(x)� f�(x).

This article is devoted to the study of topological properties of the sets which

are determined in the following de�nitions.
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De�nition 1.3. Let � 2 M(X). A transformation g 2 G is called an admis-

sible (partially admissible, singular, equivalent, invariant) transformation for � if

�g � �(respectively: �g 6? �, �g ? �, �g � �, �g = �). Their set denoted by

A(�) (respectively: AP (�), S(�), E(�), I(�)).

Obviously

I(�) � E(�) � A(�) � AP (�); AP (�) \ S(�) = ;; AP (�) [ S(�) = G:

It is clear that, if G has a unit e, then e 2 I(�).
The following de�nition is a natural generalization of the previous one.

De�nition 1.4. Let �, � 2 M(X). A transformation g 2 G is called an

admissible (partially admissible, singular, equivalent, invariant) transformation

for � relative to � if �g � � (respectively: �g 6? �, �g ? �, �g � �, �g = c � �,
where c = k�k=k�k). Their set denoted by A(�j�) (respectively: AP (�j�), S(�j�),
E(�j�), I(�j�)).

Evidently, the corresponding inclusions are true for these sets:

I(�j�) � E(�j�) � A(�j�) � AP (�j�);
AP (�j�) \ S(�j�) = ;; AP (�j�) [ S(�j�) = G:

Clearly, if G is a group, then E(�j�) = E(j�jjj�j), A(�j�) = A(j�jjj�j),
AP (�j�) = AP (j�jjj�j), S(�j�) = S(j�jjj�j). Thus we will often restrict our

considerations to probability measures only.

The case when X = G is a group makes a special interest. The following

operators arise naturally

Lg(x) = gx ; Rg(x) = xg�1 ; Cg(x) = gxg�1 = LgRg(x); 8x; g 2 X:

These operators determine the left, right and conjugate actions of G on X. By

default, the action of G on X is left, i.e. g � x = gx.

De�nition 1.5. Let G = X be a group. The sets AP (�j�), S(�j�), A(�j�),
E(�j�), I(�j�) relative to the left (right, conjugate) action of the group on itself

is denoted with the subindex l (respectively r; c), i.e.,

APl(�j�); Sl(�j�); Ar(�j�); Ec(�j�) etc.

Put At(�j�) = Al(�j�) \ [Ar(�j�)]�1, At(�) = Al(�) \ [Ar(�)]
�1 etc.
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We remark that for noncommutative groups, P.L. Brockett [4] and Y. Okazaki

[12] used the term admissible translations for the elements of At(�).

Set G� = G [ fidXg. Then G� is a semigroup with unit. Corresponding sets

relative to G� are denoted by AP �(�j�), A�(�j�) etc. A set E is called G-invariant

if g�1(E) = E for all g 2 G.

De�nition 1.6. A measure � is called t-ergodic, if for all its nonzero parts �

and �, there exist g, h 2 G� such that �g 6? � and � 6? �h.

Evidently, � is t-ergodic if and only if j�j is t-ergodic.

2. The strong topology on AP (�)

Let X be a separable metric space. Let G be a separable metric (semi)group

which acts continuously on X. Let � and � be probability measures on X.

For � 2 L1(�) let �g = �1 + �2 be the Lebesgue decomposition of �g relative

to �, where �1 � � and �2 ? �. Put

T�;g(�) = �1:

Then T�;g is a linear contractive operator from L1(�) to L1(�).

Now we de�ne the strong operator topology (strong topology, for short) on

AP (�j�) (compare with [18, 1, 13]).

De�nition 2.1. A sequence gn 2 AP (�j�) is called convergent to g 2 AP (�j�)
in the strong topology if

lim
n!1

kT�;gn(�)� T�;g(�)k = 0; 8� 2 L1(�); (2.1)

for the semigroup case, and, additionally to (2.1),

lim
n!1

kT
�;g

�1
n
(�)� T�;g�1(�)k = 0; 8� 2 L1(�); (2.2)

for the group case.

De�nition 2.2. Let g, h 2 AP (�j�). Let f�ng and f�ng be a countable dense

subset in L1(�) and L1(�) respectively. If G is a semigroup we put

d(h; g) =

1X
n=1

1

2n
kT�;h(�n)� T�;g(�n)k

1 + kT�;h(�n)� T�;g(�n)k
;

and if G is a group we put

d(h; g) =

1X
n=1

1

2n

� kT�;h(�n)� T�;g(�n)k
1 + kT�;h(�n)� T�;g(�n)k

+
kT�;h�1(�n)� T�;g�1(�n)k

1 + kT�;h�1(�n)� T�;g�1(�n)k

�
:
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Notice some simple properties.

Proposition 2.1. 1. d(g; h) is a pseudometric on AP (�j�).

2. The topology which determined by d(g; h) and the strong topology are coin-

cide.

3. Let I(g; h) = fx : g � x = h � xg. Put

�g;h(E) := �(E \ (X n I(g; h))) ; �g;h(E) := �(E \ (X n I(g; h))):

Then d(g; h) is a metric if and only if the set AP (�g;hj�) \ fg; hg (in the

case if G is a group, one of the sets AP (�g;hj�) \ fg; hg or AP (�g;hj�) \
fg�1; h�1g) is not empty for all g; h 2 AP (�j�); g 6= h.

4. If d(g; h) is a metric, then AP (�j�) is a separable metric space.

5. If G is a group, then the mapping j : AP (�j�) ! AP (�j�), j(g) = g�1, is

a homeomorphism.

6. If h and t are invertible, then the mapping i(g) = tgh�1 is homeomorphism

from B(�j�) to B(�hj�t), where B(:) is one of the sets AP (:), A(:), E(:),

I(:).

P r o o f. We give the proof for the case when G is a group.

1., 2. Evidently.

3. Let g 2 AP (�g;hj�). Let (�g;h)g = �1 + �2 with �1 � �, �2 ? �, and � be

the part of �g;h such that �g = �1. By hypothesis, we can chose x0 2 supp � and

a neighborhood U of x0 such that g � U \ h � U = ;. Put � = �jU = (�g;h)jU and

chose �n such that k� � �nk < 0; 1k�k. Then

(1 + kT�;g(�n)� T�;h(�n)k)2nd(g; h) � kT�;g(�n)� T�;h(�n)k
= kT�;g(�)� T�;h(�) + T�;g(�n � �)� T�;h(�n � �)k

� kT�;g(�)� T�;h(�)k � 2k�n � �k � kT�;g(�)k � 0; 2k�k = 0; 8k�k > 0:

Hence d(g; h) > 0. Analogically, if g�1 2 AP (�g;hj�), then d(g; h) > 0.

Conversely. Let d be a metric and g 6= h. Then d(g; h) > 0. Let �n = �1n+�2n
with �1n � �g;h, �

2
n ? �g;h. Then �2n is concentrated on I(g; h) and therefore

(�2n)g = (�2n)h. If g; h 2 S(�g;hj�), then

kT�;g(�n)� T�;h(�n)k = kT�;g(�1n)� T�;h(�1n) + T�;g(�
2
n)� T�;h(�2n)k = 0:

Similarly, if g�1; h�1 2 S(�g;hj�), then kT�;g�1(�n) � T�;h�1(�n)k = 0: Thus

d(g; h) = 0. This contradiction concludes the proof.
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4. For k; l 2 N and m = (m1; : : : ;ml);q = (q1; : : : ; ql) 2 Nl , we put

Uk;l;m;q =�
g 2 AP (�j�) : kT�;g(�n)� �mn

k < 1

k
; kT�;g�1(�n)� �qnk <

1

k
; n = 1; : : : ; l

�
:

Select one element in every nonempty set Uk;l;m;q. Then we get at most countable

set R. It is easy to show that R is dense in AP (�j�).
5. By Theorem 4.2 [7], the mapping j is a bijection. Denote by d1 a pseudo-

metric on AP (�j�) and the corresponding function on AP (�j�) denoted by d2. It

follows from our construction that

d2(g
�1; h�1) = d1(g; h):

Hence d2 is a pseudometric too, and the mapping j is a homeomorphism (of the

spaces with pseudometrics). Notice that if d1(g; h) is a metric, then d2(g; h) is a

metric too and j is a metric isomorphism.

6. By Theorem 4.2 [7], the mapping i is a bijection. It is clear that f(�n)hg
and f(�n)tg forms a dense subset in L1(�h) and L1(�t) respectively. Denote

the corresponding pseudometric on AP (�hj�t) by d1. Since T�t;tgh�1( (�n)h) =

T�( (�n)g) = T�;g(�n) and T�h;hg�1t�1((�n)t) = T�h( (�n)hg�1) = T�( (�n)g�1) =

T�;g�1(�n), then

d1(tg1h
�1; tg2h

�1) = d(g1; g2):

Hence i is a homeomorphism. In particular, if d is a metric, then d1 is a metric

too, and i is an isometrics.

In the following proposition we study continuity of algebraic operations and

elementary topological properties of the sets A(�j�); E(�j�) and I(�j�) in the

strong topology.

Proposition 2.2. Let g, h 2 AP (�j�)

1. If gn 2 A(�j�) and d(gn; g)! 0, then g 2 A(�j�).
If gn; hn 2 A(�); d(gn; g)! 0 and d(hn; h)! 0, then d(gnhn; gh)! 0.

Let G be a group (this condition is essentially), then

2. If gn 2 E(�j�)[I(�j�)] and d(gn; g)! 0, then g 2 E(�j�)[I(�j�)].

3. If gn; hn 2 E(�)[I(�)]; d(gn; g)! 0 and d(hn; h)! 0; then d(gnhn; gh)! 0.

4. If gn; g 2 E(�)[I(�)] and d(gn; g)! 0; then d(g�1
n ; g�1)! 0.
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In particular, if d(g; h) is a metric, then A(�j�) is closed in AP (�j�) in the

strong topology. If, in addition, G is a group, then E(�j�) and I(�j�) is closed in

AP (�j�) with respect to the strong topology; A(�) is a closed topological semigroup;

E(�) and I(�) are closed topological groups.

P r o o f. We prove the proposition assuming that G is a group.

1. Let gn 2 A(�j�) and gn ! g in the strong topology. Let �g = �1+�2 with

�1 � �, �2 ? �. It is necessary to show that �2 = 0. In the converse case, let


 > 0 be a part of j�j such that 
g � �2. Then

T�;g(
) = 0 and kT�;gk(
)� T�;g(
)k = kT�;gk(
)k = k
k 6! 0;

which is a contradiction.

Let gn ! g and hn ! h with respect to the strong topology. Then g; h 2 A(�).
Let " > 0 and � 2 L1(�). Then �h 2 L1(�). Choose N such that

kT�;hn(�) � T�;h(�)k = k�hn � �hk <
1

2
"

and

kT�;gnh(�) � T�;gh(�)k = k(�h)gn � (�h)gk <
1

2
"

for all n > N . Then

kT�;gnhn(�)� T�;gh(�)k
= k�gnhn � �ghk � k�gnhn � �gnhk+ k�gnh � �ghk < " ; 8n > N:

Hence

lim
n!1

kT�;gnhn(�) � T�;gh(�)k = 0: (2.3)

Further, put �
g
�1
n
� �g�1 = �1n + �2n with �1n � �; �2n ? �. By the hypothesis

kT
�;g

�1
n
(�)� T�;g�1(�)k = k�1nk ! 0:

Assume that (�2n)h�1n = 
1n + 
2n with 
1n � �; 
2n ? �. Let Æn be the part of

�2n such that (Æn)h�1n = 
1n: Then Æn = (
1n)hn � �. This contradicts to our choice

of �2n. Whence 
1n = 0 and

kT
�;h

�1
n g

�1
n
(�)� T

�;h
�1
n g�1

(�)k = kT�((�g�1n
� �g�1)h�1n )k

= kT�((�1n)h�1n )k � k�1nk ! 0:

Let �g�1 = �1 + �2 with �1 � �; �2 ? �. Analogously, we can prove that �2

h
�1
n

and �2
h�1

are mutually singular with �. Since �1 is not depended on n, then

kT
�;h

�1
n g�1

(�) � T�;h�1g�1(�)k = kT�;h�1n (�1)� T�;h�1(�1)k ! 0:
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Thus

kT
�;h

�1
n g

�1
n
(�)� T�;h�1g�1(�)k

� kT
�;h

�1
n g

�1
n
(�)� T

�;h
�1
n g�1

(�)k + kT
�;h

�1
n g�1

(�)� T�;h�1g�1(�)k ! 0:

By the above and (2.3), we see that gnhn ! gh in the strong topology.

2. Let gn 2 E(�j�) and gn ! g in the strong topology. Then g 2 A(�j�).
Moreover, by Proposition 2.1, g�1

n tends to g�1 with respect to the strong topology

on AP (�j�). Since g�1
n 2 E(�j�), then g�1 2 A(�j�). Thus g 2 E(�j�).

Let gn 2 I(�j�) and gn ! g in the strong topology. It is proved that g 2
E(�j�). Since

lim
n!1

kT�;gk(�)� T�;g(�)k = lim
n!1

kc � � � �gk = 0;

then �g = c � � and g 2 I(�j�).
3., 4. If gn ! g and hn ! h in the strong topology, then g, h 2 E(�)[I(�)]

by item 2.

By Proposition 2.1 (5) and item 1, g�1
n ! g�1 and gnhn ! gh with respect

to the strong topology on E(�).

To prove the main theorem of this section we need three lemmas as follows.

Lemma 2.1. Let fgng � AP (�j�) be a fundamental sequence in the strong

topology, gn tends to g with respect to the original topology, � � � and the

following condition is ful�lled

(i) lim
n!1

kT�;gn(�)k = kT�;g(�)k:

Then

lim
n!1

kT�;gn(�) � T�;g(�)k = 0: (2.4)

P r o o f. We can assume without loss of generality that � > 0: Represent �

in the form

� = �n + 
n = � + 
; with �ngn � �; 
ngn ? �; �g � �; 
g ? �:

Let �ngn = fn� and �g = f�. Evidently,
�
�ngn
	
is fundamental if and only if ffng

is fundamental in L1(�). Hence there exist the limit a := limn!1 kT�;gn(�)k and
a subsequence fnk which converges to F (x) �-a.e. Then a = kFk = kT�;g(�)k =
kfk: Clearly, it is enough to prove (2.4) for a subsequence. Thus we can assume

without loss of generality that nk = k. It is necessary to prove that F = f�-a.e.

Since kFk = kfk, it is enough to prove that

F (x) � f(x) � � a.e. (2.5)
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In the converse case, there exists a compact K such that: �(K) > 0; F (x) >

f(x) on K; 
g(K) = 0 and fn(x) converges uniformly to F (x) on K. Since

�g(K) = �g(K), then for some " > 0 we can �nd a neighborhood W � g�1K

such that

�(W ) < �(g�1K) + " =

Z
K

f(x)d� + " <

Z
K

F (x)d� � ":

Since gn ! g, we can �nd N such that

g�1
n K �W and �n(g�1

n K) >

Z
K

F (x)d� � "; 8n > N:

Then Z
K

F (x)d� � " < �n(g�1
n K) � �(W ) <

Z
K

F (x)d� � "; 8n > N:

This contradiction concludes the proof.

R e m a r k 2.1. Condition (i) is important. Really, let G = X = R and

� = � = 1
3
(Æ0 + Æ2 + mj[�1;1]): Then gn = 2 � 1

n
2 AP (�j�), gn converges to

g = 2 2 AP (�j�) in the original topology. It is easily be checked that fgng
is fundamental in the strong topology and does not satisfy condition (i). It is

obvious that (2.4) is fails.

Lemma 2.2. Let G be a semigroup [group] and fgng � A(�j�)[E(�j�)] a

fundamental sequence in the strong topology. If gn converges to g with respect to

the initial topology, then g 2 A(�j�)[E(�j�)]:

P r o o f. Assume the converse and g 62 A(�j�): Then there exists a part �

with a compact support K of the measure � such that �g ? �: For every natural

number n we choose an open setWn such that g �K �Wn and �gn(Wn) < 0; 1k�k.
Put Kn = K n g�1

n Wn � K. Then Kn is compact and

�(Kn) � �(K)� �(g�1
n Wn) > 0; 9k�k:

Since the maps x 7! gk �x are continuous on K and converge to the map x 7! g �x,
then there existsm > n such that gm�Kn �Wn. In particular, gm�Kn\gn�Kn = ;.
Then

kT�;gm(�) � T�;gn(�)k
= k�gm � �gnk � (�gm � �gn)(gm �Kn) � �(Kn)� �gn(Wn) > 0; 8k�k:
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This contradicts to the fact that fgng is fundamental.

If fgng � E(�j�), then we have proved that g 2 A(�j�). By Propositions 2.1,

2.2 and Theorem 4.2 [7], fg�1
n g � E(�j�) is fundamental in the strong topology

on E(�j�). Thus g�1 2 A(�j�): Hence g 2 E(�j�).

Lemma 2.3. Let G be a semigroup [group], fgng � A(�j�)[E(�j�)] a funda-

mental sequence in the strong topology, and suppose that gn converges to g with

respect to the original topology. Then g 2 A(�j�)[E(�j�)] and gn converges to g

in the strong topology.

P r o o f. By Lemma 2.2, g 2 A(�j�)[E(�j�)]. Then kT�;gn(�)k = k�gnk =
k�k = k�gk;8�� �. By Lemma 2.1, we have

lim
n!1

kT�;gn(�)� T�;g(�)k = 0 ; 8�� �;

and the lemma is proved for the semigroup case. Let G be a group. It is remain

to prove that (2.2) is true for all measures �, 0 < � � �, i.e. limn!1 kT�;g�1n

(�)�
T�;g�1(�)k = 0,

Represent � in the form

� = �n + 
n = �0 + 
0 with �n
g
�1
n

� �; 
n
g
�1
n

? �; �0
g�1
� �; 
0

g�1
? �:

By hypothesis, �n
g
�1
n

is fundamental and thus converges to some measure �� �.

Hence

�n = �gn + (�n � �gn);
where k�n � �gnk = k�ng�1n

� �k ! 0 and �gn ! �g (this follows from 2.1, since

� � � and gn 2 A(�j�) ). In particular, �n ! �g. Since �n is the part of �,

then �n = �n�, where �n takes part two values 0 and 1. Then �n converges to a

function � on some subsequence. The function � takes part only values 0 and 1

too. Clearly that �g = ��. Thus �g is a part of �. From the proof of Lemma 2.1

(see (2.5)) it follows that �0 = � + �g, where � is a part of � and � ? �g: It is

necessary to prove that � = 0, since, in this case, condition (i) of Lemma 2.1 is

true.

Let � 6= 0. Then �g�1 � �. Thus, by Lemmas 2.1 and 2.2, (�g�1)gn !
(�g�1)g = �: Choose and �x a natural number n so much that

k�n � �gk < 0; 1k�k ; k�gng�1 � �k < 0; 1k�k: (2.6)

Choose E1 and E2 such that

�njE1
= �gjE1

; �n(E2) < 0; 1k�k; �g(E2) = 0 and �n(X n (E1 [E2)) = 0:

Journal of Mathematical Physics, Analysis, Geometry, 2006, vol. 2, No. 1 19



S.S. Gabriyelyan

If � = � + �1 with � � �gng�1 ; �1 ? �gng�1 , then (2.6) implies k�1k < 0; 1k�k.
Since � and �n are parts of �, then, by our choice of E2, we have �jE2

= �njE2

and �(E2) � �n(E2). Thus

�(X n (E1 [E2)) = �(X)� (�(E1) + �(E2)) = �(X)� �(E2) � �(X)� �n(E2)

= �(X)� �1(X) � �n(E2) > k�k � 0; 2k�k = 0; 8k�k:
By the above there exists a part � of �, and hence of �, such that � ? �n and

� � �gng�1 : But �g�1n
� �g�1 � � and �

g
�1
n
? �n

g
�1
n

: This contradicts to our

choice of �n.

The following theorem is the main result of this section.

Theorem 2.1. Let G be a Polish semigroup [group] and let X be a Polish

G-space. Let � and � be measures on X. Denote by r the metric on G and set d

is the pseudometric from de�nition 2.2. Then AP (�j�) relative to the metric

�(g; h) = maxfd(g; h); r(g; h)g

is a separable metric space. A(�j�) [E(�j�) and I(�j�)] is closed in AP (�j�) and
complete in this metric. If � = �, then A(�) is a Polish semigroup [E(�) and

I(�) are Polish groups].

P r o o f. Clearly that �(g; h) determines a metric on AP (�j�). Let Uk;l;m;q

are de�ned in Proposition 2.1 (4). Let Uk;l;m;q be a nonempty set. We can choose

a countable set which is dense in Uk;l;m;q in the metric r. Let Q be the union of

such sets. Let us show that Q is dense in AP (�j�).
Let " > 0; g 2 AP (�j�). It is easily shown that we can �nd Uk;l;m;q such that

g 2 Uk;l;m;q and d(g; h) < "; 8h 2 Uk;l;m;q:

Let t 2 Q \ Uk;l;m;q such that r(g; h) < ". Then �(g; t) < ".

If gn 2 A(�j�)[E(�j�)] and �(gn; g)! 0, then gn tends to g in the initial topol-

ogy and fgng is a fundamental sequence in the strong topology. By Lemma 2.2,

g 2 A(�j�)[E(�j�)]. Thus these sets are closed.
If fgng is a fundamental sequence in the topology which is determined by

metric �, then fgng is fundamental in the strong and the initial topologies. Thus

fgng tends to an element g 2 G. Then g 2 A(�j�)[E(�j�)] by Lemma 2.3. Hence

these sets are complete.

The continuity of the group operations follows from Proposition 2.2.

Assertions for I(�j�) and I(�) are true since these sets are closed in the strong

topology. The theorem is proved.
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R e m a r k 2.2. The condition that G is a group is important. Really. Let

X = [0;+1). Set

T (x) =

�
x; x 2 [0; 1)

x� 1; x 2 [1;+1)
; S(x) = fxg;

where fxg is the fractional part of x. Put � is equivalent to Lebesgue measure on

X and let G be the semigroup generated by T and S. Since S2 = S; T kS = S,

then G = fST k; T k; k = 0; 1; 2 : : : g. Thus G with the pointwise topology is a

Polish semigroup and has one limit point S. Moreover, the strong topology and

the initial one are coincide. Evidently that T 2 E(�), S 2 A(�) and T n converges

to S strongly. Hence E(�) is not closed.

Later on of this section we will consider AP (�j�) with the topology generated

by metric �. In particular, the mapping g 7! T�;g(�) and the function g 7!
T�;g(�)(E) are continuous, where � 2 L1(�); E 2 B(X).

Theorem 2.2. Let G be a subgroup of a Polish group H = X, � and � be

measures on H. Then AP (�j�) is a separable metric space with respect to the

strong topology. Moreover, A(�j�), E(�j�) and I(�j�) are closed in this topology

on AP (�j�).
If G is closed, then A(�j�), E(�j�) and I(�j�) are complete. The semigroup

A(�) and the groups E(�) and I(�) are Polish. Moreover, the strong topology on

A(�j�) is stronger then the topology induced from H.

P r o o f. Since I(g; h) = ;, then d(g; h) is a metric. A(�j�), E(�j�) and
I(�j�) are closed by Proposition 2.2.

Let fgng � A(�j�) (E(�j�), I(�j�)) be a fundamental sequence with respect to

the strong topology. Let us prove that fgng is fundamental in the initial topology

and hence converges to an element g 2 H. In fact, let x 2 supp �: Then for every

neighborhood U of x the following equality is true:

lim
m;n!1

kT�;gn(�jU )� T�;gm(�jU )k = lim
m;n!1

k(�jU )gn � (�jU )gmk = 0:

But this is possible i� gn � x is fundamental in H. Hence gn � x converges to an

element y 2 H: Thus gn ! yx�1 := g. If G is closed, then g 2 G. By Lemma 2.3,

gn converges to g with respect to the strong topology. Therefore A(�j�), E(�j�)
and I(�j�) are complete.

Now we prove the last assertion. Assume that gn converges to g in the strong

topology. By the above, gn converges to some element h with respect to the initial

topology. Hence, by Lemma 2.3, gn ! h in the strong topology. Thus g = h and

gn ! g with respect to the strong topology.
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R e m a r k 2.3. If G is not closed, then, in general, the strong and initial

topologies may be not comparable. For example, let G = R;H = T
2. Let

p : R ! T
2 be an embedding with the dense image. If � = � = mT2, then the

strong topology on T2 coincide with the initial one. Thus the strong topology on

R is induced from T
2. Clearly that one is weaker then the initial topology and is

not complete.

The following proposition shows that AP (�j�) has some local algebraic struc-

ture.

Proposition 2.3. Let G be a group. For all g 2 AP (�j�) there exists a

neighborhood V of g such that

h1h
�1
2 g 2 AP (�j�); 8h1; h2 2 V:

P r o o f. Let g 2 AP (�j�) and � = � + 
, where �g � �; 
g ? �: Put

a = k�k. Then the set

V = fh 2 AP (�j�) : kT�;h(�)�T�;g(�)k < 0; 1a; kT�;h�1(�g)�T�;g�1(�g)k < 0; 1ag

is open. Let h1; h2 2 V . Then �g can be represented in the form

�g = �1
g + 
1g with �1

h
�1

2
g
� �; 
1

h
�1

2
g
? � (� = �1 + 
1; �1 ? 
1):

By the choice of V we have

k�1
h
�1

2
g
� �k < 0; 1a end k�1

h
�1

2
g
k = k�1k � 0; 9a: (2.7)

Hence

kT
�;h1h

�1

2
g
(�1)k � kT�;g(�1)k � kT

�;h1h
�1

2
g
(�1)� T�;g(�1)k

� kT�;g(�1)k � (kT�;h1(�1

h
�1

2
g
)� T�;g(�1

h
�1

2
g
)k+ kT�;g(�1

h
�1

2
g
� �1)k) > 0; 7a

(we take into account the following facts: �1
g � 
; kTk � 1; �1

h
�1

2
g
� �; (2:7) and

our choice of V ). Thus h1h
�1
2 g 2 AP (�j�).

Our nearest goal is to prove that the topology generated by product of two

measures is the product topology. First, we prove the following lemma.

Lemma 2.4. Let nonzero measures �, �1; � � � 2 M+(X) and �, �1; � � � 2
M+(Y ) be norm restricted. Then the following assertions are equivalent:

1. �n � �n ! �� � (by the norm);
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2. There exist 0 < a � kn � b <1 such that

kn�n ! � and
�n

kn
! �:

P r o o f. 1.) 2. Let � and � be normalized convex linear hulls of measures

�; �1; : : : and �; �1; : : : , respectively. Let � = F�; �n = Fn�; � = G�; �n = Gn�.

By hypothesisZ
Y

Z
X

jFn(x)Gn(y)� F (x)G(y)jd�(x)d�(y)! 0; as n!1: (2.8)

Let Sn(y) =
R
X
jFn(x)Gn(y) � F (x)G(y)jd�(x). Then they are �-measurable.

Choose c > 1 such that �(A) 6= 0, where A = fy : 1=c � G(y) � cg. By the

Chebyshev inequality, there exists constant N (not depending on n) such that the

following inequality is true:

�(Sn � NkSnk) �
1

2
�(A):

Thus there exists yn 2 A such that Sn(yn) < NkSnk. Hence, putting kn =

Gn(yn)=G(yn), we receiveZ
X

jFn(x) � kn � F (x)jd�(x) � cNkSnk:

Then (2.8) implies Fn(x) � kn ! F (x) or kn�n ! �.

Analogously, there exist constants dn such that dn � �n ! �. Therefore

�n � �n = (kn�n � dn�n) �
1

kndn
! �� � 6= 0:

Hence kndn ! 1. Substituting kn on knp
kndn

and dn on dnp
kndn

, we receive a desired

sequence (since if knl ! 0 (!1), then � = 0 (� = 0) by the norm boundedness

of the sequence �n(�n)).

2.) 1. It is followed from the inequality

k�n � �n � �� �k � k(kn�n � �)�
�n

kn
k+ k��

�
�n

kn
� �

�
k:

The lemma is proved.

Proposition 2.4. If G = G1�G2;X = X1�X2 and �1��2, then the topology

on AP (�) = AP (�1)�AP (�2) is the product topology.
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P r o o f. By Proposition 5.1 [7] we have AP (�) = AP (�1)�AP (�2).

Let (gn; hn) ! (g; h) in AP (�). Let us show that gn ! g in the topology on

AP (�1). Clearly r1(gn; g) ! 0. It is remain to prove that d1(gn; g) ! 0. Let

0 < � 2 L1(�1), 0 < � 2 L1(�2). Then for every (g; h) 2 AP (�) the following

equality is true:

T�;(g;h)(�� �) = T�((� � �)(g;h)) = T�(�g � �h) = T�1(�g)� T�2(�h): (2.9)

By Lemma 2.4, there exist 0 < a � kn � b <1 such that

knT�1(�gn)! T�1(�g):

Hence it is enough to prove that kn ! 1. By symmetry with respect to � and �,

it is enough to prove that limkn � 1. In the converse case, we can assume without

loss of generality that kn ! c > 1. Then, by Lemmas 2.4 and (2.9), we have

1

kn
T�2(�hn)! T�2(�h)

for every part � of �2. Choosing a part � such that �h � �2, we see that

k�k  k 1

kn
T�2(�hn)k �

1

kn
k�k ! 1

c
k�k;

which is a contradiction. By symmetry of the de�nition of the strong topology, it

is proved that d1(gn; g)! 0. Hence �1(gn; g)! 0 too.

Conversely, let �1(gn; g)! 0 and �2(hn; h)! 0. Clearly that r((gn; hn); (g; h))

! 0. Suppose 
 2 L1(�) has the form 
 = �� �, where � 2 L1(�1), � 2 L1(�2).

Then (2.9) implies

T�;(gn;hn)(
) = T�;(gn;hn)(�� �)! T�;(g;h)(�� �) = T�;(g;h)(
): (2.10)

Since every measure 
 2 L1(�) admits an approximation by �nite

sums of measures of the form � � �, (2.10) is true in the general case. Thus

�((gn; hn); (g; h)) ! 0.

R e m a r k 2.4. For a countable product � = �1 � �2 � : : : the analogical

proposition is not true (for example, if � is a right Gaussian measure on R
1).

But on �nite products AP (�1) � � � � � AP (�n) (which naturally identi�es with

the closed subsets in AP (�) of the forms AP (�1)� � � � �AP (�n)�feg� : : : ) the
induced topology from AP (�) is coincide with the product topology.

Let us consider some properties of t-ergodic measures.

Proposition 2.5. Let (p; �) be a morphism from (G;X) to (H;Y ) and � 2
M(X) t-ergodic. Then �(�) is t-ergodic.
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P r o o f. Let �1 and �2 be pats of �(�). Put � and � are the parts of �

such that �(�) = �1; �(�) = �2. Then there exists g 2 G such that �g 6? �. Thus
(�1)p(g) = �(�g) 6? �(�) = �2.

The constructed topology on AP (�j�) gives an another characterization of

t-ergodic measures which explains the word "ergodic". The following proposition

is an analog of Proposition 1 [13] (see Proposition 5.5 [9] too).

Proposition 2.6. Let G be a group and � 2 M+(X). Then the following

properties are equivalent:

1. � is t-ergodic.

2. � is D-ergodic for every countable subgroup D � G such that D \AP (�) is

dense in AP (�).

3. There exists a countable subgroup D � G such that � is D-ergodic.

P r o o f. 1. ) 2. Let D \AP (�) be dense in AP (�). Let B and B0 be two

disjoint D-invariant subsets of positive measure. Then T�;h(1B0�) is concentrated

on B0 for all h 2 D. Since D\AP (�) is dense, then T�;h(1B0�) is concentrated on

B0 for all h 2 AP (�) too. Hence 1B� ? (1B0�)h for all h 2 AP (�) and therefore

for all h 2 G, which is a contradiction.

3. ) 1. Suppose there exist 0 < � � � and 0 < � � � such that � ? �g
for every g 2 D. Let Bg be a Borel set such that � is concentrated on Bg and

�g(Bg) = 0. Put B0 = \gBg, B = [gg�1B0. Then B is a D-invariant subset of

positive measure and �(B) �
P

g
�g(B0) = 0: This contradiction concludes the

proof.

Proposition 2.7. For a �nite product of groups of transformations a �nite

product of t-ergodic measures is t-ergodic.

P r o o f. Consider the product of two probability measures. Let Di be count-

able subgroups which are generated by countable dense subsets of AP (�i); i = 1; 2.

Then �i is Di-ergodic. Let us consider the countable subgroup D = D1�D2. By

Proposition 2.4, D \AP (�) is dense in AP (�). By Proposition 2.6, it is enough

to prove that � is D-ergodic. Let B be a Borel D-invariant set and �(B) > 0. Let

x2 2 X2. Put Bx2 := fx1 : (x1;x2) 2 Bg. Let g1 2 D1. Since (g1; e)
�1B = B,

then g�1
1 Bx2 = Bx2 . Thus we have either �1(Bx2) = 0 or �1(Bx2) = 1. Set

B2 := fx2 : �1(Bx2) = 1g. By the Fubini theorem, we have

0 < �(B) =

Z
X2

�1(Bx2)d�2 = �2(B2):
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It is remains to show that the set B2 is D2-invariant. Let g2 2 D2. Fixed x2.

Since (e; g2)
�1B = B, then prX1

B = Bx2 = Bg2�x2 . Thus B2 = g�1
2 B2.

The following proposition is an analog of Lemma 1 [5] (the condition of com-

mutativity is important).

Proposition 2.8. Let G be Abelian. Let � 2 M+(G) and � 2 M+(X) be

t-ergodic. Then � � � is t-ergodic too.

P r o o f. By Proposition 2.7, � � � is t-ergodic. Put �(g; x) = g � x and

p(g; h) = gh. Then (p; �) is a morphism from (G � G;G � X) to (G;X). By

Lemma 6.1 [7] and Proposition 2.5, � � � = �(�� �) is t-ergodic too.

Notice the following proposition.

Proposition 2.9. Let G be a group and � t-ergodic. Let D be a countable

subgroup of G such that D \ AP (�) is dense in AP (�). If � 2 M+(X) and

D � E(�), then we have either �� � or � ? �.

P r o o f. Let E be a Borel set such that j�j(E) > 0 and �(E) = 0. Then,

by the hypothesis, we have �g(E) = 0;8g 2 D. Thus the set E0 = [g2Dg�1E

is D-invariant and �(E0) = 0. Since � is t-ergodic, then �(E0) = 1. Therefore

j�j ? �.

3. Borel type of AP (�j�)

The following theorem is the main result of this section.

Theorem 3.1. Let (G;X) be a topological semigroup of transformations of

a separable metric space X. Let � and � be regular probability measures on X.

Then

1. There exists a Borel function �(x; g) : X �G ! [0;1) such that for every

�xed G, �(�; g) is a density of the absolutely continuous part of �g relative

to �.

2. The sets AP (�j�), A(�j�), E(�j�), I(�j�) and S(�j�) are Borel subsets

of G of very bounded types, namely: AP (�j�) is a GÆ�Æ�-set; A(�j�) is a

GÆ�Æ-set; E(�j�) is a GÆ�Æ�Æ-set (if G is a group, then E(�j�) is a GÆ�Æ-set);

I(�j�) is intersection of a GÆ�Æ-set and a F�Æ�Æ-set; S(�j�) is a F�Æ�Æ-set.
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To prove of Theorem 3.1 we use the de Possel theorem. Let us recall it. Set

B(i) to be B if i = 1 and X n B if i = 0. Let fBng be a base of the topology on

X. Put

N = [nNn; where Nn =
n
B

(i1)
1 \B(i2)

2 \ � � � \B(in)
n ; ij = 0; 1; j = 1; : : : ; n

o
:

Denote all distinct nonempty sets from Nn by fAk
ng. Then Nn = fAk

ng is a �nite

family of GÆ-subsets of the separable metric space X.

Let � and � be �nite regular measures on X. Then N is a net for �. Consider

the next sequence of Borel functions

fn(x) =
X

k:�(Ak
n)6=0

�(Ak
n)

�(Ak
n)
� �Ak

n
(x) ; (3.1)

D(x) = limn!1fn(x) ; (3.2)

where �E is the characteristic function of a set E. De Possel theorem ([15, Ch. IV,

�10]) asserts that:

if �(x) is a density of the absolutely continuous part of � relative to �, then

we have

lim
n!1

fn(x) = D(x) = �(x) �-a.e. (3.3)

Denote by fn(x; g) and D(x; g) the corresponding functions for couple of mea-

sures �g and �. Put Im = fk : �(Ak
m) 6= 0g, then

fm(x; g) =

(
�g(A

k
m
)

�(Ak
m)
; for (x; g) 2 Ak

m �G; if k 2 Im:
0; for (x; g) 2 Ak

m �G; if k 62 Im:

To prove Theorem 3.1 we need two propositions.

Proposition 3.1. Let (G;X) be a topological semigroup of transformations of

a separable metric space X. Let � and � be probability measures on X and B(G)

a �-algebra of subsets of G. Assume that the following condition is true:

(i) there is a net N =
S1
n=1Nn =

S1
n=1

S1
k=1fAk

ng for � in B such that the

functions �g(A
k
n) are Borel for every n; k 2 N:

Then

1. There exists a �nite nonnegative B � B(G)-measurable function �(x; g) of

two variables such that:

1) For every �xed g the function �(�; g) is a density of the absolutely con-

tinuous part of �g relative to �.
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2) For all c 2 R the functions

h+c (g) =

Z
X

�+c (x; g)d�(x);

h�c (g) =

Z
X

��c (x; g)d�(x);

h(g) =

Z
X

�(x; g)d�(x);

are Borel, where �(x; g) � c = �+c (x; g) � ��c (x; g).
3) If E = f(x; g) 2 X �G : �(x; g) > 0g, then the function

Q(g) =

Z
X

�E(x; g)d�(x)

is Borel.

2. The sets I(�j�); E(�j�); A(�j�); AP (�j�); S(�j�) are Borel.

P r o o f. We start with proving Statement 1 of our theorem.

1. If we prove that the function D(x; g) is B�B(G)-Borel and satis�es condi-

tions 1�3, then we receive a required function putting �(x; g) = D(x; g) if D(x; g)

is �nite and �(x; g) = 1 if D(x; g) is in�nite.

First we shall show that D(x; g) is Borel.

Since D(x; g) � 0, 8(x; g) 2 X � G, then it is enough to prove that the sets

Q = f(x; g) : D(x; g) � cg are Borel for all c > 0. Since the functions �g(A
k
n)

are Borel then the sets

L(n; k; "; c) = fg : �g(A
k

n) > (c� ")�(Ak

n)g

are Borel for every n; k 2 N and " 2 R (if c is �xed we shall write simple L(n; k; ")).

Thus the sets Ak
n � L(n; k; ") lie in B � B(G): Put

Q" = \1n=1 [1m=n [ImAk

m � L(m; k; ") and Q0 = \1p=1Q1=p: (3.4)

Clearly that Q0 2 B � B(G): Let us show that Q = Q0.

Let (x; g) 2 Q0. Then (x; g) 2 Q1=p, 8p 2 N. Thus for every n 2 N there exist

mn � n and kn 2 Imn
such that (x; g) 2 Akn

mn
�L(mn; kn; 1=p), i.e., x 2 Akn

mn
and

g 2 L(mn; kn; 1=p). This is equivalent to the following inequality

fmn
(x; g) =

�g(A
kn
mn

)

�(Akn
mn

)
> c� 1

p
:
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Therefore D(x; g) � c� 1
p
. Since p is arbitrary, then D(x; g) � c. Hence Q0 � Q.

Conversely, let (x; g) 2 Q. Fixed p 2 N. Then for every n 2 N there exist

mn � n and kn 2 N such that x 2 Akn
mn

and fmn
(x; g) > c � 1

p
. This equivalent

to the following inclusion

(x; g) 2 Akn
mn
� L(mn; kn; 1=p) � [1m=n [Im Ak

m � L(m; k; 1=p):

Since n is arbitrary, then (x; g) 2 Q1=p. Since p is arbitrary too, then (x; g) 2
\pQ1=p = Q0. Hence D(x; g) is a Borel function on X �G.

It been demonstrated above that for a �xed g the function D(x; g) is the

density of the absolutely continuous part of �g relative to �. Thus item 1) is

proved.

Let us prove item 2). Fixed c � 0 and put D(x; g)� c = D
+
c (x; g)�D

�
c (x; g).

It is enough to prove that the function h+c (g) =
R
X
D

+
c (x; g)d�(x) is Borel, since,

in this case, the functions h(g) = h+0 (g) and h�c (g) = h+c (g) � h(g) + c will be

Borel too.

Let fn(x; g) � c = f+n (x; g) � f�n (x; g). Since fn(x; g) ! D(x; g), then

f+n (x; g)! D
+
c (x; g) �-a.e. for a �xed g. For � � 0 we put

�n(�) = fk : fn(x; g) � c � �g = fk : �g(A
k

n) � (�+ c)�(Ak

n)g \ Ing;

where the last equality is true for c + � > 0 (remark that �n(�) depends on g).

Then X
k2�n(�)

�(Ak

n) �
1

�+ c

X
k2�n(�)

�g(A
k

n) �
1

�+ c
(a)

and this inequality is true for all n 2 N, g 2 G, c+ � > 0.

Thus for p > 1 and c+ � > 0, an application of the H�older inequality yields

Z
fx: p
p
f
+
n (x;g)��g

p

q
f+n (x; g)d�(x) =

X
k2�n(�p)

p

s
�g(Ak

n)

�(Ak
n)
� c � �(Ak

n)

=
X

k2�n(�p)

p

q
�g(Ak

n)� c�(Ak
n) � p

q
(�(Ak

n))
p�1

� p

s X
k2�n(�p)

(�g(Ak
n)� c�(Ak

n)) �
p

vuuut
0
@ X
k2�n(�p)

�(Ak
n)

1
A
p�1

� p

s�
1

�p + c

�p�1

;

(b)

where the last inequality is true since the �rst factor is evidently not larger 1 and

for the evaluation of second one we use (a). But for a �xed p > 1 the inequality

Journal of Mathematical Physics, Analysis, Geometry, 2006, vol. 2, No. 1 29



S.S. Gabriyelyan

(b) means that the functions p

q
f+n (x; g) are �-uniformly integrable relative to n

(g 2 G is �xed too). Therefore, setting p = (2l + 3)=(2l + 1), we get

Hl(g) :=

Z
X

p

q
D

+
c (x; g)d�(x) = lim

n!1

Z
X

p

q
f+n (x; g)d�(x)

= lim
n!1

X
k2�n(0)

p

q
�g(Ak

n)� c�(Ak
n) � p

q
(�(Ak

n))
p�1: (c)

Now we consider the Borel functions

Rl

nk(g; c) = maxf
h
�g(A

k

n)� c � �(Ak

n)
i 2l+1
2l+3 �

h
�(Ak

n)
i 2

2l+3

; 0g: (3.5)

Then the sum standing under the limit in (c) isX
k

Rl

nk(g; c) and Hl(g) = lim
n!1

X
k

Rl

nk(g; c): (d)

Thus the function Hl(g) is Borel. Put  (x; g) =

q
D

+
c (x; g) +D

+
c (x; g). Then:

1)  (x; g) is Borel �-integrable for every �xed g 2 G (the function

q
D

+

c (x; g) 2

L2(�), and by the Cauchy inequality, it is integrable since � is �nite), 2)
p

q
D

+
c (x; g)

�  (x; g) for every l 2 N. Since
p

q
D

+

c (x; g) ! D
+

c (x; g) as l ! 1, then the

Lebesgue theorem yields

h+c (g) =

Z
X

D
+

c (x; g)d�(x) = lim
l!1

Z
X

p

q
D

+

c (x; g)d�(x) = lim
l!1

Hl(g); 8g 2 G:

By (d) this equality can be rewrote in the form

h+c (g) = lim
l!1

lim
n!1

X
k

Rl

nk(g; c): (3.6)

Thus the function h+c (g) is Borel and item 2) is proved.

Set c = 1. Clearly that

D(x; g) > 0, (x; g) 2 E = [1l=1 \1n=1 [1m=nA(m; l);

where A(m; l) = f(x; g) : fm(x; g) > 1=lg = [ImAk
m � L(m; k; 1 � 1=l) is the

union of disjoint rectangles and hence is a Borel set.
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Evidently, �E(x; g) is the limit of nondecreasing Borel functions �El
(x; g)

where El = \1n=1[1m=nA(m; l). Since 0 � �El
(x; g) � 1, then apply the Lebesgue

theorem to obtain

lim
l!1

Z
X

�El
(x; g)d�(x) =

Z
X

�E(x; g)d�(x)

for every g. Thus it is enough to show that the functions standing under the limit

are Borel. Since �El
(x; g) is the limit of nondecreasing sequence of the bounded

functions �En

l
(x; g) where En

l
= [1m=nA(m; l), then, by Lebesgue theorem, it is

enough to prove that the functionZ
X

�En

l
(x; g)d�(x); where En

l = [1m=nA(m; l);

is Borel for all l and n.

But A(m; l) = [ImAk
m � L(m; k; 1 � 1=l). Therefore En

l
is a countable union

of rectangles. Thus, by the same argument, it is enough to show that the functionR
X
�A(x; g)d�(x) is Borel, when A is a �nite union of rectangles. But such union

can be represented as a �nite union of disjoint rectangles of the form Ai = Qi�Pi,
i = 1; : : : ; q; where Qi 2 B, Pi 2 B(G). Hence �A(x; g) = �Q1

(x)�P1(g) + � � � +
�Qq

(x)�Pq (g). Therefore the functionZ
X

�A(x; g)d�(x) = �P1(g)

Z
X

�Q1
(x)d�(x) + � � � + �Pq(g)

Z
X

�Qq
(x)d�(x)

is Borel. This completes the proof. In particular we have

Q(g) =

Z
X

�E(x; g)d�(x) = lim
l!1

lim
n!1

Z
X

�En

l
(x; g)d�(x): (3.7)

2. Obviously g 2 AP (�j�) if and only if h(g) > 0. Thus the set AP (�j�) is
Borel. Hence S(�j�) = G n AP (�j�) is Borel too.

Since g 2 A(�j�) i� h(g) = 1, then A(�j�) is Borel.
Clearly E(�j�) = A(�j�) \ fg : Q(g) = 1g. Whence the set E(�j�) is Borel.
Evidently, g 2 I(�j�) if and only if �(x; g) = 1; �-a.e. This equality is equiva-

lent to the following equalities h+1 (g) = h�1 (g) = 0 (since h+1 (g) > 0 or h�1 (g) > 0

i� �(x; g) > 1 or �(x; g) < 1 on a set of positive measure, but the last is equivalent

to the condition g 62 I(�j�)). Therefore the set I(�j�) is Borel. The proposition

is proved.

In the following proposition the proofs of items 1 and 2 are standard (see [12,

Lemma 3] or [3, Prop. 11, Ch. 9, �2, item 6]), though they are the particular cases
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of item 3. Our proof of item 4 is more informative then its group analog (see [12,

Lemma 4]).

Proposition 3.2. Suppose a topological semigroup G acts continuously on a

topological space X with a regular Borel probability measure �. Then

1. If a set U is open, then the function �g(U) = �(g�1U) is lower semicontin-

uous.

2. If a set K is closed, then the function �g(K) = �(g�1K) is upper semicon-

tinuous.

3. If a set W is open in X �G, then the function

R(g) �
Z
X

�W (x; g)d�(x) = �(prX(W \X � fgg))

i s lower semicontinuous.

4. The function �g(E) is Borel for every Borel set E.

P r o o f. 3. Let R(g0) = a > 0 and " > 0. Let K be a compact in

prX(W\X�fg0g) such that �(K) > a�". SinceW is open, then for every x 2 K
there exist neighborhoods U(x) of x and V (x) of g0 such that U(x)� V (x) �W .

Since K is compact, then it is covered by some sets U(xi); i = 1; : : : ; n. Set

U = [n
i=1U(xi) and V = \n

i=1V (xi). Then U is a neighborhood of K, V is a

neighborhood of g0 and U � V �W . Thus

R(g) � �(prX(U � V \X � fgg)) = �(U) � �(K) > a� "

for every g 2 V . Note that if we set �(x; g) = g � x;W = ��1(E) and E 2 B, then
prX(W \X �fgg) = g�1E. Therefore if we put E = U , then item 1 follows from

item 3.

4. It is obvious that this assertion is a corollary of the following trivial lemma

(putting L is the family of open sets). This lemma gives a structure of the �-

algebra B(L) generated by the family L (a structure of a �-ring see [5, �5, Ex. 9])

and shows that it can be introduced the hierarchy on B(L) which is analogous to

the hierarchy of Borel sets. Put !0 = Card N.

Lemma 3.1. Let it be done an in�nite family L of subsets of a set X. Suppose

the family L is formed by �nite intersections and �nite unions of elements from

L. Set A0 = fA n C = A \ (X n C); where A;C 2 Lg. Suppose the family A�
consists of all countable unions (intersections) of sets from [�<�A� for every odd

(even) ordinal numbers � < !1. Then

B(L) = [�<!1A� and CardB(L) � (CardL)!0 :
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R e m a r k 3.1. Since every measure � can be represented in the form

� = �+��� where ��; �+ 2M+(X), then the function �g(E) = �+g (E)���g (E)

is Borel for all Borel E.

P r o o f o f T h å o r e m 2.1. The �rst part follows from Proposition 3.1

immediately. Let us prove the second part. Later on all notations are taken

from Proposition 3.1. Moreover, we use the next elementary equalities. If fn(g)

converges to f(g) at every point, then

fg : f(g) > dg =
1[
c=1

1[
n=1

1\
m=n

�
g : fm(g)

(�)
> d+

1

c

�
;

fg : f(g) � dg =
1\
c=1

1[
n=c

�
g : fn(g) > d� 1

c

�
:

Set U r

nk
forms a decreasing system of open subsets of X such that \rU r

nk
= Ak

n.

Put

F lr

nk(g; c) = maxf
h
�g(U

r

nk)� c � �(Ak

n)
i 2l+1
2l+3 �

h
�(Ak

n)
i 2

2l+3

; 0g:

By Proposition 3.2, the function F lr

nk
(g; c) is lower semicontinuous. Then

fF lr

nk
(g; c)g is a decreasing sequence which converges to Rl

nk
(g; c). For a �xed

n the index k takes a �nite set of values only. Thus the function Z lr
n (g; c) :=P

k
F lr

nk
(g; c) is correctly de�ned and lower semicontinuous. Moreover, fZ lr

n (g; c)g
is decreasing by r and converges to the function

P
k
Rl

nk
(g; c). Then (3.6) implies

h+c (g) = lim
l!1

lim
n!1

lim
r!1

Z lr

n (g; c):

Since h(g)+h�c (g) = h+c (g)+c, then
�
h(g) > 1

a

	
�
�
h+1
2a

(g) > 1
2a

�
. Therefore

fh(g) > 0g �
S1
a=1

�
h+1
a

(g) > 1
a

�
. Conversely, if h+1

a

(g) > 1
a
, then �+1

a

(x; g) > 0

on a set of �-positive measure. All the more �(x; g) > 1
a
on this set and h(g) > 0.

Thus the following equality is true:

fh(g) > 0g =
1[
a=1

�
h+1
a

(g) >
1

a

�
:

By this equality and nonincreasing Z lr
n (g; c) with respect to r, we get

AP (�j�) = fg : h(g) > 0g =
1[
a=1

�
h+1
a

(g) >
1

a

�
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=

1[
a=1

8<
:

1[
b=1

1[
l=1

1\
q=l

�
g : lim

n!1
lim
r!1

Zqr

n

�
g;

1

a

�
>

1

a
+

1

b

�9=
;

=

1[
a=1

8<
:

1[
b=1

1[
l=1

1\
q=l

"
1[
c=1

1[
n=1

1\
m=n

�
g : lim

r!1
Zqr

m

�
g;

1

a

�
>

1

a
+

1

b
+

1

c

�#9=
;

=

1[
a=1

8<
:

1[
b=1

1[
l=1

1\
q=l

"
1[
c=1

1[
n=1

1\
m=n

"
1\
r=1

�
g : Zqr

m

�
g;

1

a

�
>

1

a
+

1

b
+

1

c

�##9=
; :

Hence AP (�j�) is a GÆ�Æ� -set and S(�j�) is a F�Æ�Æ-set.
Now we prove the equality

1\
a=1

�
g : h(g) > 1� 1

a

�
=

1\
a=1

�
g : h+1

a

(g) � 1� 1

2a

�
:

If h(g) > 1 � 1
a
, then h+1

a

(g) + 1
a
> 1 � 1

a
and h+1

a

(g) > 1 � 1
2a
. This proves the

inclusion ���. Conversely, let h+1
a

(g) � 1� 1
2a

and �+1
a

(x; g) > 0 on a set E. Then

h(g) �
Z
E

�(x; g)d� =

Z
E

�
�+1
a

(x; g) +
1

a

�
d� � 1� 1

2a
+

1

a
�(E) > 1� 1

2a
:

This proves the inclusion ���.
Further, since h(g) � 1 and Z lr

m(g; c) is nonincreasing with respect to r, then

A(�j�) = fg : h(g) = 1g =
1\
c=1

�
g : h(g) > 1� 1

c

�
=

1\
c=1

�
g : h+1

c

(g) � 1� 1

2c

�

=

1\
c=1

(
1\
a=1

1[
l=a

�
g : lim

n!1
lim
r!1

Z lr

n

�
g;

1

c

�
> 1� 1

2c
� 1

a

�)

=

1\
c=1

(
1\
a=1

1[
l=a

"
1[
b=1

1[
n=1

1\
m=n

"
1\
r=1

�
g : Z lr

m

�
g;

1

c

�
> 1� 1

2c
� 1

a
+

1

b

�##)
:

Thus A(�j�) is a GÆ�Æ-set.

Since E(�j�) = A(�j�) \ fg : Q(g) = 1g, it is enough to prove that the set

H := fg : Q(g) = 1g is a GÆ�Æ�Æ-set. Since �El
is nondecreasing, then by (3.7)

and the Lebesgue theorem, we get

H =

1\
a=4

1[
l=1

�
g : lim

n!1

Z
X

�En

l
(x; g)d�(x) > 1� 1

a

�
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=

1\
a=3

1[
l=1

"
1\
n=1

�
g :

Z
X

�En

l
(x; g)d�(x) > 1� 1

a

�#
;

(since �En

l
(x; g) is nonincreasing) where (recall that c = 1)

En

l = [1m=nA(m; l) = [1m=n [k2Im Ak

m � L(m; k; 1� 1=l): (3.8)

Since Ak
m = \rU r

nk
and

L(m; k; 1 � 1=l) =

�
g : �g(A

k

m) >
1

l
�(Ak

m)

�

=

1[
t=1

1\
r=1

�
g : �g(U

r

mk) >

�
1

l
+

1

t

�
�(Ak

m)

�
;

then

Ak

m � L(m; k; 1 � 1=l) =

1[
t=1

1\
r=1

�
U r

mk �
�
g : �g(U

r

mk) >

�
1

l
+

1

t

�
�(Ak

m)

��
:

Denote the set standing in the round brackets by V rt

mk
. By Proposition 3.2,

this set is open. Taking into account (3.8), we get

En

l =

1[
m=n

[
k2Im

1[
t=1

"
1\
r=1

V rt

mk

#
=

1[
q=1

E
nq

l
;

where E
nq

l
=
S
n+q
m=n

S
k2Im

S
q

t=1

�T1
r=1 V

rt

mk

�
� form an increasing sequence of GÆ-

sets. Let E
nq

l
= \1

s=1W
nq

sl
, where W

nq

sl
is a decreasing sequence of open subsets

of X �G. Then
�En

l
(x; g) = lim

q!1
lim
s!1

�Wnq

sl

(x; g):

Taking into account of the character of convergence and the Lebesgue theorem,

we get

H =

1\
a=2

1[
l=1

2
4 1\
n=1

2
4 1[
q=1

2
4 1\
s=1

8<
:g :

Z
X

�Wnq

sl

(x; g)d�(x) > 1� 1

a

9=
;
3
5
3
5
3
5 :

By Proposition 3.2, the set standing in the �gure brackets is open. Thus H is a

set of the type GÆ�Æ�Æ .

If G is a group, then E(�j�) = A(�j�)\[A(�j�)]�1 [7, Theorem 1.2]. Therefore

E(�j�) is a GÆ�Æ-set.

Clearly that

g 2 I(�j�), �(x; g) = 1 � � a.e. , g 2
�
g : h�1 (g) = 0

	\�
g : h+1 (g) = 0

	
:
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If h+1 (g) = 0, then h�1 (g) = h+1 (g)�h(g) + 1 equal to zero if and only if h(g) = 1.

Hence I(�j�) = A(�j�) \ fg : h+1 (g) = 0g. Since fg : h+1 (g) > 0g is a GÆ�Æ�-set

(see the proof for AP (�j�)), then I(�j�) is the intersection of the GÆ�Æ-set and

the F�Æ�Æ -set. Theorem is proved.

R e m a r k 3.2. If G is a separable metric semigroup, then �(x; g) is a

function of the GÆ�Æ�-type, i.e., the inverse image of an open set is the GÆ�Æ�-set.

Really. Let U r

nk
be open sets in X such that \rU r

nk
= Ak

n. Then

L(n; k; ") = [1b=1 \1r=1

�
g : �g(U

r

nk) >

�
c� "+ 1

b

�
�(Ak

n)

�
:

By Proposition 3.2, this set is a GÆ�-set. Thus A
k
m � L(m; k; ") is a GÆ�-set and

its complement is a F�Æ-set.

Formula (3.4) follows

f(x; g) : D(x; g) > cg = [1q=1 \1p=1 \1n=1 [1m=n [ImAk

m � L
�
m; k;

1

p
; c+

1

q

�
;

f(x; g) : D(x; g) < cg = [1p=1[1n=1\1m=n\Im (X�G)n
�
Ak

m � L
�
m; k;

1

p
; c

��
;

f(x; g) : D(x; g) =1g = \1c=1 \1p=1 \1n=1 [1m=n [ImAk

m � L
�
m; k;

1

p
; c

�
:

Thus, taking into account that G is separable and metric, all these sets and their

intersections are GÆ�Æ�-sets.

Let U be open. Then U = [a(ca1; ca2), where ca2 � ca+1
1 . Hence (if 1 2 U)

��1(U) = [af(x; g) : ca1 < D(x; g) < ca2g ([f(x; g) : D(x; g) =1g)

is a GÆ�Æ�-set.

R e m a r k 3.3. Let G be a separable metric group, � = � and I = f(x; g) :
g � x = xg. Then we may assume that �(x; g) satis�es the following conditions:

1. �(x; g) is the function of at most GÆ�Æ�Æ-type.

2. �(x; g) = 1; 8(x; g) 2 I:

3. �(x; g) > 0; 8g 2 E(�):

In particular, if G = E(�), then ln�(x; g�1) is at most GÆ�Æ�Æ-type cocycle.

Really. Since I is closed in X � G, then Ig = fx : (x; g) 2 Ig 2 B(X).

Evidently, for all E � Ig we have g�1E = E. Thus �gjIg = �jIg . Hence �(x; g) =
1; �-a.e. on Ig. By Remark 3.2 and Theorem 3.1, the set

A = ��1(0) \X �E(�)
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is a F�Æ�Æ -set. Put

~�(x; g) = �(x; g) for (x; g) 62 I [A; and ~�(x; g) = 1; for (x; g) 2 I [A:

Thus, if 1 62 U (if 1 2 U), then

~��1(U) = ��1(U) f(X �G) n (I [A)g
�
~��1(U) = ��1(U) [ I [A

�
is a GÆ�Æ�Æ -set. The cocycle inequality follows from proposition 3.2 [7].

For the set I(�j�) Theorem 3.1 may be improved.

Proposition 3.3. Let G and X be separable metric spaces. Then the set

I(�j�) is closed in G.

P r o o f. By Proposition 3.2, the function �g(K) is upper semicontinuous.

Thus, if gn tends to g, then

limn!1�gn(K) � �g(K):

Therefore, by Theorem 2.1 [2], for every bounded real continuous function f(x)

(and since �gn = c�) we get

c

Z
fd� =

Z
fd�gn !

Z
fd�g:

Since every measure is determined by its values on such functions completely,

then �g = c� and g 2 I(�j�).

Moreover, we can repeat the proof of Theorem 1.2.4 [8] word for word and

prove the following proposition.

Proposition 3.4. If X = G is a separable metric group, then the subgroups

Il(�), Ir(�), It(�) are compact.

R e m a r k 3.4. In the general case this proposition is not true. In fact,

let G = R;H = T
2 and p : R ! T

2 be an embedding with the dense image.

Evidently, if � = mT2, then Il(�) = R.

R e m a r k 3.5. Note that, if X = G, then the representation of E(�) in

U(L2(�)) determined by the equality

Sg (f) (x) =

s
d�g

d�
(x)f

�
g�1 � x

�
=
p
�(x; g)f

�
g�1 � x

�
;

is exact.
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Let G be a group, then the group E(�) plays special role among considerable

sets. It is naturally to raise the question of description such groups. According

to Theorem 3.1, E(�) is a set of very bounded type. Now we give some open

questions.

1. For which subgroups H � G there exists � 2M+(G) such that H = E(�)?

2. What is the Borel class of E(�) exactly?

For example, let ! be a right Gauss measure on R1 . Then E(!) = l2 [16, � 5,

Th. 1]. Let us prove that l2 is a F� nGÆ-set.

Really, let fn(x) = x21 + � � � + x2n;x = (x1; : : : ; xn; : : : ) 2 R1 , be continuous

functions on R1 . Since

l2 =

1[
k=1

1\
n=1

fx : fn(x) � kg ;

then l2 is a F�-set. In the other side, l2 is not GÆ-set by the results of [10, Ch. VI,

� 34].

3. What are the classes for which there exists a group of quasiinvariance of

a probability measure?

For Polish groups the Mackey�Weil theorem [11] may be formulated the fol-

lowing way.

Theorem. Let X = G be a Polish group. Then the following propositions are

equivalent:

1. There exists a measure � such that E(�) is open.

2. G is local compact.

All examples of E(�) which are known to the author are sets of F�-type.

4. How are connected properties of G with Borel classes of all E(�)?

Proposition 3.5. Let X = G be a Polish group. Then the following proposi-

tions are equivalent

1. E(�) is a set of GÆ-type for all probability measures �.

2. G is discrete.

P r o o f. Obviously, it is enough to prove the su�ciency. Let H be a coun-

table dense subgroup of G. Set � =
P

h2H �hÆh,
P

h2H �h = 1, �h > 0. Then

E(�) = H. By [10, � 34, Th. 3 and � 9, Th. 4], H is a GÆ-set only if G = H.

Naturally, this questions are considered for the most important cases when G

is either local compact or Abelian or X = G.
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