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Boundary-value problem for a class of operator-di�erential equations of

the second order with variable coe�cients on [0; +1) is studied. The prin-
cipal part of investigated operator-di�erential equation has discontinuities.

Su�cient conditions for the existence and uniqueness of generalized solutions

of the boundary-value problem for such equations are given. These condi-

tions are expressed only in terms of coe�cients of the operator-di�erential

equation.
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Let H be a separable Hilbert space, A is a selfadjoint positive de�nite operator

in H.

De�ne the following Hilbert spaces:
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(see [1, ch. 1; 2]).

Derivatives will be understood in the sense of generalized functions theory.

Now consider the following boundary-value problem:

P (d=dt)u(t) � �u00(t) + �(t)A2u(t)

+A1(t)u
0(t) +A2(t)u(t) = f(t); t 2 R+ = [0;+1); (1)

u(0) = 0; (2)

where f(t) 2 L2(R+;H); A1(t) and A2(t) are linear, generally speaking, un-

bounded operators, de�ned for all t 2 R+, moreover, A1(t) has the strong deriva-

tive for each t 2 R+ on each element of D(A), and �(t) is a scalar positive

piecewise constant function.

Assume for simplicity that �(t) has discontinuity only at one point, i.e., �(t) =
�, if 0 � t � T and �(t) = �, if T < t < +1, where � and � are possitive, and

generally speaking, distinct numbers.

Introduce the following notations.

Denote by D1(R+;H) the linear set of in�nitely di�erentiable functions with

the values in D(A2); which have compact support in R+. Introducing the norm

kukW 1
2
(R+;H) =

�

u0

2
L2(R+;H)

+ kAuk2L2(R+;H)

�1=2
;

we obtain a pre-Hilbert space, whose completion we denote by W 1
2 (R+;H) (see

[1, ch. 1, p. 23�24]).

Denote by
Æ

W
1

2 (R+;H) the Hilbert space

Æ

W
1

2 (R+;H) = fu(t) : u(t) 2W 1
2 (R+;H); u(0) = 0g;

L(X;Y ) � the set of linear bounded operators, acting from Hilbert space X

into the other Hilbert space Y; and L1(R+;B) � the set of B-valued essentially

bounded operator-functions in R+, where B is Banach space.

First of all let us formulate the following lemma, which has auxiliary character.
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Lemma 1. Let A be a selfadjoint positive de�nite operator in H, A1(t)A
�1,

A�1A01(t)A
�1 and A�1A2(t)A

�1 2 L1(R+;L(H;H)). Then the bilinear form

P1(u;  ) � (P1(d=dt)u;  )L2(R+;H) �
�
A1(t)u

0 +A2(t)u;  
�
L2(R+;H)

;

de�ned for all vector-functions u(t)2D1(R+;H) and  (t)2
Æ

W
1

2 (R+;H), can be

extended on the space W 1
2 (R+;H)�

Æ

W
1

2 (R+;H) by continuity. The extensionfP1(u;  ) acts by the following way:
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�
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0
�
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�
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�
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+ (A2(t)u;  )L2(R+;H) :

P r o o f. Since u(t) 2 D1(R+;H);  (t) 2
Æ

W
1

2 (R+;H); then integrating by

parts the corresponding item, we obtain that
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�
L2(R+;H)
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As the set D1(R+;H) is dense in the space W 1
2 (R+;H) (see [1, ch. 1]), then

P1(u;  ) is extended on the space W 1
2 (R+;H)�

Æ

W
1

2 (R+;H) by continuity.

Lemma is proved.

De�nition 1. If vector-function u(t) 2W 1
2 (R+;H) satis�es condition (2) and

for any  (t) 2
Æ

W
1

2 (R+;H) the identity

�
u0;  0

�
L2(R+;H)

+
�
�1=2(t)Au; �1=2(t)A 

�
L2(R+;H)

+ P1(u;  ) = (f;  )L2(R+;H)

is ful�lled, then u(t) is called the generalized solution of the boundary-value prob-

lem (1), (2).

Note that the conditions, providing correct and unique solvablity of the boun-

dary-value problem (1), (2) in the space W 2
2 (R+;H), are given in work [3] in

terms of the operator coe�cients of the equation (1). For �(t) � 1, t 2 R+ the

boundary-value problems for equation (1) with constant operator coe�cients are

extensively studied in [4]. This case is also considered in work [5], investigating

the existence of generalized solutions for the conditions, which are di�erent from

the conditions of [4], moreover, A�1 is assumed to be a compact operator in H.

Su�cient conditions on the coe�cients of operator-di�erential equation (1),

providing the existence and uniqueness of generalized solutions of the boundary-

value problem (1), (2) are obtained in the present work.

Before we formulate a theorem on the existence and uniqueness of generalized

solution of the problem (1), (2), let us consider the equation, presenting the

principal part of (1):

P0(d=dt)u(t) � �u
00(t) + �(t)A2u(t) = f(t); t 2 R+: (3)

Theorem 1. Equation (3) with boundary condition (2) has unique generalized

solution.

We will outline brie�y the proof of this theorem.

The validity of the statement follows from the fact that in work [3] there is

theorem on the existence of unique solution u0(t) from the space W 2
2 (R+;H) of

the boundary-value problem (3), (2). Since W 2
2 (R+;H) � W 1

2 (R+;H) (see [1,

ch. 1]), then u0(t) 2W
1
2 (R+;H) and it is not di�cult to verify that

�
u00;  

0
�
L2(R+;H)

+
�
�1=2(t)Au0; �

1=2(t)A 
�
L2(R+;H)

= (f;  )L2(R+;H);

hence the vector-function u0(t) is also the generalized solution of problem (3), (2).

Now let us give the main result of this paper.
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Theorem 2. Let A be a selfadjoint positive-de�nite operator in H, A1(t)A
�1,

A�1A01(t)A
�1; A�1A2(t)A

�1 2 L(H;H) and the inequality

! =
1

2
sup
t



A1(t)A
�1


+ sup

t



A�1A01(t)A
�1




+sup
t



A�1A2(t)A
�1


 < min(1;�;�)

is satis�ed. Then problem (1), (2) has unique generalized solution.

P r o o f. First of all we show that for ! < min(1;�;�) for any

 (t) 2
Æ

W
1

2 (R+;H) the following inequality is valid:���(P (d=dt) ; )L2(R+;H)

��� � (min(1;�;�) � !) k k2W 1
2
(R+;H) : (4)
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+
�
�(t)A2 ; 
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�1=2A ; �1=2A 

�
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�����
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2

L2(R+;H)
�
���(P1(d=dt) ; )L2(R+;H)

���
�


 0

2

L2(R+;H)
+min(�;�) kA k2L2(R+;H) �

���(P1(d=dt) ; )L2(R+;H)

���
� min(1;�;�) �

���(P1(d=dt) ; )L2(R+;H)

��� ; (5)

then taking into consideration the form of (P1(d=dt) ; )L2(R+;H), we obtain���(P1(d=dt) ; )L2(R+;H)

��� = ����A1(t) 
0 +A2(t) ; 

�
L2(R+;H)

���
=
����A1(t) 
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�
L2(R+;H)

+ (A2(t) ; )L2(R+;H)

���
=
���� �A1(t) ; 

0
�
L2(R+;H)

�
�
A01(t) ; 

�
L2(R+;H)

+ (A2(t) ; )L2(R+;H)

���
�
����A1(t) ; 

0
�
L2(R+;H)

���+ ����A01(t) ; �L2(R+;H)

���+ ���(A2(t) ; )L2(R+;H)

��� :
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On the other hand, applying the Bunyakovsky-Schwarz inequality and Hilbert

inequality, we have����A1(t) ; 
0
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L2(R+;H)
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k k2W 1
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Now taking into consideration last inequalities in (5), we obtain inequality (4).

Then by Theorem 1 problem (3), (2) has unique generalized solution u0(t).
Writing the generalized solution of problem (1), (2) in the form u(t) = u0(t) +
u1(t), we have for u1(t)�

�u000 + �(t)A2u0;  
�
L2(R+;H)

+ P1(u0;  ) +
�
�u001 + �(t)A2u1;  

�
L2(R+;H)

+P1(u1;  ) = (f;  )L2(R+;H):

This implies�
u00;  

0
�
L2(R+;H)

+
�
�1=2(t)Au0; �

1=2(t)A 
�
L2(R+;H)

+P1(u0;  )+(u01;  
0)L2(R+;H)

+
�
�1=2(t)Au1; �

1=2(t)A 
�
L2(R+;H)

+ P1(u1;  ) = (f;  )L2(R+;H);

and �nally we obtain�
u01;  

0
�
L2(R+;H)

+
�
�1=2(t)Au1; �

1=2(t)A 
�
L2(R+;H)

+ P1(u1;  ) = �P1(u0;  ):

(6)
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As we can see, the right hand side of (6) determines the continuous form in

W 1
2 (R+;H)�

Æ

W
1

2 (R+;H), and the left hand side, satis�es the conditions of

Lax�Milgram theorem (see [6, Part II]) in view of (4). That is why there exists

a unique vector-function u1(t) 2
Æ

W
1

2 (R+;H), satisfying the equality (6), i.e.,

u(t) = u0(t) + u1(t) is the generalized solution of the problem (1), (2). Theorem

is proved.

R e m a r k 1. Note that the analogous analysis can be done for the boundary-

value problem (1), (2) in the case, if �(t) is any positive function, having the �nite

number of discontinuity points of the �rst order.
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