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It was investigated the massiveness of exceptional sets that arise in multi-

term asymptotic representations of subharmonic functions. It was shown

that such exceptional sets be any C0;1+

-sets where 
 2 [0; 1]. This fact

distinguishes the case of n-term asymptotic from the case of functions of

completely regular growth.
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In the recent decades a number of new e�ects has been found in the studies

of connection between the behavior of a subharmonic function at in�nity and the

growth of the distribution function of its Riesz measure in the terms of multi-term

asymptotic representations. These facts show the essential di�erences between

the multi-term asymptotics and the classical case of the single-term asymptotic

representation (the functions of completely regular growth of Levin�P��uger).

As known [6], the exceptional sets, that appeared in the main theorem of the

function theory of completely regular growth, can be reduced up to C0;0-sets.

Recall that a set E � C is the C0;�-set, � > 0; if it can be covered by the

disks fz : jz � z
j
j < r

j
g such that

lim
R!1

1

R�

X
jzj j�R

r�
j
= 0: (1)

If limit ( 1 ) is zero for every positive �; then E is a C0;0-set.
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It was shown in [3] and [5] that the exceptional sets arising in investigations

of n-term asymptotics cannot in general be less than C0;1 even if the Riesz masses

are concentrated on a �nite system of rays.

If the Riesz masses are distributed on the plane arbitrarily, then the existence

of the asymptotics of a desired form can be guaranteed only outside C0;2-set

([4, 5]).

Then there arises a question about connection between the distribution of the

Riesz masses in the plane and the massiveness of the exceptional sets. The ques-

tion was put by V. Logvinenko after the author's papers ([1, 2]) on the asymptotic

behavior of a subharmonic function with the Riesz measure in a parabolic domain

had been published.

In this article we prove the existence of exceptional C0;�-sets, � 2 [0; 1]; for

the case of multi-term asymptotic representations. This provides one more dif-

ference of the cases of a single- and multi-term asymptotic representations. Thus

a complete description of the massiveness of exceptional sets appeared in multi-

terms asymptotic representations of subharmonic functions in the plane is given.

This result is obtained by using the reasoning from [4]. Note that we omit the

calculations similar to those in [4]. We will assume that the reader is familiar

with the articles [3, 4], and we will point out the aspects of proofs containing the

di�erences.

Before formulation of results let us give the notations and the de�nitions which

will be used below.

We say that a function f(t); t > 0 has multi-term (n-term) asymptotics as

t!1, if f can be represented in the form

f(t) = �1t
�1 +�2t

�2 + : : :+�
n
t�n + '(t);

where �
j
, j = 1; 2; : : : ; n, are real constants; 0 < [�1]

* < �
n
< : : : < �1, and the

function '(t) is small in a certain sense in comparison with the previous term.

Similarly, we understand the expression "polynomial asymptotics of a function

f(z); z ! 1". In the later case the coe�cients �
j
; j = 1; : : : ; n; are functions

only of � = arg z and t = jzj.

Let u(z) be a subharmonic function; � � its measure of Riesz, �(t; �) =

�(fjzj < t; 0 < arg z � �g) .

Put G
!

:= fz : z = rei�; 2k � r < 2k+1; j�j � arctg 2k(!�1); k = 0; 1; : : :g

where ! 2 (0; 1).

We denote various constants by C and the Lebesgue measure in the plane z

by �
z
.

*As usual, [a] is the integral part of a number a.
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The technique used in this paper allows us to generalize all the obtained results

for the multi-term asymptotic representations. Thus without loss of generality

here we consider only the case of two-term asymptotics.

Theorem 1. Let u(z) be a subharmonic function of noninteger order in the

plane C with the support of its Riesz measure concentrated in the domain G
!
.

Assume that the following relation for the measure � is valid

�(t; �) = �1t
�1 +�2t

�2 + '(t; �); � 2 (0; 2�]: (2)

Here p = [�1] < �2 < �1;�1 > 0;�(t; �) = 0 for all � and t � t0, and the function

' satis�es the following estimate for some q � 1

2RZ
R

sup
�2[0;2�]

j'(t; �)jqdt = o(R�2q+1); R!1: (3)

Then the order of the function u is equal to �1 and

u(rei�) = �1
�r�1

sin��1
cos �1(� � �) + �2

�r�2

sin��2
cos �2(� � �) +  (rei�);

where  (rei�) = o(r�2); r ! 1; uniformly for � 2 [0; 2�]; if the point z = rei�

does not belong to certain C0;1+!-set.

If in (3) the number q > 1; thenZ
G!

T
fR�jzj�2Rg

j (z)jqd�
z
= o(R�2q+1+!); R!1:

P r o o f. Without loss of generality we can assume that measure � has

in�nitely smooth density and its support lies inside G
!
. This follows from the

condition supp� � G
!
and the proof of [4, Th. 4]. Indeed, the proof of Th. 4

in [4] is based on the fragmentation of the plane into the "collars" (parts of the

plane). In these "collars" the density of some measure, "close" in a certain sense

to �, is de�ned. The density of this new measure is equal to zero in the part of

the "collar" adjoining to its boundary.

According to the Riesz�Brelo theorem [7] and conditions (2) and (3), the

order of the function u is equal to �1. Moreover, by this theorem the function u

represented as represented in the form of u = J + P , where

J(z) = Re

Z
C

"
ln

�
1�

z

�

�
+

pX
k=1

1

k

�
z

�

�
k

#
d�(�)
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is the canonical potential of the measure �; and P is a harmonic polynomial of

the degree not greater than p: Since u is the function of noninteger order, then,

without loss of generality, we can assume that P (z) � 0; i.e., u � J or

u(rei�) = lim
R!1

Z
f�:j�j<Rg

"
ln

�
1�

rei�

�

�
+

pX
k=1

1

k

�
rei�

�

�
k

#
d�(�)

= Re lim
R!1

�Z
��2�

d�

RZ
0

"
ln

�
1�

rei�

tei�

�
+

pX
k=1

1

k

�
rei�

tei�

�
k

#
@2�

@t@�
dt

= Re lim
R!1

8<
:

�Z
��2�

"
ln

�
1�

rei�

tei�

�
+

pX
k=1

1

k

�
rei�

tei�

�
k

#
@�(t; �)

@�

�����
R

0

d�

�

RZ
0

(rei�)p+1

tp+1
dt

�Z
��2�

e�ip�

tei� � rei�
�
@�(t; �)

@�
d�

9=
;

= Re lim
R!1

(A(R; rei�) +B(R; rei�)):

By integrating by parts the expression A(R; z) and using the condition that

�(t; �) � 0 in some neighborhood of the origin, we obtain A(R; rei�) ! 0 as

R!1 uniformly for each compact set in z-plane, z = rei�:

So

u(rei�) = �Re

8<
:(rei�)p+1

1Z
0

dt

tp+1

�Z
��2�

e�ip�

tei� � rei�
�
@�(t; �)

@�

9=
;

= �Re

8<
:rp+1

1Z
0

�(t; 2�)

tp+1(t� r)
dt

+i(rei�)p+1

�Z
��2�

e�ip�d�

1Z
0

(p+ 1)tei� � prei�

(tei� � rei�)2tp+1
�(t; �)dt

9=
; :

Let us substitute here expression ( 2 ) and take into account that supp� � G
!
.

It is not hard to see that the principal terms of the asymptotics u are

�
j

�r�j

sin��
j

cos �
j
(� � �); j = 1; 2:
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Thus we have only to investigate the behavior of the remainder term  :

 (rei�) = �Re

8<
:rp+1

1Z
0

'(t; 2�)

tp+1(t� r)
dt

+i(rei�)p+1

�Z
��2�

e�ip�d�

1Z
0

(p+ 1)tei� � prei�

(tei� � rei�)2tp+1
'(t; �)dt

9=
;

= �Ref 1(re
i�) +  2(re

i�)g:

Let us estimate the function  1(re
i�). By the Hardy�Littlewood theorem [8] on

the bound of the Hilbert transform and the reasoning from [3, Th. 1], we conclude

that for q 2 (1;1) 8<
:

2RZ
R

j 1(re
i�)jqdr

9=
;

1
q

=

8<
:

2RZ
R

�����rp+1

1Z
0

'(t; 2�)dt

tp+1(t� r)

�����
q

dr

9=
;

1
q

= o(R
�2+

1
q ); R!1: (4)

If q 2 [1;1) then the set

e1 =

8<
:r 2 [0;1) :

�����rp+1

1Z
0

'(t; 2�)dt

tp+1(t� r)

�����> �(r)r�2

9=
; ;

where the function �(r) tends to zero su�ciently slowly, has the zero relative

Lebesgue measure. Since supp� � G
!
, then the estimate

j 1(z)j � �(jzj)jzj�2

is valid outside the set E1 = fz : jzj 2 e1; z 2 G
!
g. It is easy to see that E1 is

C0;1+!-set.

To estimate the function  2 we split the ray [1;1) into semi-intervals [2k; 2k+1),

k = 0; 1; : : : . For r 2 [2k; 2k+1) we have

 2(re
i�) = i

8><
>:(rei�)p+1

0
B@

2k�1Z
0

+

2k+2Z
2k�1

+

1Z
2k+2

1
CA dt

tp+1
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�

�Z
��2�

(p+ 1)tei� � prei�

eip�(tei� � rei�)2
'(t; �)d�

9=
;

= i(J
(k)
1 + J

(k)
2 + J

(k)
3 ):

From (3) it is easy to conclude that jzj��2(jJ
(k)
1 j + jJ

(k)
3 j) ! 0 uniformly for

� = arg z 2 [0; 2�] as jzj ! 1.

Let us represent the integral J
(k)
2 as a sum of two integrals estimated similarly.

So we consider only one of them, namely:

~ 2(re
i�) = (rei�)p+1

2k+2Z
2k�1

dt

tp

�Z
��2�

p+ 1

ei(p�1)�(tei� � rei�)2
'(t; �)d�:

Put

�
k
(�) = (p+ 1)e2i arg ���(p+1)'(�)�

k
(�);

where �
k
(�) is a characteristic function of the ring f� : 2k�1 � j�j � 2k+2g. As it

follows from the de�nition of the domain G
!
and estimate (3),

0
B@ Z
G!

T
fz:2k�j�j�2k+1g

j�
k
(�)jqd�

�

1
CA

1
q

= o
�
2
k(�2+

1+!
q
�(p+1))

�
; k !1: (5)

In these notations we have

~ 2(z) = zp+1

Z
j�j2C

�
k
(�)

(z � �)2
d�

�
; z = rei�: (6)

To estimate this function we use the following fact*, which is a special case of [8,

Th. 4, p. 56].

Theorem A. Let f 2 Lp(R2); 1 � p <1. Then a transformation

T
"
(f)(z) =

Z
j�j�"

f(�)

(z � �)2
d�

�
; " > 0;

has the following properties:

a) lim
"!0

T
"
(f)(z) exists for almost all z.

*The reference to this result is missing in [4].
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b) Let T �(f)(z) = sup
">0

jT
"
(f)(z)j. If f 2 L1(R2) then

mesfz : jT �(f)(z)j > �g �
Cjjf jj

L
1

�
; � > 0;

where the constant C does not depend on f and �:

c) If 1 < q <1 then jjT �f jj
q
� C

q
jjf jj

q
, where the constant C

q
depends only

on the number q.

By Theorem A it follows from (5) that for q 2 (1;1)

jjzp+1 ~ 2(z)jjLq(G!

T
fz:2k�jzj�2k+1g) = o

�
2
k(�2+

1+!
q

)
�
; k !1; (7)

and for q 2 [1;1) the measure of the set

E
(2)

k

=
n
z : jzj 2 G

!

\
fz : 2k � jzj � 2k+1

g : jzp+1 ~ 2(z)j > �
k
jzj�2

o
satis�es the estimate

mesE
(2)

k

= �
�q

k

o(2k(1+!)); k !1: (8)

If the sequence of numbers f�
k
g tends to zero su�ciently slowly, then it follows

from (8) that

E2 =

1[
k=1

E
(2)

k

is a C0;1+!-set. Hence E = E1 +E2 is a C0;1+!-set.

If q 2 (1;1) then we obtain by virtue of (7) and (4)Z
G!

T
fz:R�jzj�2Rg

j (z)jqd�
z
= o(R�2q+1+!); R!1:

The theorem is proved.

R e m a r k. In [9, p. 5] the transformation (6), that de�ned the function
~ 2(z) by the function �

k
(�), is called the Berling transformation of the function

�
k
(�):

Now we will show that the massiveness of exceptional sets established in Th. 1

cannot be reduced. Namely, the following fact holds:
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Theorem 2. Let ! 2 (0; 1) be some �xed number. Then for any numbers �1
and �2; �1 > �2;

* and a number � 2 (0; !) there exists a subharmonic function u

such that supp� � G
!
;

�(t; �) = �1t
�1 +�2t

�2 + '(t; �);

where �1 > 0 and

2TZ
T

sup
�2[0;2�]

j'(t; �)jqdt = o(T �2q+1); T !1; q � 1;

but the asymptotic representation

u(rei�) =

2X
j=1

�r�j�
j

sin��
j

cos �
j
(� � �) +  (rei�);

 (rei�) = o(r�2); r !1;

does not take place uniformly for � 2 [0; 2�] on some exceptional set E that is not

a C0;1+�-set.

P r o o f. We follow the same scheme as in [4, Th. 3].

Let us introduce the following notations: a) R = 2
1

�1��2 ; b) Æ
k
= R�1

3�2k
; 


k
= 2�

2k
;

c) a sequence f�
k
g, k = 1; 2; : : : ; tends to zero su�ciently slowly.

We proceed in several steps.

1) We begin with the construction of the Riesz measure � of the function to

be determined. Let the distribution function of the measure � be

�(t; �) = �1t
�1 +�2t

�2 + '(t; �);

where �1 = 1 and �2 = 0. We represent the function ' as a sum of two terms

'1 and '2.

Let N be some positive integer which will be chosen later on. Put

'1(t; �) = '2(t; �) = 0 8t < RN ; 8� 2 [0; 2�]:

Let k � N and Rk � t < Rk+1: De�ne the function '1(t; 0) in the following way:

'1(t; 0) = �
k
Rk�2 on the segments [Rk(1 + 3 � 2N jÆ

k
); Rk(1 + (3 � 2Nj + 1)Æ

k
)],

j = 0; 1; : : : ; 2k�N�1; '1(t; 0) = 0 on semi-intervals [Rk(1+(3�2N j+2)Æ
k
); Rk(1+

3 � 2N (j + 1)Æ
k
)), and we de�ne '1(t; 0) as a linear function on the rest of the

ray. Next we require the function '1(t; �) to be independent of � in the angles

*This condition is missing in [4] and is taken for granted.
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j

k�N < � � (j+1)


k�N , j = 0; 1; : : : ;
h
arctg 2k(!�1)


k�N

i
� 1. On the rays � = j


k�N

we de�ne this function in the same way as on the ray � = 0.

We de�ne '2 as

'2(t; �) = �
'1(t; 0)



k�N

�; 0 � � <

"
arctg 2k(!�1)



k�N

#


k�N :

Extend the function ' = '1 + '2 as constant in � on the rest of the interval

[0; 2�):

Show now that the function

�(t; �) = t�1 + '(t; �)

is a distribution function of the Riesz measure for some subharmonic function u

on the plane and this measure is concentrated in the set G
!
.

To prove this fact it is su�cient to investigate the behavior of the expression

S(t1; t2; �1; �2) = �(t2; �2)� �(t2; �1)� �(t1; �2) + �(t1; �1)

for any 0 < t1 < t2; 0 � �1 < �2 < 2�.

Let Rk(1+ 3 � 2N jÆ
k
)) � t1 < t2 < Rk(1+3 � 2N (j+1)Æ

k
)) and j


k�N < �1 <

�2 � (j + 1)

k�N , j = 0; 1; : : : ;

h
arctg 2k(!�1)


k�N

i
� 1, k � N . Then

S(t1; t2; �1; �2) = '(t2; �2)� '(t2; �1)� '(t1; �2) + '(t1; �1)

=
1



k�N

('1(t1; 0)� '1(t2; 0))(�2 � �1) � 0: (9)

If Rk(1 + 3 � 2N jÆ
k
)) � t1 < t2 < Rk(1 + 3 � 2N (j + 1)Æ

k
)) and points �1; �2 >

(j + 1)

k�N , j = 0; 1; : : : ;

h
arctg 2k(!�1)


k�N

i
� 1, k � N , then

S(t1; t2; �1; �2) � 0 (10)

by the construction of '.

If t1; t2 < RN , then it is clear that for any �1; �2

S(t1; t2; �1; �2) � 0: (11)

Obviously, (9), (10) and (11) are su�cient for the con�rmation that the con-

structed function �(t; �) is the distribution function of the measure of a subhar-

monic function on the plane and the support of this measure is concentrated in

the set G
!
:
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2) It follows from the construction of ' that

'(t; �) = o(t�2); t!1;

uniformly for � 2 [0; 2�]: Hence in view of Th. 1 the function u has a multi-term

asymptotics of the form:

u(rei�) =
�r�1

sin��1
cos �1(� � �) +  (rei�):

Here  (rei�) = o(r�2) uniformly for � 2 [0; 2�] as r ! 1; if the point z = rei�

does not belong to some C0;1+!-set.

Consider the set

E0;k =
n
z : jz �Rk(1 + 3 � 2NmÆ

k
)j � Æ�

k
Rk;

m 2

��
2k�N � 1

3

�
+ 1; 2

�
2k�N � 1

3

���
;

where k � N and the number � > 1 will be chosen later on. The estimate of the

remainder term  (rei�) on the set E0;k is carried out in the same way as in the

proof [4, Th. 3], where it is shown that on the set E0;k the inequality

� (z) � C(�� 1)�
k
jzj�2 ln jzj � C12

�N�
k
jzj�2 ln jzj

is valid. Here C is a universal constant and C1 does not depend on z, N and k:

It is easy to see that for any � > 1 there exists N 2 N such that

� (z) � ��
k
jzj�2 ln jzj

with � > 0:

It is clear that the analogous estimate is valid also on the sets

E
j;k

=
n
z : jz �Rk(1 + 3 � 2NmÆ

k
)eij
k�N j � Æ�

k
Rk;

m 2

��
2k�N � 1

3

�
+ 1; 2

�
2k�N � 1

3

���
; j = 0; 1; 2; : : : ;

"
arctg 2k(!�1)



k�N

#
� 1:

So for such choice of N and for all z 2 E =
S
j;k

E
j;k

the relation

 (z) � ���
k
jzj�2 ln jzj

holds. Therefore, if �
k
decreases su�ciently slowly, then we obtain the inequality

 (z) < �jzj�2

for all great by modulus z 2 E.
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3) We estimate now a relative (1 + �)-measure of the set E: We have

rel mes
1+�

(E
\
fz : jzj � Rk+1

g)

�
1

R(k+1)(1+�)
22k2k(!�1)(Æ�

k
Rk)1+�

= C2k(1+!��(1+�)):

Hence the relative (1+�)-measure of the set E is equal to1 if �(1+�) < 1+!:

It is easy to see that for any 0 � � < ! there exists � > 1 such that the relative

(1 + �)-measure of the set E is in�nity.

This completes the proof of the theorem.
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