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Spaces of selfadjoint elements of a C*-algebra or a von Neumann alge-
bra, and also JB- and JBW-algebras are examples of order-unit spaces.
A von Neumann algebra and a JBW-algebra possess predual spaces, but,
generally speaking, a JB-algebra and a C*-algebra don’t have this property.
In this work, conditions are found for an order-unit space to possess a pre-
dual space. Moreover, a condition is obtained characterizing J BT/ -algebras
among order-unit spaces having a predual space.
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1. Preliminaries

Let A be a real ordered linear space. We denote by AT the set of positive
elements of A. An element e € AT is called order unit if for every a € A there
exists a number A € R™ such, that —Xe < a < Xe. If the order is Archimedean
then the mapping a — [la]| = inf{A > 0: —Xe < a < Xe} is a norm. If A is
a Banach space with respect to this norm, we say that (A,e) is an order-unit
space with the order unit e.

Let (A,e) be an order-unit space. An element p € A* is called positive if
p(a) >0 for all a € AT, in this case one writes p > 0. A positive linear functional
is called a state if ||p|| = 1. This is equivalent to p(e) = 1. We denote by S(A) the
set of all states on A and call S(A) the states space of A. It is known that S(A)
is a *-weakly closed subset in A*.

As we know, the pair (A4, A*) is a dual pair. Following the work by E. Alfsen,
F. Shultz [1], we suppose that A and A* are in spectral duality. In this case
every element a € A has a spectral resolution with respect to projective units. We
denote P and U a set of P-projections and projective units of A, respectively.
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Generally speaking, spectral duality in [1] is defined between A and a subspace
V' C A*. Further, if the opposite is not supposed, spectral duality (A, V') means
the case V C A*.

A P-projection R is called central if R + R’ = I. Here R’ is the quasi-
complement of R. A projective unit u = Re is called central if R is a central
P-projection.

An order-unit space (A, e) is said to be factorif it contains no central projective
units except 0 and e.

A projective unit v = Re is called Abelian if imR = R(A) is a vector lattice.

One says that an order-unit space A has type I if for any central P-projection
R in A, the subspace imR contains an Abelian projective unit.

An element u € U is called an atom if u is the minimal element of the lattice U.

If A is a factor of type I and w is an atom, then there is a unique continuous
linear functional % on A corresponding to u. This functional is the extremal point
in S(A) with properties: (u,u) = 1, ||u|| = 1. The P-projection R corresponding
to u is of the form: Ra = (a, U)u.

Spaces of selfadjoint elements of a C*-algebra, a von Neumann algebra, and
JB- and JBW -algebras are the examples of order-unit spaces.

Let K be a compact convex subset of a local convex Hausdorff space V. We
denote by A(K) the space of all continuous affine functions, and by A’(K) the
space of all bounded affine functions on K. Then A(K) and A’(K) are order-unit
spaces. The role of unit plays the affine function identically equal to 1 on K.

It is known that a von Neumann algebra, a .J BW -algebra and the space A°(K)
possess predual spaces, but this is not true for J B-algebras, C*-algebras and A(K)
[2].

A state p on A is called normal if p(a,) — 0 for any net {a,} C A monotoni-
cally decreasing to zero (a, | 0).

Theorem (F. Shultz [2, 3]). JB-algebra A has a predual space, i.e. it is
a JBW-algebra if and only if it has a separating space of normal states.

As it turns out, a similar result is valid for order-unit spaces, too.This work
is devoted to this result. Moreover, in the end of the paper, we prove a theorem
characterizing J BW -algebras among order-unit spaces possessing a predual space.

2. Main Results

2.1. Existence of a Predual Space

We start by studying one example of an order-unit space from [4] and prove
an analog of the Shultz theorem in this case. Spaces considered in [4] and called
there generalized spin-factors are constructed by the following way.
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Let X and Y be real Banach spaces in separating duality [5]. Then A = Rg X
and V =R @®Y form a dual pair with respect to duality:

(a,p) = af + (z,y),

fora =a+xz € Aand p =B +y € V, where (z,y) is the duality between X
and Y.
The order and norm on A (on V') are defined as:

a=a+a20azlal (p=p+yz0¥pzy).

lall = la] + [lo] (upu — max (], ly1) )

Let A have a predual space. Then X = Y* and any functional p € V is
normal.

Indeed, let a, | 0, then o, | 0 and ||z,|| — O since a, = «ay + z,. Let
p=p+y €V, then |p(a,)| = |laf+ (zv,y)| < |8l + |z - |ly]] = 0. Therefore
p(ay) — 0. Since (A, V) is a dual pair, then V separates points of A. Hence, V is
a separating space of normal functionals for A.

Conversely, let A have a separating space of normal functionals of V,i.e. a, | 0
follows p(a,) — 0 for any p € V and there exists p € V for any a # 0 such, that
p(a) # 0. Since V' C A*, then an arbitrary element p € V is of the form p = S+,
where f € R, y € Y C X*. Since A and V are a dual pair, then X and Y are
a dual pair. As it is proved in [5, Th. 1, §3, III] Y* = X. Hence, generalized
spin-factors possess a predual space when they have a separating space of normal
states.

Let us consider the general case. Let A be an order-unit space in spectral
duality, and S(A) the space of normal states on A. We denote V' = lin(S(A)) the
linear hull of the normal states space. It is obvious, that V C A*. Let J =V be
the polar of V' in A**.

Theorem 1. There exists a central P-projection R in A*™ such, that J =
R'(A*), where R' is a quasicomlement of R and the mapping a — Ra is an
isomorphism of A onto R(A™).

Proof Let H be an arbitrary P-projection in A. Then H*(V) C V.
Indeed, let aq T @ in A and p € S(A). Then H*p(z) = p(Hz) for all z € A.
Since the P-projection H is positive and normal, p(Has) — p(Ha). Therefore
H*p € V. Now it follows that if H is a P-projection in A and = € J, then
H**(z)(p) = x(H*p) = 0. Hence, H**(J) C J for any P-projection H in A C A**.
This means that the set J is "invariant" with respect to P. By virtue of continuity
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of P-projections, we conclude that J is invariant with respect to P-projections
in A**. Note that A** = A%(S(A)) [2] and therefore A** is an order-unit space in
spectral duality.

Before continuing the proof of Th. 1, we prove the following result.

Lemma. Let J be a weakly closed subspace invariant with respect to P-
projections in A. Then there is a central P-projection H in A such, that J = H(A).

Proof. Wedenote by h the order unit J. By the condition of Lemma, J is
invariant with respect to P-projections in A, then Rh € J for any R € P. Since
h is the unit in J then Rh < h. By Proposition 5.1 in [1], we conclude that R
is compatible with h. Since R is arbitrary it follows that h is a central element.
Thus there is a central P-projection H such, that h = He. Therefore J = H(A).
Lemma is proved.

Return to the proof of Th. 1. By lemma, there exists a central P-projection
H such, that J = H(A**).

Let u = e — h. Then u is a central projective unit in A**. Hence, R is homo-
morphism of A* into itself where Re = wu. Since id = R + H, then the kernel
of R is J. Further, since the space of normal states of A is separating we have
that ANJ = ANVY = {0}. Hence, R is a one-to-one mapping of A into R(A**).
Theorem 1 is proved.

Theorem 2. Weakly x-continuous extensions of states from A onto A* are
normal.

P r oo f. By Proposition 1.2.11 [2], A** is monotone complete and order
isomorphic to A*(S(A)). It is known from Cor. 1.1.22 in [2] that an arbitrary state
p on A can be uniquely extended to a state p on A**. Let {ay} be a bounded
increasing net in A** with the least upper bound a. Since a,, 1 a implies a,| sy~
als(a) pointwise by virtue of A** = A(S(A)), so we have p(aq) = aa(p) = a(p) =
p(a). Hence, p is a normal state on A**. Theorem 2 is proved.

Theorem 3. If A has a predual space V. (V* =2 A), then elements of V are
normal functionals on A.

Proof 1If p €V, then it is obvious that p € A*, and its extension is
a normal functional on A** by Th. 2. Hence, p is also a normal functional on
R(A**), where R is a P-projection from Th. 1. Since ¢ — Ra is an isomorphism
of A onto R(A**) and p(a) = p(Ra) for all ¢ € A, then pis normal on A = R(A*).
Theorem 3 is proved.
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Theorem 4. Let A be a monotone complete order-unit space in spectral dual-
ity. Then A has a predual space if and only if it has separating space of normal
states. In this case the predual space is unique and coincides with a space of
normal linear functionals on A.

Proof. Let A have a separating space of normal states S(A). Recall that
V =1in(S(A), J = VO. By Theorem 1, there is a central P-projection R such,
that A =2 R(A™) and J = R'(A**). In [6] G. Godefroy has proved the following
fact: a Banach space F has a predual space if and only if there exists a closed
linear subspace F' in E** such, that i(E) @ F = E** (Prop. 1 in [6]).

In our case, the role of the subspace F' plays the subspace J. From this we
conclude that A has a predual space.

Conversely, let A have a predual space, i.e. there exists a subspace V C A*
such, that A = V*. Then V separates the points of A, i.e. A and V are a dual
pair. Further, by Th. 3 elements of V are normal functionals. Hence, A has a
separating space of normal functionals.

Later, if p € V, then p € A* and it is normal on A** by Th. 2. Since a — Ra
is an isomorphism of A onto R(A**) and p(a) = p(Ra) for all a € A, then p is
normal on A.

Conversely, if p € A* is normal, then the extension p on A** has the form
p = pR. Since R is an isomorphism between A and R(A**), then p is normal on
A** and is equal to zero on R'(A**). Thus, p is equal to zero on J = V?, and thus
it belongs to V.

This proves that a predual space to A is unique and coincides with the space
of normal functionals. Theorem 4 is proved.

2.2. Characterization of JBW-Algebra among Order-Unit Spaces
Having a Predual Space

Note that J B-algebras are examples of order-unit spaces. Various authors have
investigated conditions under which an order-unit space becomes a .J B-algebra.

For example, in |7] it is shown that if a state space S(A) of a spectral order-unit
space A has the Hilbert ball property then A is a JB-algebra. In [8] geometric
conditions on S(A) are found: a spectral order-unit space A to be a JB-algebra
if and only if S(A) is symmetric.

Here, it was found another condition in this circle of problems: let a spectral
order-unit space A has a predual space V (V* = A). If the spaces Li(7) and V
are order and isometrically isomorphic then A is a JBW -algebra.

A positive linear functional 7 is called a trace on an order-unit space (A, e) if
it satisfies the following condition:

7(a) = 7(Ra) + 7(R'a) VYa€ A, ReP.
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Let A be an order-unit space, 7 be a faithful trace on A. For a € A, we put
llall1 = 7(]a]), where |a] = a4 4+ a_ is the module of the element a. The following
result is proved in [9].

Theorem 5. The mapping || - |1 : A — R is a norm on A.

A mapping || - ||1 : A — R is said to be Li-norm on A. We denote Li(7) the
completion of A by Lj-norm.

Let A be an order-unit space of type I having a predual space, i.e. there is a
space V such, that V* = A.

Consider relation between L;(7) and V.

Theorem 6. The spaces Li(T) and V are order and isometrically isomorphic
if and only if A is a JBW -algebra.

Proof. Itisknown [10],if A is a JBW-algebra with a trace 7, then spaces
Li(7) and V are order and isometrically isomorphic.

Conversely, suppose that Li(7) and V are isometrically isomorphic.

By Lemma 7.1 in [7], any order-unit space of type I can be reduced to factors
of type I. Therefore we shall prove the theorem for factors of type I.

For an atom u € U, u = Re, where R € P, we assume

ou(z) = 7(Rz) = R*1(x).

It is obvious, that ¢, is a positive functional on A, i.e it is an element of V.
Functionals of the form R*r were called in [11] projective traces. If v = Qe is
another atom orthogonal to wu, then the element h = u + v corresponds to a P-
projection H = RV Q = R+ @ and the functional ¢, = H*7 = R*7 + Q*7. It is
natural, that to their linear combination ¢ = au 4 Bv corresponds the functional
e = aR*T + BQ*r. This process can be done for an arbitrary finite number
of orthogonal atoms. Since A is a spectral order-unit space, then by assumption
of theorem, an arbitrary element of L;(7) can be approximated by finite linear
combinations of functionals of type R*r.

From the above, one can determine the following order and isometrical iso-
morphism between spaces Li(7) and V :

If {u;} is a family of orthogonal atoms then for a = ) aju; € Ly(7), we define

a(z) = a;T(Riz), (1)
where u; = Rje.

Let b = ) fBjv; be an element of L;(7). We define for b by formula (1) the
functional @y (z) = > B;7(Qjx), where v; = (Qje are atoms.
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Then

0a(d) =Y aT(Rib) =Y > aifim(Rivy) = Y > i (RiQje),
op(a) =Y Bim(Qja) = DY Bjeir(Qjui) = ) Y ciffiT(Q;Rie).

In order to functionals be well defined by formula (1), the values of ¢, (b) and

vp(a) have to be equal. That’s why we have

for

T(RQe) = 7(QRe)

all atoms u = Re and v = Qe.
The last equality means that 7(Rv) = 7(Qu), i.e.

(v, w)u) = 7((u, V)v).

Since the trace on factors of type I takes equal values on atoms, we have

for

(v,u) = (u,0)

all atoms u and v. But this is the Hilbert ball property. By Proposition 6.14

from [7], we conclude that A is a JBW -factor. Theorem 5 is proved.
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