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1. Introduction

The purpose of the present work is solving the characterization problem, which
consists of identification of necessary and sufficient conditions on the scattering
data ensuring that the reconstructed potential belongs to a particular class. In our
case Q? is the class of all 2w-periodic complex-valued functions on the real axis R,
belonging to the space Lo[0, 27|, and Qi is its subclass consisting of the functions

00 2m—2 oo
Py (®) =Y pmexp (inz), Y > 0 [pyn| < . (1.1)
n=1 v=0 n=1

The object under consideration is the operator L, generated by the differential

expression
2m—2

Uy) = (=1)"y®™ + >~ py(2)y (@) (1.2)
v=0
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in the space Ly (—00,00), with the coefficients p, (z) € Q%.

Note, that some of the characterizations for the Sturm-Liouville operators in
the real-valued potentials belonging to the L1 (R) (L. (R) is the class of mea-
surable potentials satisfying the condition [ dz(1 + |z])® |py(z)| < o), have been

R

given by A. Melin [1] and V.A. Marchenko [2|. More details review can be found
in the papers [3-5].

The inverse problem for the coefficients (1.1) for the first time was formulated
and solved in paper [6], where it was shown that the equation I (y) = A\*™y has
the solution

2m—1 oo «

17A% . .
_ iwrT na (iIAwr+ia)z _ o
(33 AwT € + Zzzn+>\w 1_w])6 ,7'—0,2’)77, 1’
7j=1 a=1n=1

w; = exp (ijm/m). (1.3)

and Wronskian of the system of solutions ¢ (z, Aw,) being equal to (ix)™?™~1 A,
where

1 1 .1
A—| @ ) . W1
wim=l o 2m=l o amd
is nonzero if A # 0.
The limit ¢p; (z) = im/{ A+ ) p(z,N), Apj = —1_”%, n€N,j=

nj

1,2m — 1, is also a solution of the equation I (y) = A2™y but already linearly
depending on ¢ (z, Apjw;). Therefore, there exist the numbers Sy;,n € N,j =
1,2m — 1, for which the conditions

onj(x) = S'njtp(x, Anjw;) (1.4)

are fulfilled.
It was established by M.G. Gasymov [6] that if

L Z

m—1 — |§"|
IT. 4 P = p < 1, where
2m—1
(1=wj) (n+ 7)) i e
= S, = m=2|q .
fom SJSl% 1|7“(1—w]') - n(l-wp)wjl|’ n Zn |Snjls
1< n,r =

(1.5)

then there exist the uniquely defined functions p,(z), v = 0,2m — 2 of (1.1), for

which the numbers {S,,} are defined by formulae (1.3)~(1.4). Then the complete
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solution of this problem at m = 1 was given in paper [3|, where the authors proved
the following theorem:

Theorem 1. In order the given sequence of complex numbers {,§’n} to be a set

of spectral data of the operator L = (%)2 + po (z) with the potential py(x) € Q?i—

it is necessary and sufficient, that the following conditions are fulfilled:
2) the infinite determinant D (z) =

25, intk,
Ok + nik€ 2

exists (Opg is Kro-
n,k=1

necker’s symbol), is continuous, not equal to zero in the closed half-plane C, =
{z:Imz > 0} and analytical inside of the open half-plane Cy = {z : Imz > 0}.

In the present work the complete inverse problem (characterization problem)
for the high order ordinary differential operators (1.2) with the coefficients (1.1)
is solved.

Let us formulate now the basic result of the present work.

Definition. The sequence {gn]}zo:’%f';;i, constructed by means of the formulae

(1.4), is called a set of spectral data of the operator (1.2) with the coefficients (1.1).

Theorem 2. For a given sequence of complex numbers {S’m}zojl";: to be a set

of spectral data of the operator L, generated by the differential expression (1.2)

and coefficients (1.1), it is necessary and sufficient that the following conditions
are fulfilled: .

[nSn}22, € by (1.6)

2) the infinite determinant

2m—1 ||

) (1 — wl) Snj ez’ 1_"wj ze_i IT_“’“I)I 2

D (Z) = det 5rnE2m71 —

rar (L) —n (1— ) ol
(1.7)
exists, (Ey is the unit n X n matriz), is continuous, not equal to zero in the close
half-plane C = {z : Imz > 0}, and analytical inside of the open half-plane

Cy={z:Imz > 0}.

2. On the inverse problem of scattering theory on the semiaxis
On the base of the proof of the Theorem 2 we will study the equation [ (y) =

>\2my

Denoting
z=it,\ = —ik,y(x) =Y (¢), (2.1)
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we obtain the equation

2m—2
(D)"Y (6) + Y Q () YD (1) = K*"Y (2), (2.2)
v=0
in which
00 2m—2 oo
Qy(t) = (=1)™(=i)" > pyme™™, YD 07 |pyn| < 0. (2.3)
n=1 v=0 n=1

As a result we obtain the equation (2.1) whose coefficient exponentially de-
crease as t — 00.

Lemma 1. The kernel of the transformation operator of equation (2.2)
K (t,u), u > t, attached to +o00, with the coefficients (2.3) permits the represen-

tation
< N no (t—u)
K(ta“)ZZZZme e,

in which the series

Oé

are convergent.

Proof. Itisshown in [7] that equation (2.2) with the coefficients (2.3) has
the solution
2m—1 oo

v, .
— zk:wT na (thwr—a)t —0.2m — 1
i) = eort e 233 ot g g,

j=1 a=ln=1
(2.4)

()

and the numbers V5 are defined from the following recurrent formulae

(i) - ()

o SR g e o

v=0 s=n

v (@)

no
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at
a=23,...;n=012,...,a-1;7=12,...,2m —1,
2m—1 « 2m—2 2m—1 .
Tt ¥ Y dymaV+ 3 Y Sy (s Vi =0,
j=1 n=1 v=y+1 j=1 r+s=an=1
(2.6)
where .
. 2 2 - 2 2

2m—2
= Z djy (n, ) K75 j=1,2m —1,

(is + k)" — (is + knj)”
d
in+k(1—w) Z”””

and the series (2.4) permits 2m times term by term differentiation. Then according
to conditions (2.3), we have

f(t, k) = et + /K (t,u) e*du, (2.7)
t

where

i i no e*Oét+17nwj (tfu) (2 8)
1 (1 - w]') ) -

The lemma is proved.

Then it is possible to get equality [8]
fnj(t) = Snjf(ta knjwj)a (29)
where
mn
1-— Wy ’

fnj(t):kgm [in+ k(1 —wj)]f(tk), knj =— j=1,2m—1,n € N.

nj

Rewriting equality (2.9) in the form

oo n g
§ : Vn%)efatel—uj

a=n
2m—1 oo o

R 30 3y L LG ) A

po i rnw] l—wl —r (1 —wj)
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and denoting by

2 1 o0

m—
= (tw; —u)
Flt+u) =Y “_wj w T <, (2.11)

—

J: n=1

we obtain the Marchenko type equation
o0
K(t,u) = F(t +u) +/K F(s +u)ds (2.12)
t

from equation (2.10). So, it is proved the following

Lemma 2. If the coefficients Q~ (t) of equation (2.2) have form (2.3), then
at every t > 0 the kernel of the transformation operator (2.8) satisfies to the
equation of the Marchenko type (2.12) in which the transition function F (t) has
form (2.11), and the numbers S,; are defined by equality (2.9), from which it is

obtained, that Sy; = Vn(%).

The coefficients @ (t) are reconstructed by the kernel of the transformation
operator by means of the recurrent formulae (2.5)-(2.6). Hence, the basic equa-
tion (2.12) and form of the transition function (2.11) make natural the formula-
tion of the inverse problem for reconstruction of coefficients of equation (2.1) by
numbers Sp;. In this formulation, which employs the transformation operator,
an important moment is a proof of unique solubility of the basic equation (2.12).

Lemma 3. The homogeneous equation

oo

g(s)—/ﬁ'(u—l—s)g(u)duzo (2.13)
0

corresponding to the coefficients Q. (t) € Qﬁ_ has only a trivial solution.

Proof. Let g€ Ly(R™) be a solution of equation (2.13) and f be a solution
of the equation

+/K(t,s)f(t) dt = g (s). (2.14)
0

Substituting ¢ into (2.14) and taking into account equation (2.12), we get

o0 u

—i—O/K(t,s)f(t)dt—i—/[f(u)+0/K(t,u)f(t)dt]F(u+s)du

0
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/f F(t + ) +t/K F(u+ s)du] = 0.

As at t > s the estimation
(e.@)
F(t+s) +/K F(u+s)du| < Ce*
0

is fulfilled, hence it follows that f = 0,9 = 0 and lemma is proved.

Lemma 4. At every fized value a,(Ima > 0) the homogeneous equation
o
g(s) — /ﬁ’(u + s —2ia)g(u)du =0 (2.15)
0

has only a trivial solution in the space Ly (RT).

P roof. We substitute z by z 4+ a, where Ima > 0 in equation (1.2). Then
we obtain the same equation with the coefficient QS () = Q, (z + a) satisfying
condition (1.1). Let us remark, that the functions ¢ (z + a, Aw;) are solutions of
the equation

()™ y®™ (2) + ZmZZ Q5 (2)y™ (z) = X"y (v)
=0
that at x — oo have the form
o (r 4 a,  \wj) = e eAT 46 (1)
Therefore the functions
0 (2, \wj) = e~ (1 + a, Awj)

are also solutions of type (1.3). Then let us denote by Sy;(a) the spectral data of
the operator L with the potential Qf ()

d2m 2m—2 d,y

L= (_1) dx2m + Z Q’Y d$7

According to (1.4), we have

Snj (@) " (x, Anjwj) = lim [n4+ A (1 —w;)] ¢ (z, )

A= Anj
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= lim [n+ X1 —w))]p(x +a,\) e A

/\—)/\n]‘

nw.;
jn_ . g
[y ey T

a a
=e 'Y Spjp (x4 a, \jwji) = e e Syt (), Anjw))

= gine ni@" (T, Apjwy) .

Hence .
Snj(a) = em“Snj. (2.16)
Now arguing as above, we obtain the basic equation of form (2.12) with the
transition function

2m—1 oo
o(t+u) ]21; 1—w] i(twj_u):F(t—ia+u—ia):F'(t—i-u—%a).

From this lemma follows

Theorem 3. The coefficients Q. (t) of equation (2.1), satisfying to condition
(2.2), are uniquely defined by the numbers Sp;.

3. Proof of Theorem 2

Necessity. From the relation (2.9) and form of the function f,; () we ob-
tained that

Snj = Vn(%)'
Therefore
2m—1 oo 2m—1 oo
D2 SIS D0 Y P V)| < oo,
j=1 n=1 j=1 n=1

i.e., n®™=1|S,;| € l;. The necessity of condition (1) is proved.

To proof the necessity of condition (2) let us demonstrate first of all that from
the trivial solubility of the basic equation (2.12) at ¢ = 0 in the class of functions,
satisfying to the inequality ||g (u)|| < Ce™z, u > 0, follows the trivial solubility
in [y (1, 00, R2m*1) of the infinite system of equations

2m—1 oo
)Srl o
Z an] l—wl —r(l—w])glr =0. (3:-1)

=1 r=1

Really, if {gjn} € l2, 7 = 1,2m — 1, is a solution of this system, then the
function

2m—1 oo

g () = (91 (@) ,95 (@), gam 1 (@) = 3 3 Sujgime T, (32)

7=1 n=1
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defined for all u > 0, satisfies to the inequality

u

|9 (u)] < Ce =975 u >0,
and is a solution of equation (2.13)

2m—1 oo

g(u) —/g(s)ﬁ(u+s)ds => anjgjnefﬁ,ju
0

j=1 n=1

00
2m—1 oo 2m—1 oo
Srl L

[ St TN Y e s

0 J=1 n=1 =1 r=1

2m—1 oo

= Z Z Snjgjne_%wju

j=1 n=1

2m—1 oo
— . 1—
= g g Sn]g]ne “i
7j=1 n=1
2m—1 2m—1 oo
Z(l — wj)Sanrl S

nw;(1 —w) —r(l —wj)

Since, g(u) = 0, then Spjgj, =0 for all n>1, j=1,2m—1, and
gin =0, 7 =1,2m —1, n > 1, according to (3.1). Let us introduce in the space
lo (1, 00; R2m*1) the operator F(t), given by the matrix

. ) n rw 2m—1
'L(]_ —(Ul) Sn] e_l—wj tel—b.lJlt , (33)

L 12m—1
7l _
rn

Fru () = |

jl=1 rw; (1 —wj) —n (1 —wp) jl=1

2m—1 2m—1 .
and let  worp1 = {(0v1) Okr}, 1™, 2k = {(0w2) Okr}y e’ ((0i) s
a column vector) be the orthonormal system in this space. Then we obtain from
oo
n?m=lS. el 2 ‘(F(pj7(pk)l2(1,oo;R2m*1) < oo, i.e., F (t) is a kernel ope-
Jk=1

rator [9]. Therefore, there exists the determinant A (t) = det (E — F (t)) of the
operator E — F'(t), connected, as easy to see, with the determinant D(z) from
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condition 2) of the Theorem 2, with relation A (—iz) = det (E — F (—iz)) =
D (z).

The determinant of system (3.1) is D (0) and determinant of the similar system
corresponding to the coefficient Q5 = Q@ (z + 2), Im 2z > 0, is

) 2m—11|*°
D(z) = det |6, E - AL e
= (= wp) —n(l—w) | 1
"W r,n=
. . - 2m—1||*°
et 5THE2m71 B 1'L(]. ‘ wl)Sn]]- einz
rwl( _ w]) — n( - wl) HI= =1
. . ) kit 21>
_ det 6rnE2m_1 B fL(l — wz)sn] 6217wj Zefl lful)lz
ran(l = w;) = n(l - w) P rnst

Therefore, in order to prove the necessity of condition 2) of Theorem 2 one
should check that A(0) = D(0) # 0. System (3.1) can be written in
Iy (1, oQ; RZm*l) as the equation

g—F(0)g=0.

As F(0) is the kernel operator, we can apply to this equation the Fredholm
theory, according to which its trivial solvability is equivalent to condition that
det (E — F (0)) is not equal to zero [10]. The necessity of condition 2) is proved.

e
Sufficiency. Let us multiply equation (2.12) by e« and integrate it over
€ [t,00). We obtain

E(t)y=F (t)e(t)+k(t) F(t), (3.4)
in which the operator F'(#) is defined by the matrix ||, (£)]],5,=;of the form (3.3),

9 " nwj ¢ OO,2’ITL*1
00,2m—1 __ y .
e(t) = Henj (t)Hn,j:1 = ||e'™ ;

n,j=1
00 2m—1,00
2m—1,00 lr_iu
k(t) = ki @z = || [ K(tu)e="du
t lr=1

As F (t) is the trace class for ¢ > 0 and the condition A (¢t) = det (E — F (t)) # 0
holds, there exists the bounded in I, inverse operator R (t) = (E — F (t)) *. Since
F (t)e(t) € la, then from (3.4) we get

k(t) = R(1)F()e(t). (3.5)
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Now denoting (f,g9) = >_ fngn, we find from (2.12) that
n=1

K (t,u) = (e(t), A(uw) + (k(t), A(w) = (e(t), A(u)) + (R () F (t) e (t), A (u))

=(e(t)+R@)F(t)e(t),A(u)) = (R(t)e(t),A(u)), (3.6)

where A (u) is defined by the matrix
Snj -y
’i(l — w]')
Now assume that the conditions of the theorem are fulfilled. According to the

stated considerations, define the function K (¢,u) at 0 < t < u by equality (3.6).
Then at u > t we have

Au) = [lajn (w)|[77= 1> =

]
<

7,n=1

K(t,u)—/K(t,s)F(s—l—u)ds
= (R (1) () —/(R t A(s)(e(s),A(u)))ds
= (R(t)e(t), A(u)) — < </A s)ds, A(u )>> = (R(t)e(t), A(u))

—(R(#)e(t),(A(u), F () = (R(t)e(t),Au)) — (R()e(t), A(u) F* (1))
=(R(t)e(t),A(u) — Au) F* (1)) = (e (t) , A(u)) = F (t +u),

”

where the symbol ,* ” means transition to the matrix, adjoint to the F (¢) with
respect to the bilinear form (., .). So, we have

Lemma 5. For any t > 0 the kernel K (t,u) of the transformation operator
satisfies to the basic equation

K (t,u) =F (t +u) +/K F (s +u)ds.
t

From Lemma 3 it follows unique solubility of the basic equation. By the direct
substitution it is easy to calculate that the solution of the basic equation is
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()

where the numbers V3’ are defined from the recurrent relations

Vi) = S,
2m—1 « (l)
() () Vra
= 1—
Vna-i-n Wi V”” lzl ; 7“ 1- OJ] - n(l - wl)

Passing to the proof of the basic statement that the coefficients Q. (¢) have
form (2.2), let us first establish the estimations for the matrix elements R, (t) of
the operator R (1)

R‘Z"E'L(t)‘ < Opndji +CSy, (3.7)
82m7'r " -
‘ath—T RI (t)‘ <CSp;r=1,2m—1, (3.8)
- 2m—1
where C = maz{Cy > 0,k =1,2m — 1} isaconstant, and S,, = Y n?™ 1|S,;|.
j=1

Indeed, it follows from the identity R (t) = E + R (t) F (t) that

2m—1 oo
‘Rﬁ?ﬁ(t)‘ <O+ Y Z‘R” “F”

=1 p=1
00

2m—1
< bynj + 2 Z Z‘R” ‘ %Z Frit

8
MI»—‘

< 5rn5lj + Clam p Z n —|—p %Sn S 57‘n5l]‘ +C1 ||R(t)||l2—>l2 Sn.-
=1

On the other hand, as it has been noted above, the operator-function R (t) =
(E — F (t)) " exists and is bounded in the Iy(because F (t) is the kernel operator

at t > 0 and A (t) = det (E — F (t)) # 0) that proves first inequality (3.7).
In order to proof the second estimation (3.8) we first obtain

2m—1 oo
% 'rk
_R] ‘ Z Z ‘R ”@qu ‘ ](t)‘
=1 p,q=1

2m—1 oo

> > (Grpbir + C28p)Sq (3gns + C3Sn)

=1 p,q=1

IN

IN

o
(1+C1)_ 8,)°Sn < CSh.

p=1
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Then from the equality %R(t) Z cp ([’litl, TR (t )) ((%—ZF(t)) R (t),

[ =1,2m — 1, by the help of mathematical 1nduct1on the inequality (3.8) is proved.
In [11] the following relations were proved (for correspondence to our case, assume

that gam-—2-(z) = Qy(7)):

2m 2m—2 o 2m

m 0 _
(=1) (%ZmK(w,t) + Z Q2m—2— () %K(ﬁﬁat) - WK(QUJ) =0,

d
qo () =2m—K (z, 1),
dz

i 95—V
Qk+1 T ( Z chm 3—s { WK (:E,t)

k+2

v 0
+Zo§;21y{ —— K (2,t)

Now it is easy to show, that

2m—1 oo

=Y S e e T ),
J

7j=1 n=1

where I (t) = Z RY F]TeqTeTq =< R(t) F (t)e(t), A(t) > is 2im periodic
n,p,¢,T=1
function and has bounded derivative until (2m-1) order. It follows from this

fact that the Fourier coefficients of the function Iy (—iz), z € R, are such that
io: [n?m-110, ? < co. But then ioj n?m=2|1l,| < co. So, the Fourier coefficients
%;m_gm of the function Qo,,—2 ?3;)1 = qo (z) satisfy condition (2.2). Similarly,
for all other coefficients @, (z), v = 0,2m — 3, it is established that the Fourier
coefficients p,y, of the function Q,(z) = gqam—2—y (z), v = 0,2m — 3, satisfy
condition (2.2). And it means that the Fourier coefficients of the function P,(x),
v = 0,2m — 2 satisfy condition (1.1).

Let, finally, {S'nj} be the spectral data set of the operator (L — kaE) with
the constructed coefficients P, (). For completing of the proof it remains to show
that {Sy;} coincide with the initial set {S’n]} This follows from the equality

S'nj = Vn(f;) = Sp;j. The theorem is proved.

The author is grateful to Prof. M.G. Gasymov and Prof. .M. Guseynov for
useful discussions.
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