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1. Introduction

The purpose of the present work is solving the characterization problem, which

consists of identi�cation of necessary and su�cient conditions on the scattering

data ensuring that the reconstructed potential belongs to a particular class. In our

case Q2 is the class of all 2�-periodic complex-valued functions on the real axis R,

belonging to the space L2[0; 2�], and Q
2
+ is its subclass consisting of the functions

p
 (x) =

1X
n=1

p
nexp (inx);

2m�2X

=0

1X
n=1

n
 jp
nj <1: (1.1)

The object under consideration is the operator L, generated by the di�erential

expression

l(y) = (�1)my(2m) +

2m�2X

=0

p
(x)y
(
)(x) (1.2)
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in the space L2 (�1;1), with the coe�cients p
 (x) 2 Q2
+.

Note, that some of the characterizations for the Sturm�Liouville operators in

the real-valued potentials belonging to the L1
1 (R) (L1

�
(R) is the class of mea-

surable potentials satisfying the condition
R
R

dx(1 + jxj)� jp
(x)j <1), have been

given by A. Melin [1] and V.A. Marchenko [2]. More details review can be found

in the papers [3�5].

The inverse problem for the coe�cients (1.1) for the �rst time was formulated

and solved in paper [6], where it was shown that the equation l (y) = �2my has

the solution

'(x; �!� ) = ei�!�x +

2m�1X
j=1

1X
�=1

�X
n=1

V
(j)
n�

n+ �!� (1� !j)
e(i�!�+i�)x; � = 0; 2m� 1;

!j = exp (ij�=m) : (1.3)

and Wronskian of the system of solutions '(x; �!� ) being equal to (i�)m(2m�1)A,

where

A =

��������
1 1 :: 1

!1 !2 :: !2m�1
:: :: :: ::

!2m�1
1 !2m�1

2 :: !2m�1
2m�1

��������
is nonzero if � 6= 0.

The limit 'nj (x) � lim
�!��nj

(�+ �nj)' (x; �), �nj = � n

1�!j
, n 2 N , j =

1; 2m� 1, is also a solution of the equation l (y) = �2my but already linearly

depending on ' (x; �nj!j). Therefore, there exist the numbers ~Snj; n 2 N; j =

1; 2m� 1, for which the conditions

'nj(x) = ~Snj'(x; �nj!j) (1.4)

are ful�lled.

It was established by M.G. Gasymov [6] that if

I.
1P
n=1

n
��� ~Sn��� <1,

II. 4m�1 am
1P
n=1

j ~Snj
n+1

= p < 1, where

am = max
1� j� l� 2m�1

1� n; r <1

j(1� ! j) (n+ r)j

j r (1� ! j) � n (1� ! l) ! j j
; ~Sn =

2m�1X
j=1

n2m�2j ~Snjj;

(1.5)

then there exist the uniquely de�ned functions p
(x), 
 = 0; 2m� 2 of (1.1), for

which the numbers f ~Sng are de�ned by formulae (1.3)�(1.4). Then the complete
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solution of this problem atm = 1 was given in paper [3], where the authors proved

the following theorem:

Theorem 1. In order the given sequence of complex numbers fŜng to be a set

of spectral data of the operator L =
�
d

dx

�2
+ p0 (x) with the potential p0(x) 2 Q2

+

it is necessary and su�cient, that the following conditions are ful�lled:

1) fnŜng
1

n=1 2 l2;

2) the in�nite determinant D (z) �



Ænk + 2Ŝk

n+k
ei

n+k

2
z




1
n;k=1

exists (Ænk is Kro-

necker's symbol), is continuous, not equal to zero in the closed half-plane C+ =

fz : Im z � 0g and analytical inside of the open half-plane C+ = fz : Im z > 0g.

In the present work the complete inverse problem (characterization problem)

for the high order ordinary di�erential operators (1.2) with the coe�cients (1.1)

is solved.

Let us formulate now the basic result of the present work.

De�nition. The sequence f ~Snjg
1;2m�1
n=1;j=1, constructed by means of the formulae

(1.4), is called a set of spectral data of the operator (1.2) with the coe�cients (1.1).

Theorem 2. For a given sequence of complex numbers f ~Snjg
1;2m�1
n=1;j=1 to be a set

of spectral data of the operator L, generated by the di�erential expression (1.2)

and coe�cients (1.1), it is necessary and su�cient that the following conditions

are ful�lled:

fn ~Sng
1

n=1 2 l1; (1.6)

2) the in�nite determinant

D (z) � det







ÆrnE2m�1 �






 i (1� !l) ~Snj

r!l (1� !j)� n (1� !l)
e
i

n

1�!j
z

e
�i

r!
l

1�!
l

z







2m�1

j;l=1








1

r;n=1

(1.7)

exists, (En is the unit n� n matrix), is continuous, not equal to zero in the close

half-plane C+ = fz : Im z � 0g, and analytical inside of the open half-plane

C+ = fz : Im z > 0g.

2. On the inverse problem of scattering theory on the semiaxis

On the base of the proof of the Theorem 2 we will study the equation l (y) =

�2my.

Denoting

x = it; � = �ik; y (x) = Y (t) ; (2.1)
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we obtain the equation

(�1)
m Y (2m) (t) +

2m�2X

=0

Q
 (t) Y
(
) (t) = k2mY (t) ; (2.2)

in which

Q
(t) = (�1)m(�i)

1X
n=1

p
ne
�nt;

2m�2X

=0

1X
n=1

n
 jp
nj <1: (2.3)

As a result we obtain the equation (2.1) whose coe�cient exponentially de-

crease as t!1.

Lemma 1. The kernel of the transformation operator of equation (2.2)

K (t; u), u � t, attached to +1, with the coe�cients (2.3) permits the represen-

tation

K(t; u) =

2m�1X
j=1

1X
n=1

1X
�=n

V
(j)
n�

i(1 � !j)
e
��t+ n

1�!j
(t�u)

;

in which the series

2m�1X
j=1

1X
n=1

1

n

1X
�=n

�2m�1 (�� n)
���V (j)

n�

���;
2m�1X
j=1

1X
�=1

�2m�1
���V (j)

��

���
are convergent.

P r o o f. It is shown in [7] that equation (2.2) with the coe�cients (2.3) has

the solution

f (t; k!� ) = eik!� t +

2m�1X
j=1

1X
�=1

�X
n=1

V
(j)
n�

in+ k!� (1� !j)
e(ik!���)t; � = 0; 2m � 1;

(2.4)

and the numbers V
(j)
n� are de�ned from the following recurrent formulae"�

��
n

(1� !j)

�2m

�

�
n

(1� !j)

�2m
#
V (j)
n�

= (�1)m+1
2m�1X

=0

��1X
s=n

�
i

�
s�

n

(1� !j)

��



P
;s�nV
(j)
ns

(2.5)
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at

� = 2; 3; : : : ; n = 1; 2; : : : ; �� 1; j = 1; 2; : : : ; 2m� 1;

i
p
� +

2m�1X
j=1

�X
n=1

dj
(n; �)V
(j)
n�

+

2m�2X
�=
+1

2m�1X
j=1

X
r+s=�

sX
n=1

dj
(n; s; �)p�rV
(j)
ns

= 0;

(2.6)

where
1

n+ k(1� !j)

�
(i�+ k)2m � k2m � (i� + knj)

2m + k2m
nj

�

=

2m�2X

=0

dj
 (n; �) k

 ; j = 1; 2m� 1;

(is+ k)� � (is+ knj)
�

in+ k (1� !j)
=

v�1X

=0

dj
 (n; s; v) k

 ;

and the series (2.4) permits 2m times term by term di�erentiation. Then according

to conditions (2.3), we have

f (t; k) = eikt +

1Z
t

K (t; u) eikudu; (2.7)

where

K (t; u) =

2m�1X
j=1

1X
n=1

1X
�=n

V
(j)
n�

i (1� !j)
e
��t+ n

1�!j
(t�u)

: (2.8)

The lemma is proved.

Then it is possible to get equality [8]

fnj(t) = Snjf(t; knj!j); (2.9)

where

fnj (t) = lim
k!knj

[in+ k (1� !j)] f (t; k); knj = �
in

1� !j
; j = 1; 2m� 1; n 2 N:

Rewriting equality (2.9) in the form

1X
�=n

V (j)
n� e

��te
n

1�!j
t

= Snje
n!j

1�!j
t

+

2m�1X
l=1

1X
r=1

1X
�=r

i (1� !j)V
(l)
nr Snj

n!j (1� !l)� r (1� !j)
e

�
��+

n!
j

1�!j

�
t

(2.10)
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and denoting by

~F (t+ u) =

2m�1X
j=1

1X
n=1

Snj

i (1� !j)
e

n

1�!j
(t!j�u)

; t � u; (2.11)

we obtain the Marchenko type equation

K(t; u) = ~F (t+ u) +

1Z
t

K(t; s) ~F (s+ u)ds (2.12)

from equation (2.10). So, it is proved the following

Lemma 2. If the coe�cients Q
 (t) of equation (2.2) have form (2.3), then

at every t � 0 the kernel of the transformation operator (2.8) satis�es to the

equation of the Marchenko type (2.12) in which the transition function ~F (t) has

form (2.11), and the numbers Snj are de�ned by equality (2.9), from which it is

obtained, that Snj = V
(j)
nn .

The coe�cients Q
 (t) are reconstructed by the kernel of the transformation

operator by means of the recurrent formulae (2.5)�(2.6). Hence, the basic equa-

tion (2.12) and form of the transition function (2.11) make natural the formula-

tion of the inverse problem for reconstruction of coe�cients of equation (2.1) by

numbers Snj. In this formulation, which employs the transformation operator,

an important moment is a proof of unique solubility of the basic equation (2.12).

Lemma 3. The homogeneous equation

g (s)�

1Z
0

~F (u+ s) g (u) du = 0 (2.13)

corresponding to the coe�cients Q
 (t) 2 Q2
+ has only a trivial solution.

P r o o f. Let g 2 L2(R
+) be a solution of equation (2.13) and f be a solution

of the equation

f (s) +

sZ
0

K (t; s) f (t) dt = g (s): (2.14)

Substituting g into (2.14) and taking into account equation (2.12), we get

f(s) +

sZ
0

K(t; s)f(t)dt+

1Z
0

[f(u) +

uZ
0

K(t; u)f(t)dt] ~F (u+ s)du
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= f(s) +

1Z
s

f(t)[ ~F (t+ s) +

1Z
t

K(t; u) ~F (u+ s)du] = 0:

As at t � s the estimation������ ~F (t+ s) +

1Z
0

K (t; u) ~F (u+ s) du

������ � Ce�s

is ful�lled, hence it follows that f = 0; g = 0 and lemma is proved.

Lemma 4. At every �xed value a; (Im a � 0) the homogeneous equation

g(s) �

1Z
0

~F (u+ s� 2ia)g(u)du = 0 (2.15)

has only a trivial solution in the space L2 (R
+).

P r o o f. We substitute x by x+ a, where Im a � 0 in equation (1.2). Then

we obtain the same equation with the coe�cient Qa



(x) = Q
 (x+ a) satisfying

condition (1.1). Let us remark, that the functions ' (x+ a; �!j) are solutions of

the equation

(�1)m y(2m) (x) +

2m�2X

=0

Qa


 (x) y
(
) (x) = �2my (x)

that at x!1 have the form

' (x+ a; �!j) = ei�!jaei�!jx + o (1) :

Therefore the functions

'a (x; �!j) = e�i�!ja' (x+ a; �!j)

are also solutions of type (1.3). Then let us denote by Snj(a) the spectral data of

the operator L with the potential Qa



(x)

L � (�1)m
d2m

dx2m
+

2m�2X

=0

Qa


(x)
d


dx

:

According to (1.4), we have

Snj (a)'
a (x; �nj!j) = lim

�!�nj

[n+ � (1� !j)]'
a (x; �)
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= lim
�!�nj

[n+ �(1� !j)]'(x + a; �) e�i�a

= e
i

n

1�!j
a

Snj' (x+ a; �nj!j) = e
i

n

1�!j
a

e
�i

n!j

1�!j
a

Snj'
a (x; �nj!j)

= einaSnj'
a (x; �nj!j) :

Hence

Snj(a) = einaSnj: (2.16)

Now arguing as above, we obtain the basic equation of form (2.12) with the

transition function

~Fa(t+u) =

2m�1X
j=1

1X
n=1

Snj(a)

i(1 � !j)
e

n

1�!j
(t!j�u)

= ~F (t� ia+ u� ia) = ~F (t+u� 2ia):

From this lemma follows

Theorem 3. The coe�cients Q
 (t) of equation (2.1), satisfying to condition

(2.2), are uniquely de�ned by the numbers Snj.

3. Proof of Theorem 2

Necessity. From the relation (2.9) and form of the function fnj (t) we ob-

tained that

Snj = V (j)
nn

:

Therefore
2m�1X
j=1

1X
n=1

n2m�1 jSnjj �

2m�1X
j=1

1X
n=1

n2m�1
���V (j)

nn

��� <1;

i.e., n2m�1 jSnjj 2 l1. The necessity of condition (1) is proved.

To proof the necessity of condition (2) let us demonstrate �rst of all that from

the trivial solubility of the basic equation (2.12) at t = 0 in the class of functions,

satisfying to the inequality kg (u)k � Ce�
u

2 , u � 0, follows the trivial solubility

in l2
�
1;1; R2m�1

�
of the in�nite system of equations

gjn �

2m�1X
l=1

1X
r=1

i(1� !j)Srl

n!j(1� !l)� r(1� !j)
glr = 0: (3.1)

Really, if fgjng 2 l2, j = 1; 2m� 1; is a solution of this system, then the

function

g (u) = (g1 (u) ; g2 (u) ; : : : ; g2m�1 (u)) =

2m�1X
j=1

1X
n=1

Snjgjne
�

n

1�!j
u

; (3.2)
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de�ned for all u � 0, satis�es to the inequality

jg (u)j � Ce
�

u

1�!j ; u � 0;

and is a solution of equation (2.13)

g(u) �

1Z
0

g(s) ~F (u+ s)ds =

2m�1X
j=1

1X
n=1

Snjgjne
�

n

1�!j
u

�

1Z
0

(

2m�1X
j=1

1X
n=1

Snjgjne
�

n

1�!j
s

)(

2m�1X
l=1

1X
r=1

Srl

i(1� !j)
e

r

1�!
l

(s!l�u))ds

=

2m�1X
j=1

1X
n=1

Snjgjne
�

n

1�!j
u

�

2m�1X
j=1

1X
n=1

2m�1X
l=1

1X
r=1

SnjSrl

i(1 � !l)
gjne

�
r

1�!
l

u

1Z
0

e
�

n

1�!j
s

e
r!

l

1�!
l

s
ds

=

2m�1X
j=1

1X
n=1

Snjgjne
�

n

1�!j
u

�

2m�1X
j=1

1X
n=1

2m�1X
l=1

1X
r=1

i(1� !j)SnjSrl

n!j(1� !l)� r(1� !j)
glre

�
n

1�!j
u

=

2m�1X
j=1

1X
n=1

Snje
�

n

1�!j
u

[gjn �
2m�1X
l=1

1X
r=1

i(1� !j)Srl

n!j(1� !l)� r(1� !j)
glr] = 0:

Since, g(u) = 0, then Snjgjn = 0 for all n � 1, j = 1; 2m� 1, and

gjn = 0, j = 1; 2m� 1, n � 1, according to (3.1). Let us introduce in the space

l2
�
1;1;R2m�1

�
the operator F (t), given by the matrix

Frn (t) =



F jl

rn




2m�1
j;l=1

=





 i (1� !l)Snj

r!l (1� !j)� n (1� !l)
e
�

n

1�!j
t

e
r!

l

1�!
l

t






2m�1

j;l=1

; (3.3)

and let '2k�1 = f(Æ�1) Ækrg
2m�1;1
�;r=1 , '2k = f(Æ�2) Ækrg

2m�1;1
�;r=1 ((Æij) is

a column vector) be the orthonormal system in this space. Then we obtain from

n2m�1 jSnjj 2 l1
1P

j;k=1

���(F'j ; 'k)l2(1;1;R2m�1)

��� < 1, i.e., F (t) is a kernel ope-

rator [9]. Therefore, there exists the determinant �(t) = det (E � F (t)) of the

operator E � F (t), connected, as easy to see, with the determinant D(z) from
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condition 2) of the Theorem 2, with relation �(�iz) = det (E � F (�iz)) �
D (z).

The determinant of system (3.1) isD (0) and determinant of the similar system

corresponding to the coe�cient Qz


= Q
 (x+ z), Im z � 0, is

D(z) � det






ÆrnE2m�1 �





 i(1 � !l)Snj(z)

r!l(1� !j)� n(1� !l)






2m�1

j;l=1







1

r;n=1

= det






ÆrnE2m�1 �





 i(1� !l)Snj

r!l(1� !j)� n(1� !l)
einz






2m�1

j;l=1







1

r;n=1

= det






ÆrnE2m�1 �





 i(1� !l)Snj

r!l(1� !j)� n(1� !l)
e
i

n

1�!j
z

e
�i

r!
l

1�!
l

z






2m�1

j;l=1







1

r;n=1

:

Therefore, in order to prove the necessity of condition 2) of Theorem 2 one

should check that �(0) = D (0) 6= 0. System (3.1) can be written in

l2
�
1;1;R2m�1

�
as the equation

g � F (0) g = 0:

As F (0) is the kernel operator, we can apply to this equation the Fredholm

theory, according to which its trivial solvability is equivalent to condition that

det (E � F (0)) is not equal to zero [10]. The necessity of condition 2) is proved.

Su�ciency. Let us multiply equation (2.12) by e
r!

l

1�!
l

u
and integrate it over

u 2 [t;1). We obtain

k (t) = F (t) e (t) + k (t)F (t) ; (3.4)

in which the operator F (t) is de�ned by the matrix kFrn (t)k
1

r;n=1of the form (3.3),

e (t) = kenj (t)k
1;2m�1
n;j=1

=





e
n!j

1�!j
t






1;2m�1

n;j=1

;

k (t) = kklr (t)k
2m�1;1
l;r=1 =








1Z
t

K (t; u) e
r!

l

1�!
l

u
du








2m�1;1

l;r=1

:

As F (t) is the trace class for t � 0 and the condition �(t) = det (E � F (t)) 6= 0

holds, there exists the bounded in l2 inverse operator R (t) = (E � F (t))�1. Since

F (t) e (t) 2 l2, then from (3.4) we get

k(t) = R(t)F (t)e(t): (3.5)
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Now denoting hf; gi =
1P
n=1

fngn, we �nd from (2.12) that

K (t; u) = he (t) ; A (u)i+ hk (t) ; A (u)i = he (t) ; A (u)i+ hR (t)F (t) e (t) ; A (u)i

= he (t) +R (t)F (t) e (t) ; A (u)i = hR (t) e (t) ; A (u)i ; (3.6)

where A (u) is de�ned by the matrix

A(u) = kajn(u)k
2m�1;1
j;n=1

=





 Snj

i(1� !j)
e
�

n

1�!j
u






2m�1;1

j;n=1

:

Now assume that the conditions of the theorem are ful�lled. According to the

stated considerations, de�ne the function K (t; u) at 0 � t � u by equality (3.6).

Then at u � t we have

K (t; u)�

1Z
t

K (t; s)F (s+ u) ds

= hR (t) e (t) ; A (u)i �

1Z
t

hR (t) e (t) ; A (s) he (s) ; A (u)iids

= hR(t)e(t); A(u)i �

*
R(t)e(t);

* 1Z
t

A(s)e(s)ds;A(u)

++
= hR(t)e(t); A(u)i

� hR (t) e (t) ; hA (u) ; F (t)ii = hR (t) e (t) ; A (u)i � hR (t) e (t) ; A (u)F � (t)i

= hR (t) e (t) ; A (u)�A (u)F � (t)i = he (t) ; A (u)i = F (t+ u) ;

where the symbol ½* � means transition to the matrix, adjoint to the F (t) with

respect to the bilinear form h: ; :i. So, we have

Lemma 5. For any t � 0 the kernel K (t; u) of the transformation operator

satis�es to the basic equation

K (t; u) = ~F (t+ u) +

1Z
t

K (t; s) ~F (s+ u) ds:

From Lemma 3 it follows unique solubility of the basic equation. By the direct

substitution it is easy to calculate that the solution of the basic equation is

K (t; u) =

2m�1X
j=1

1X
n=1

1X
�=n

V
(j)
n�

i (1� !j)
e
��t+ n

1�!j
(t�u)

;
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where the numbers V
(j)
n� are de�ned from the recurrent relations

V (j)
nn

= Snj ;

V
(j)
n�+n

= (1� !j)V
(j)
nn

2m�1X
l=1

�X
r=1

V
(l)
r�

r(1� !j)� n(1� !l)!j
:

Passing to the proof of the basic statement that the coe�cients Q
 (t) have

form (2.2), let us �rst establish the estimations for the matrix elements Rrn (t) of

the operator R (t) ���Rjl

rn
(t)
��� � ÆrnÆjl + CSn ; (3.7)���� @2m��@t2m��

Rjl

rn
(t)

���� � CSn; � = 1; 2m� 1; (3.8)

where C = maxfCk > 0; k = 1; 2m� 1g is a constant, and Sn =
2m�1P
j=1

n2m�1 jSnjj.

Indeed, it follows from the identity R (t) = E +R (t)F (t) that

���Rlj

rn(t)
��� � ÆrnÆlj +

2m�1X
�=1

1X
p=1

���Rl�

rp(t)
��� ��F �j

pn(t)
��

� ÆrnÆlj + 2

2m�1X
�=1

(

1X
p=1

���Rl�

rp(t)
���2) 12 ( 1X

p=1

��F �j

pn(t)
��2) 12

� ÆrnÆlj + C1am((R(t)R�(t))pp

1X
p=1

1

(n+ p)2
)
1

2Sn � ÆrnÆlj + C1 kR(t)k
l2!l2

Sn:

On the other hand, as it has been noted above, the operator-function R (t) =

(E � F (t))�1 exists and is bounded in the l2(because F (t) is the kernel operator

at t � 0 and �(t) = det (E � F (t)) 6= 0) that proves �rst inequality (3.7).

In order to proof the second estimation (3.8) we �rst obtain

���� ddtRlj

rn
(t)

���� �
2m�1X
�=1

1X
p;q=1

���Rl�

rp
(t)
���
���� ddtF �k

pq
(t)

����
���Rkj

qn
(t)
���

�

2m�1X
�=1

1X
p;q=1

(ÆrpÆl� + C2Sp)Sq (ÆqnÆkj + C3Sn)

� (1 + C4

1X
p=1

Sp)
2Sn � CSn:
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Then from the equality d
l

dtl
R (t) =

lP
n=1

Cn

l

�
d
l�n

dtl�n
R (t)

� �
d
n

dtn
F (t)

�
R (t),

l = 1; 2m� 1, by the help of mathematical induction the inequality (3.8) is proved.

In [11] the following relations were proved (for correspondence to our case, assume

that q2m�2�
(x) = Q
(x)):

(�1)m
@2m

@x2m
K (x; t) +

2m�2X

=0

q2m�2�
 (x)
@


@x

K (x; t)�

@2m

@t2m
K (x; t) = 0;

q0 (x) = 2m
d

dx
K (x; x) ;

qk+1 (x) =

kX
�=0

q� (x)

kX
s=�

Ck�s

2m�3�s

�
@s��

@xs��
K (x; t)

����
t=x

�(k�s)

+

k+2X
k=0

Ck+2��
2m�1��

�
@�

@x�
K (x; t)

����
t=x

�(k+2��)

� (�1)k
@k+2

@tk+2
K (x; t)

����
t=x

;

k = 0; 1; : : : ; 2m� 3:

Now it is easy to show, that

q0 (x) =

2m�1X
j=1

1X
n=1

n � Snj
i (1� !j)

e�nt +�0 (t);

where �0 (t) =
1P

n;p;q;�=1

R
ej

npF
j�

pq eq�e�q =< R (t)F (t) e (t) ; A (t) > is 2i� periodic

function and has bounded derivative until (2m-1) order. It follows from this

fact that the Fourier coe�cients of the function �0 (�ix), x 2 R, are such that
1P
n=1

��n2m�1�n

��2 <1. But then
1P
n=1

n2m�2 j�nj <1. So, the Fourier coe�cients

P2m�2;n of the function Q2m�2 (x) = q0 (x) satisfy condition (2.2). Similarly,

for all other coe�cients Q
 (x), 
 = 0; 2m� 3, it is established that the Fourier

coe�cients p
n of the function Q
 (x) = q2m�2�
 (x), 
 = 0; 2m � 3, satisfy

condition (2.2). And it means that the Fourier coe�cients of the function P
(x),


 = 0; 2m � 2 satisfy condition (1.1).

Let, �nally,
n
~Snj

o
be the spectral data set of the operator

�
L� k2mE

�
with

the constructed coe�cients P
 (x). For completing of the proof it remains to show

that fSnjg coincide with the initial set
n
~Snj

o
. This follows from the equality

~Snj = V
(j)
nn = Snj. The theorem is proved.

The author is grateful to Prof. M.G. Gasymov and Prof. I.M. Guseynov for

useful discussions.
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