Minimal Surfaces in Standard Three-Dimensional Geometry Sol ${ }^{3}$

L.A. Masaltsev
Department of Mechanics and Mathematics, V.N. Karazin Kharkov National University 4 Svobody Sq., Kharkov, 61077, Ukraine
E-mail:masaltsev@univer. kharkov.ua

Received, April 19, 2005
We study minimal and totally geodesic surfaces in the standart threedimensional geometry Sol 3 with the left-invariant metric $d s^{2}=e^{2 z} d x^{2}+$ $e^{-2 z} d y^{2}+d z^{2}$.

Key words: minimal surface, totally geodesic surface, Sol-manifold.
Mathematics Subject Classification 2000: 53A10, 53C42.

A three-dimensional geometry $S o l^{3}$ can be presented as matrix group

$$
\left(\begin{array}{rrr}
e^{-z} & 0 & x \\
0 & e^{z} & y \\
0 & 0 & 1
\end{array}\right)
$$

homeomorphic to R^{3} with the left-invariant metric $d s^{2}=e^{2 z} d x^{2}+e^{-2 z} d y^{2}+d z^{2}$ [1, p. 127]. Its group of isometries is of dimension 3, consists from 8 components, and the component of unit $e=(0,0,0)$ coincides with $S o l^{3}$, acting by left translations. The stabilizer of origin consists of 8 linear transformations of space R^{3} taking the form $(x, y, z) \rightarrow(\pm x, \pm y, z)$ and $(x, y, z) \rightarrow(\pm y, \pm x,-z)$. These eight transformations are isomorphisms and isometries of group $S o l^{3}$. In this note we find some examples of ruled minimal surfaces and minimal surfaces, invariant under the action of some 1-parameter group of isometris of Sol^{3}. The techniques of finding ruled minimal surfaces is similar to those, wich we used in [2], but in contrast to geometry $N i l^{3}$, in geometry $S o l^{3}$ there is a family of totally geodesic surfaces.

[^0]
1. Minimal ruled surfaces in geometry Sol 3

Acting as in [2], we at first write down the system of ordinary differential equations for geodesics of $S o l^{3}$:

$$
\begin{gathered}
x^{\prime \prime}(t)+2 x^{\prime}(t) z^{\prime}(t)-0, \\
y^{\prime \prime}(t)-2 y^{\prime}(t) z^{\prime}(t)-0, \\
z^{\prime \prime}(t)-e^{2 z}\left(x^{\prime}\right)^{2}+e^{-2 z}\left(y^{\prime}\right)^{2}=0 .
\end{gathered}
$$

The obvious solutions to the system are 1) "vertical" geodesics $\left(x=x_{0}, y=\right.$ $\left.\left.y_{0}, z=t\right), 2\right)$ "horizontal" geodesics $\left(x= \pm \frac{1}{\sqrt{2}} e^{-z_{0}} t+x_{0}, y= \pm \frac{1}{\sqrt{2}} e^{z_{0}} t+y_{0}, z=\right.$ $\left.z_{0}\right)$). Find at first all ruled minimal surfaces, composed of "vertical" geodesics: $r(s, t)=(x(s), y(s), t)$. Compute the first and the second fundamental forms of this surface.

Proposition 1. 1) The first fundamental form of the surface $r(s, t)=(x(s)$, $y(s), t)$ in the geometry Sol^{3} is

$$
I=\left(e^{2 t}\left(x_{s}^{\prime}\right)^{2}+e^{-2 t}\left(y_{s}^{\prime}\right)^{2}\right) d s^{2}+d t^{2}
$$

2) the second fundamental form of the surface is

$$
I I=\frac{\left(x^{\prime \prime} y^{\prime}-x^{\prime} y^{\prime \prime}\right) d s^{2}+4 x^{\prime} y^{\prime} d s d t}{\left(e^{2 t}\left(x^{\prime}\right)^{2}+e^{-2 t}\left(y^{\prime}\right)^{2}\right)^{1 / 2}}
$$

Proof. The nonzero Cristoffel symbols of Sol 3 metric are $\Gamma_{13}^{1}=1, \Gamma_{23}^{2}=-1$, $\Gamma_{11}^{3}=-e^{2 z}, \Gamma_{22}^{3}=e^{-2 z}$. The tangent vectors to the surface are $r_{s}=\left(x^{\prime}, y^{\prime}, 0\right)$, $r_{t}=(0,0,1)$, and from here we easily obtain the first fundamental form. The normal vector is $n=\frac{\left(e^{-2 t} y^{\prime},-e^{2 t} x^{\prime}, 0\right)}{\left(e^{2 t} x^{\prime 2}+e^{-2 t} y^{\prime 2}\right)^{1 / 2}}$. The coefficients of the second fundamental form can be computed using formulas (43.4), (43.5) from [3, p. 180], which for given surface in $S o l^{3}$ take the form (latin indices vary from 1 to 2, and greek indices from 1 to 3):

$$
b_{i j}=e^{2 t} n^{1}\left(r_{i j}^{1}+\Gamma_{\mu \nu}^{1} r_{, i}^{\mu} r_{, j}^{\nu}\right)+e^{-2 t} n^{2}\left(r_{i j}^{2}+\Gamma_{\mu \nu}^{2} r_{, i}^{\mu} r_{, j}^{\nu}\right)+n^{3}\left(r_{i j}^{3}+\Gamma_{\mu \nu}^{3} r_{, i}^{\mu} r_{, j}^{\nu}\right)
$$

Corollary 1. The ruled minimal surfaces, composed from 'vertical' geodesics in $S o l^{3}$, are the surfaces of the form $r(s, t)=(s, a s+b, t)$ or $r(s, t)=(a s+b, s, t)$, where a, b - arbitrary constants.

Proof. For the surface, composed from 'vertical' geodesics, minimality condition $2 H=b_{11} g_{22}-2 b_{12} g_{12}+b_{22} g_{11}=0$ takes the form $x^{\prime \prime} y^{\prime}-x^{\prime} y^{\prime \prime}=0$, whence the statement follows.

Corollary 2. The totally geodesic surfaces in Sol ${ }^{3}$, composed from "vertical" geodesics are the surfaces of the form $r(s, t)=(s, b, t)$ and $r(s, t)=(a, s, t)$.

Proof. It must be fulfilled the condition $b_{11}=b_{12}=0$, whence the statement follows.

Remark, that isometries of $S o l^{3}$ of the form $(x, y, z) \rightarrow(y, x,-z)$ transform "vertical" totally geodesic surfaces, "parallel" to $x O z$ to the "vertical" totally geodesic surfaces, "parallel" to $y O z$.

Proposition 2. Arbitrary minimal surface, composed from "vertical" geodesics, is stable.

Proof. For the surface in $S o l^{3}$ with parametrization $r(s, t)=(s, a s+b, t)$ the coefficients of the first fundamental form are $g_{11}=e^{2 t}+a^{2} e^{-2 t}, g_{12}=0$, $g_{22}=1$. The coefficients of the second fundamental form are $b_{11}=b_{22}=0$, $b_{12}=\frac{2 a}{\left(e^{2 t}+a^{2} e^{-2 t}\right)^{1 / 2}}$. Nonzero components of Rimann tensor of geometry Sol ${ }^{3}$ are $R_{1212}=1, R_{1313}=-e^{2 z}, R_{2323}=-e^{-2 z}$. The unique nonzero component of Ricci tensor of geometry $S o l^{3}$ is $R_{33}=-2$. Since the normal to studed surface is of the form $n=\frac{\left(a e^{-2 t},-e^{2 t}, 0\right)}{\left(e^{2 t}+a^{2} e^{-2 t}\right)^{1 / 2}}$, the Ricci curvature in the normal direction is $\operatorname{Ric}(n, n)=R_{\alpha \beta} n^{\alpha} n^{\beta}=0$. The norm of squared second fundamental $\|b\|^{2}$ (the sum of squared principal curvatures) is $\|b\|^{2}=\frac{8 a^{2}}{\left(e^{2 t}+a^{2} e^{-2 t}\right)^{2}}$. For the LaplaceBeltrami Δ_{M} operator of the surface we obtain the following expression:

$$
\Delta_{M}=\frac{1}{e^{2 t}+a^{2} e^{-2 t}}\left(\frac{\partial^{2}}{\partial s^{2}}+\left(e^{2 t}-a^{2} e^{-2 t}\right) \frac{\partial}{\partial t}\right)+\frac{\partial^{2}}{\partial t^{2}}
$$

Hence, for the Jacobi operator $L=\Delta_{M}+\operatorname{Ric}(n, n)+\|b\|^{2}$ we find the expression

$$
L=\frac{1}{e^{2 t}+a^{2} e^{-2 t}}\left(\frac{\partial^{2}}{\partial s^{2}}+\left(e^{2 t}-a^{2} e^{-2 t}\right) \frac{\partial}{\partial t}\right)+\frac{\partial^{2}}{\partial t^{2}}+\frac{8 a^{2}}{\left(e^{2 t}+a^{2} e^{-2 t}\right)^{2}} .
$$

It is directly checked that the following positive function $f(t)=\left(e^{2 t}+a^{2} e^{-2 t}\right)^{-1 / 2}$ solves the equation $L f=0$. Then according to theorem of Fisher-Colbrie-Schoen [4, Th. 1] the studed minimal surface is stable.

To solve the problem of classification of all totally geodesic surfaces in the geometry $S o l^{3}$ we need the expressions for the coefficients of the first and second fundamental forms of the surface $r(x, y)=(x, y, z(x, y))$, which has nondegenerate projection on the plane $x O y$. In this case the tangent vectors and normal to the surface are $r_{x}=\left(1,0, z_{x}\right), r_{y}=\left(0,1, z_{y}\right), n=\frac{\left(-z_{x} e^{-2 z},-z_{y} e^{2 z}, 1\right)}{\left(z_{x}^{2} e^{-2 z}+z_{y}^{2} e^{2 z}+1\right) 1 / 2}$. The coefficients of the first and second fundamental forms are

$$
g_{11}=e^{2 z}+z_{x}^{2}, g_{12}=z_{x} z_{y}, g_{22}=e^{-2 z}+z_{y}^{2}
$$

$$
\begin{gathered}
b_{11}=\frac{z_{x x}-2 z_{x}^{2}-e^{2 z}}{\left(z_{x}^{2} e^{-2 z}+z_{y}^{2} e^{2 z}+1\right)^{1 / 2}}, b_{12}=\frac{z_{x y}}{\left(z_{x}^{2} e^{-2 z}+z_{y}^{2} e^{2 z}+1\right)^{1 / 2}} \\
b_{22}=\frac{z_{y y}+2 z_{y}^{2}+e^{-2 z}}{\left(z_{x}^{2} e^{-2 z}+z_{y}^{2} e^{2 z}+1\right)^{1 / 2}}
\end{gathered}
$$

Proposition 3. There is no totally geodesic surface in the geometry Sol ${ }^{3}$ with nondegenerate projection to the $x O y$.

Proof. Suppose that there exists the totally geodesic surface in the form $(x, y, z(x, y))$. Then the condition $b_{12}=0$ implies $z(x, y)=\phi(x)+\psi(y)$. The conditions $b_{11}=b_{22}=0$ yield the following system for $\phi(x)$ and $\psi(y)$:

$$
\phi_{x x}-2 \phi_{x}^{2}-e^{2(\phi+\psi)}=0, \psi_{y y}+2 \psi_{y}^{2}+e^{-2(\phi+\psi)}=0
$$

It can be rewritten in the form

$$
\left(e^{-2 \phi(x)}\right)_{x x}^{\prime \prime}=-2 e^{\psi(y)},\left(e^{2 \psi(y)}\right)_{y y}^{\prime \prime}=-2 e^{-2 \phi(x)}
$$

Since the left hand side of the second equation does not depend of x, we can differentiate it two times by x, getting $\left(e^{-2 \phi}\right)_{x x}^{\prime \prime}=0$, but then the first equation takes the form $-2 e^{2 \psi(y)}=0$, that is impossible.

We will find now all ruled minimal surfaces composed of "horizontal" geodesics. This surface admits the parametrization

$$
x(s, t)=\frac{1}{\sqrt{2}} e^{-z(s)} t+a(s), y(s, t)=\frac{1}{\sqrt{2}} e^{z(s)} t+b(s), z(s, t)=z(s)
$$

The problem consists in finding of triple of unknown functions $(a(s), b(s), z(s))$, which yield minimal surface in the geometry $S o l^{3}$. Note, that by virtue of mentioned dihedral isometries it is sufficient to restrict search to the case of the pointed out surfaces. The tangent vectors and normal to the surface are

$$
\begin{gathered}
r_{s}^{\prime}=\left(-\frac{1}{\sqrt{2}} e^{-z} z^{\prime} t+a^{\prime}, \frac{1}{\sqrt{2}} e^{z} z^{\prime} t+b^{\prime}, z^{\prime}\right), r_{t}^{\prime}=\left(\frac{1}{\sqrt{2}} e^{-z}, \frac{1}{\sqrt{2}} e^{z}, 0\right) \\
n=\frac{\left(z^{\prime},-e^{2 z} z^{\prime}, \sqrt{2} e^{z} z^{\prime} t-a^{\prime} e^{2 z}+b^{\prime}\right)}{A}
\end{gathered}
$$

where $A=\left(2 e^{2 z} z^{\prime 2}+\left(\sqrt{2} e^{z} z^{\prime} t-a^{\prime} e^{2 z}+b^{\prime}\right)^{2}\right)^{1 / 2}$.
The calculations yield the following values for the coefficients of the first and second fundamental forms:

$$
g_{12}=\frac{1}{\sqrt{2}}\left(e^{z} a^{\prime}+e^{-z} b^{\prime}\right), g_{22}=1
$$

$$
\begin{gathered}
b_{11}=\frac{e^{z}}{A}\left(z^{\prime \prime}\left(b^{\prime} e^{-z}-a^{\prime} e^{z}\right)+2 z^{\prime 2}\left(a^{\prime} e^{z}+b^{\prime} e^{-z}\right)\right. \\
\left.+\left(a^{\prime \prime} e^{z}-b^{\prime \prime} e^{-z}\right) z^{\prime}+\left(e^{z} a^{\prime}+e^{-z} b^{\prime}\right)\left(\sqrt{2} z^{\prime} t-a^{\prime} e^{z}+b^{\prime} e^{-z}\right)^{2}\right) \\
b_{12}=\frac{\sqrt{2} e^{z}}{A}\left(z^{\prime} t-\frac{e^{z} a^{\prime}}{\sqrt{2}}+\frac{e^{-z} b^{\prime}}{\sqrt{2}}\right)^{2}, b_{22}=0
\end{gathered}
$$

The minimality condition $2 H=b_{11} g_{22}-2 b_{12} g_{12}+b_{22} g_{11}=0$ leads to the equation

$$
\begin{gathered}
z^{\prime \prime}\left(b^{\prime} e^{-z}-a^{\prime} e^{z}\right)+\left(a^{\prime \prime} e^{z}-b^{\prime \prime} e^{-z}\right) z^{\prime}+\left(a^{\prime} e^{z}+b^{\prime} e^{-z}\right)\left(2 z^{\prime 2}+\left(\sqrt{2} z^{\prime} t-a^{\prime} e^{z}+b^{\prime} e^{-z}\right)^{2}\right) \\
=2\left(a^{\prime} e^{z}+b^{\prime} e^{-z}\right)\left(z^{\prime} t+b^{\prime} e^{-z}-a^{\prime} e^{z}\right)^{2}
\end{gathered}
$$

After conversion we get linear by variable t equation:

$$
\begin{gathered}
z^{\prime \prime}\left(b^{\prime} e^{-z}-a^{\prime} e^{z}\right)+\left(a^{\prime \prime} e^{z}-b^{\prime \prime} e^{-z}\right) z^{\prime} \\
+\left(e^{z} a^{\prime}+e^{-z} b^{\prime}\right)\left(2 z^{\prime 2}+2(\sqrt{2}-2)\left(b^{\prime} e^{-z}-a^{\prime} e^{z}\right) z^{\prime} t-\left(b^{\prime} e^{-z}-a^{\prime} e^{z}\right)^{2}\right)=0
\end{gathered}
$$

From here follows, that it must be fulfilled the system of two equations, getting by setting equal to zero the coefficient by t and constant term:

$$
\begin{gathered}
z^{\prime}\left(a^{\prime} e^{z}+b^{\prime} e^{-z}\right)\left(a^{\prime} e^{z}-b^{\prime} e^{-z}\right)=0 \\
z^{\prime \prime}\left(b^{\prime} e^{-z}-a^{\prime} e^{z}\right)+\left(a^{\prime \prime} e^{z}-b^{\prime \prime} e^{-z}\right) z^{\prime}+\left(a^{\prime} e^{z}+b^{\prime} e^{-z}\right)\left(2 z^{\prime 2}-\left(b^{\prime} e^{-z}-a^{\prime} e^{z}\right)^{2}\right)=0
\end{gathered}
$$

The analysis of the system gives that 1) if $z^{\prime}=0$, the solution is complete minimal surface $z=z_{0}$ (analog of the plane), 2) if $a^{\prime} e^{z}-b^{\prime} e^{-z}=0$, then differentiate this relation we get $a^{\prime \prime} e^{z}-b^{\prime \prime} e^{-z}=-z^{\prime}\left(a^{\prime} e^{z}+b^{\prime} e^{-z}\right)$.

Then the second equation of the system takes the form $z^{\prime 2}\left(a^{\prime} e^{z}+b^{\prime} e^{-z}\right)=0$, if $z^{\prime} \neq 0$, we may assume that $z(s)=s$, and then we find that $a=a_{0}, b=b_{0}$ arbitrary constants. The solution obtained we can write in the form

$$
\begin{equation*}
x(s, t)=\frac{1}{\sqrt{2}} e^{-s} t+a_{0}, y(s, t)=\frac{1}{\sqrt{2}} e^{s} t+b_{0}, z(s, t)=s \tag{1}
\end{equation*}
$$

Finally, let us consider the last possibility 3) $a^{\prime} e^{z}+b^{\prime} e^{-z}=0$. Differentiating this relation, we get $a^{\prime \prime} e^{z}=-b^{\prime \prime} e^{-z}+2 b^{\prime} z^{\prime} e^{-z}$. Substituting it to the second equation of the system, we get the following equation $z^{\prime \prime} b^{\prime}-z^{\prime} b^{\prime \prime}+z^{\prime 2} b^{\prime}=0$. Integrating it we find $z^{\prime}=\frac{b^{\prime}}{b+c}$. Whence, integrating it once more, we get $b=$ $c_{1} e^{z}+c_{2}$. Then from the relation $a^{\prime}=-e^{-2 z} b^{\prime}$ we find $a=c_{1} e^{-z}+c_{3}$. Hence the solution we get in the form $x(s, t)=\frac{1}{\sqrt{2}} e^{-z(s)} t+c_{1} e^{-z}+c_{3}, y(s, t)=\frac{1}{\sqrt{2}} e^{z(s)} t+$ $c_{1} e^{z}+c_{2}, z(s, t)=z(s)$.

It is evident that if we introduce new variables $\bar{s}=z(s), \bar{t}=t+\sqrt{2} c_{1}$, then we get the parametrization (1), that we find earlier in the case 2). Hence, we have proved the following statement.

Proposition 4. Arbitrary complete minimal ruled surface composed from "horizontal" geodesics is either analog of the "plane" $z=z_{0}$, or the analog of the "helicoid" with the parametrization (1) (as well the surfaces obtained from they by dihedral isometries in Sol^{3}).

2. Minimal surfaces in $S o l^{3}$, invariant under action of 1-parameter subgroup

It is known that if the metric on the Lie group is biinvariant then every 1 parameter subgroup is geodesic with respect to the Levi-Civita connection [5, p. 184]. In the case of $S o l^{3}$ considered left-invariant metric is not biinvariant, so in general not every 1-parameter subgroup is geodesic. The law of multiplication in the $S o l^{3}$ can be written in the form

$$
(x, y, z)\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=\left(x+e^{-z} x^{\prime}, y+e^{z} y^{\prime}, z+z^{\prime}\right)
$$

The basis of the Lie algebra sol 3 consists of the vectors $e_{1}=\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$, $e_{2}=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right), e_{3}=\left(\begin{array}{rrr}-1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$, with brackets $\left[e_{1}, e_{2}\right]=0,\left[e_{1}, e_{3}\right]=e_{1}$, $\left[e_{2}, e_{3}\right]=-e_{2}$.

Denote by $G_{a, b}(t)$ the 1-parameter subgroup $\exp \left(a e_{1}+b e_{2}\right) t=E+\left(a e_{1}+b e_{2}\right) t$. Consider the surface in $S o l^{3}$, generated with the aid of curve $r(s)=(s, 0, z(s))$ in the following way:

$$
R(s, t)=G_{a, b}(t) r(s)=(a t, b t, 0)(s, 0, z(s))=(a t+s, b t, z(s))
$$

It is evident, that the surface $R(s, t)$ is invariant under the action of the group $G_{a, b}$, that is $G_{a, b}(\bar{t}) R(s, t)=G_{a, b}(\bar{t}+t) R(s, 0)$.

Note that 1-parameter subgroup $G_{a, b}(t)$, in general, is not a geodesic of Sol^{3}, excepting the case $|a|=|b|=\frac{1}{\sqrt{2}}$, when we get "horizontal" geodesic. We will find minimal surfaces $R(s, t)$ in $S o l^{3}$, invariant under the action of subgroup $G_{a, b}(t)$. The tangent vectors and normal to the surface $R(s, t)$ are

$$
R_{s}=\left(1,0, z^{\prime}\right), R_{t}=(a, b, 0), n=\frac{\left(b z^{\prime} e^{-2 z},-a z^{\prime} e^{2 z},-b\right)}{B}
$$

where $B=\left(a^{2} z^{\prime 2} e^{2 z}+b^{2} z^{\prime 2} e^{-2 z}+b^{2}\right)^{1 / 2}$.

Calculation of the first and second fundamental forms yields

$$
\begin{gathered}
g_{11}=e^{2 z}+z^{\prime 2}, g_{12}=a e^{2 z}, g_{22}=a^{2} e^{2 z}+b^{2} e^{-2 z} \\
b_{11}=\frac{b}{B}\left(2 z^{\prime 2}-z^{\prime \prime}+e^{2} z\right), b_{12}=\frac{a b}{B}\left(2 z^{\prime 2}+e^{2 z}\right), b_{22}=-\frac{b}{B}\left(-a^{2} e^{2 z}+b^{2} e^{-2 z}\right) .
\end{gathered}
$$

Minimality condition $2 H=g_{11} b_{22}-2 g_{12} b_{12}+g_{22} b_{11}=0$ leads to the equation

$$
z^{\prime \prime}\left(a^{2} e^{2 z}+b^{2} e^{-2 z}\right)+z^{\prime 2}\left(a^{2} e^{2 z}-b^{2} e^{-2 z}\right)=0 .
$$

Integrating it, we get $z^{\prime 2}\left(a^{2} e^{2 z}+b^{2} e^{-2 z}\right)=c$, and further on $\int \sqrt{a^{2} e^{2 z}+b^{2} e^{-2 z}} d z$ $=c s$.

So the following statement is valid.
Proposition 5. Minimal surfaces in Sol ${ }^{3}$, invariant under the action of the subgroup $\exp \left(a e_{1}+b e_{2}\right) t$, admit the parametrization

$$
R(s, t)=(a t+s, b t, z(s)),
$$

where the function $z(s)$ can be found from the equation $\int \sqrt{a^{2} e^{2 z}+b^{2} e^{-2 z}} d z=c s$.
Remark. The minimal surface equation in $S o l^{3}$, which admits nondegenerate projection on $x O y$, takes the form

$$
\left(e^{-2 z}+z_{y}^{2}\right) z_{x x}-2 z_{x} z_{y} z_{x y}+\left(e^{2 z}+z_{x}^{2}\right) z_{y y}-e^{-2 z} z_{x}^{2}+e^{2 z} z_{y}^{2}=0 .
$$

The analog of helicoid, founded in Sect. 1, admits in the domain ($x>0, y>0$) the parametrization ($x, y, \frac{1}{2} \ln \left(\frac{y}{x}\right)$), and among the surfaces discussed in 2 , there are $(x, y,-\ln (c-x)$), which obtained, taking $a=0, b=1$.

References

[1] P. Scott, The geometries of 3-manifolds. - Bull. London Math. Soc. 15 (1983), No. 56, 401-487.
[2] L.A. Masaltsev and E.V. Petrov, Minimal surfaces in Heisenberg group. - Visnyk Kharkivs'kogo national'nogo universytetu. Ser. Mat., prikl. mat., mekh. 602 (2003), 35-45. (Russian)
[3] L.P. Eisenhart, Riemannian geometry. Princeton univ., Princeton, 1926.
[4] D. Fisher-Colbrie and R. Schoen, The structure of complete stable minimal surface in 3-manifold of nonnegative scalar curvature. - Comm. Pure Appl. Math. 33 (1980), 199-211.
[5] V.V. Trofimov, Introduction to the geometry of manifolds with symmetries. Publ. MSU, Moscow, 1989. (Russian)

[^0]: Work is partialy supported with the grant DFFD of Ministery of education and science of Ukraine $01.07 / 00132$.

