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1. Introduction

It is well-known that there is no inscribing into the multidimensional cube,

whose dimension is not equal to 4n�1, of a regular simplex of the same dimension

so, that all vertices of the last were vertices of the cube. As to dimension 4n� 1,

H. Coxeter established already in 1933, the equivalence of this problem to the

question of the existence of Hadamard's matrix of order 4n (see [1, p. 319]).

We introduced notions of Hadamard's matrix of half-circulant type [2, p. 459]

and antipodal n-gons inscribed into the regular (2n � 1)-gon [3, p. 48], and

proved that the half-circulant Hadamard matrix of order 4n exists if and only

if there exist antipodal n-gons inscribed into the regular (2n � 1)-gon (see [3,

Th. 4]). The multidimensional problem about existence of a regular hypersimplex,

inscribed into the (4n� 1)-dimensional cube, reduced thereby to a plane problem

on antipodal n-gon, what makes possible to use the methods of algebraic geometry

for its solution. This is considered in the paper.
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2. De�nitions of Main Notions and its Characteristics

Hadamard's matrix H of order 4n (every its entry equals �1 and rows are

pairwise orthogonal) is said to be half-circulant if it has the following form:

H =

0
BBBB@

1 � � � 1 � � �
... A

... B

1 � � � �1 � � �
... B

... �A

1
CCCCA : (1)

Here A and B are square circulant matrices of order 2n� 1, more precisely, A is

an usual circulant [4, p. 272], which we will call the right circulant, and B is the

left circulant. If a1; a2; : : : ; a2n�1 are entries of the �rst row of a right circulant A,

then entries of its second and next rows are obtained by the cyclic permutation

of previous row to the right: a2n�1; a1; a2; : : : ; a2n�2; a2n�2; a2n�1; a1; : : : ; a2n�3
and so on. The second and next rows of the left circulant B are obtained from

its �rst row b1; b2; : : : ; b2n�1 by the cyclic permutation of previous row to the left,

namely: b2; b3; : : : ; b2n�1; b1; b3; b4; : : : ; b1; b2 and so on.

Let us consider in a complex plane the unit circle with the centre in the

origin. Points zk; k = 0; 1; : : : ; 2n � 2, where z = e
2�i

2n�1 , lie on this circle and

are vertices of the regular (2n � 1)-gon P2n�1. Let Pn and P
0
n be convex n-gons

inscribed into P2n�1 so, that all its vertices are vertices of P2n�1. We say that

convex n-gons Pn and P
0
n, inscribed into the regular (2n � 1)-gon, are antipodal,

if the total number of their diagonals and sides of the same length equals n for

all admissible lengths. For all this, n-gon Pn is represented by the generating

polynomial pn(z) =
P2n�2

k=0 xkz
k, where xk = 1 if the vertex of P 2n�1 with

number k belongs to Pn, and xk = 0 in otherwise. Respectively, n-gon P
0
n
is

represented by a polynomial p
0
n
(z) =

P2n�2
k=0 x

0
k
z
k. Since Pn and P

0
n
are n-gons,

their generating polynomials have exactly n coe�cients xk and x
0
k
equal 1.

The generating polynomial pn(z) has the property (see [3, Lem. 1])

jpnj2 = n+ 2

n�1X
k=1

dk cos
2�k

2n� 1
;

where dk is the number of equal diagonals and sides of n-gon Pn, for which the

vision angle (from the origin) equals 'k = 2�k
2n�1 , k = 1; 2; : : : ; n � 1. There is

similar equality (with replacement dk by d0
k
) for the generating polynomial p0n(z).

Since for antipodal n-gons Pn and P
0
n by de�nition dk + d

0
k
= n, 1 � k � n� 1,

their generating polynomials satisfy relation jpnj2+ jp0nj2 = n by Theorem 3 from

[3].
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As noted in Introduction, the existence of antipodal n-gons is the necessary

and su�cient condition of existence of a half-circulant Hadamard matrix of or-

der 4n. In this connection, there is a natural question about analytical represen-

tation of the antipodal property of n-gons Pn and P
0
n
. To �nd the representation

we assume that

x0 =
1

p
2n� 1

(y0 +
p
2

n�1X
j=1

yj);

xm =
1

p
2n� 1

[y0 +
p
2

n�1X
j=1

(yj cos
2�mj

2n� 1
+ y2n�1�j sin

2�mj

2n� 1
)]; (2)

x2n�1�m =
1

p
2n� 1

[y0 +
p
2

n�1X
j=1

(yj cos
2�mj

2n� 1
� y2n�1�j sin

2�mj

2n� 1
)];

where m = 1; 2; : : : ; n� 1.

Since x0, xm, x2n�1�m equal 0 or 1, parameters y0; y1; : : : ; y2n�2, by which

they are represent, cannot be arbitrary. We obtain, solving linear system (2) with

respect to these parameters,

y0 =
1

p
2n� 1

2n�2X
i=0

xi;

yj =

r
2

2n� 1
[x0 +

n�1X
m=1

(xm + x2n�1�m) cos
2�jm

2n� 1
]; (3)

y2n�1�j =

r
2

2n� 1

n�1X
m=1

(xm � x2n�1�m) sin
2�jm

2n� 1
:

This can be check of the direct substitution into system (2). Let us denote w0,

wm and w2n�1�m the right hand sides of equations of system (2) and consider

following system of quadratic equations:

y0 =
1

p
2n� 1

2n�2X
i=0

w
2
i ;

yj =

r
2

2n� 1
[w2

0 +

n�1X
m=1

(w2
m + w

2
2n�1�m) cos

2�jm

2n� 1
]; (4)

y2n�1�j =

r
2

2n� 1

n�1X
m=1

(w2
m
� w

2
2n�1�m) sin

2�jm

2n� 1
:
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We �nd, if we solve it with respect to w
2
i
, i = 0; 1; : : : ; 2n � 2 (as the linear

system!): w2
i
= xi = wi, since coe�cients of system (4) coincide with coe�cients

of system (3) and the right hand sides of equations of system (2) are denoted

w0; wm; w2n�1�m. This means that if parameters y0; y1; : : : ; y2n�2 satisfy system

(4), then w
2
i
= wi for all i = 0; 1; 2; : : : ; 2n � 2, i.e. wi, and that is xi, can take

only integer value 0 and 1. It follows from here that system (4) has with respect to

y0; y1; : : : ; y2n�2 22n�1 real-valued solutions, which are represented by form (3),

where each xi takes values 0 or 1 independently from the rest. Thus the following

assertion is valid.

Lemma 1. The coe�cients of the polynomial p(z) =
P2n�2

k=0 xkz
k, which are

represented by equalities (2), take only two values 0 and 1, if and only if their

parameters y0; y1; : : : ; y2n�2 satisfy conditions (4). All solutions of system (4) are

real-valued, and their total number equals 22n�1.

It should be pointed out that among 22n�1 real solutions of system (4) there are

C
n

2n�1 combinations such, that
P2n�2

i=0 xi = n, which corresponds to convex n-gons

inscribed into the regular (2n�1)-gon, with y0 =
np
2n�1

. Next, if y0; y1; : : : ; y2n�2

and y
0
0; y

0
1; : : : ; y

0
2n�2 are two such solutions of system (4), generating convex n-

gons Pn and P
0
n inscribed into the regular (2n � 1)-gon P2n�1, then they are

antipodal if and only if the conditions

y
2
j + y

2
2n�1�j + y

0 2
j + y

0 2
2n�1�j =

2n

2n� 1
; (5)

are valid for all j = 1; 2; : : : ; n� 1 (see [3, Lem. 3]).

Let w = w(y) = w
3
0+
P

n�1
m=1(w

3
m
+w

3
2n�1�m) be a homogeneous polynomial of

third degree with respect to coordinates of vector y, where w0, wm and w2n�1�m
are again the right hand sides of equations (2).

Lemma 2. System (4) is represented in following equivalent form:

y =
1

3
rw; (6)

where rw is a vector with coordinates @w

@yi
, i = 0; 1; 2; : : : ; 2n� 2.

P r o o f. Since
@w

3

i

@y0
=

3w2

ip
2n�1

for all i = 0; 1; 2; : : : ; 2n � 2, then the �rst

equations in (6) has the form:

y0 =
1

p
2n� 1

2n�2X
i=0

w
2
i ;
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which coincides with the �rst equation of system (4).

Since for 0 < j < n
@w

3

0

@yj
= 3
q

2
2n�1w

2
0,

@w
3
m

@yj
= 3
q

2
2n�1w

2
m
cos 2�mj

2n�1 and

@w
3

2n�1�m

@yj
= 3
q

2
2n�1w

2
2n�1�m cos 2�mj

2n�1 , then every equation of the second group

of equation in (6) has a following form:

yj =

r
2

2n� 1
[w2

0 +

n�1X
m=1

(w2
m
+ w

2
2n�1�m) cos

2�mj

2n� 1
];

that coincides with the second equation of system (4).

Besides for 0 < j < n
@w

3

0

@y2n�1�j
= 0,

@w
3
m

@y2n�1�j
= 3
q

2
2n�1w

2
m
sin 2�mj

2n�1

and
@w

3

2n�1�m

@y2n�1�j
= �3

q
2

2n�1w
2
2n�1�m sin 2�mj

2n�1 , then every equation of the third

equation group in (6) has the following form:

y2n�1�j =

r
2

2n� 1

n�1X
m=1

(w2
m
� w

2
2n�1�m) sin

2�mj

2n� 1
;

that coincides with third equation of system (4). This concludes the proof.

Since w is a homogeneous polynomial of third degree by de�nition, then

by Euler's rule
P2n�2

i=0 yi
@w

@yi
= 3w. Therefore, multiplying equations of system

(6) respectively by coordinates y0; y1; : : : ; y2n�2 of vector y and summing theirs

termwise, we obtain w =
P2n�2

i=0 y
2
i
. Since for n-gon Pn inscribed into the regular

(2n � 1)-gon
P2n�2

i=0 xi = n, then it follows from (3) that S =
P2n�2

i=0 y
2
i
= n,

that is, w = n.

Indeed, we obtain, using trigonometrical formulas and so the identity (after

the changing of summing order) 1
2
+
P

n�1
j=1 cos

2�cj
2n�1 � 0, which is valid for all

integer c 6� 0(mod 2n� 1):

S = n
2

2n�1 +
n�1P
j=1

(y2
j
+ y

2
2n�1�j) =

n
2

2n�1 + 2
2n�1 [(n� 1)x20 +

n�1P
j=1

[2x0
n�1P
m=1

(xm

+x2n�1�m) cos
2�jm
2n�1 +

n�1P
m=1

(x2
m
+ x

2
2n�1�m + 2xmx2n�1�m cos 4�jm

2n�1 )

+2
P
m<s

(xmxs + x2n�1�mx2n�1�s) cos
2�j(m�s)
2n�1 + (xmx2n�1�s + x2n�1�mxs)

� cos
2�j(m+s)
2n�1 ]] = n

2

2n�1 + 2
2n�1 [(n� 1)

2n�2P
i=0

x
2
i
� x0

n�1P
m=1

(xm + x2n�1�m)

�
n�1P
m=1

xmx2n�1�m �
P
m<s

(xmxs + xmx2n�1�s + x2n�1�mxs + x2n�1�mx2n�1�s)]

= n
2

2n�1 + 2
2n�1 [n(n� 1)� 1

2
(
2n�2P
i=0

xi)
2 + 1

2

2n�2P
i=0

x
2
i
] = n

2

2n�1 + 2
2n�1 �

n(n�1)
2

= n:
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The equation w = n determine some hypersurface F in a a�ne space A2n�1.

If we pass to homogeneous coordinates y0; y1; : : : ; y2n�2; y2n�1, then equation

w � ny
3
2n�1 = 0 represents hypersurface of third order in projective space P 2n�1

(w is homogeneous polynomial of third degree by de�nition). It turns out that the

hypersurface F , representing by equation w = n, is a irredusible smooth hypersur-

face both in a�ne space A2n�1 and in projective space P 2n�1 (see [3, Th. 6)].

The above-mentioned results, obtained mostly in paper [3], allowed us to �nd

following necessary and su�cient conditions of the existence of Hadamard's matrix

of half-circulant type (see. Th. 5).

Theorem 1. A half-circulant Hadamard matrix of order 4n exists if and only

if system (6) has two solutions y = fy0; y1; : : : ; y2n�2g and y0 = fy00; y
0
1; : : : ; y

0
2n�2g

such that y0 = y
0
0 = np

2n�1 and so that the rest coordinates of vectors y and y
0

should satisfy antipodal conditions (5).

The above solutions are obviously coordinates of the points of the cubic sur-

faces w = n.

We will mention one more result from algebraic geometry (see [5, p. 174]),

which we need for the proof of our existence theorems for a regular hypersimplex

inscribed into the (4n� 1)-dimensional cube.

Theorem 2. Let

fi(x0; : : : ; xn) = 0 (i = 1; : : : ; r) (7)

be a system of homogeneous equations with undetermined coe�cients and let

�fi(x0; : : : ; xn) = 0 (i = 1; : : : ; r) (8)

be the system of equations, obtained from (7) under some given specialization of its

coe�cients. Then there exists a �nite system of polynomials d1; : : : ; dk, depending

on coe�cients of equations (7) and possessing following characteristics:

(I) for some integer m

dix
m

0 �
rX

j=1

aij(x0; : : : ; xn)fj(x0; : : : ; xn);
*

where coe�cients of polynomials aij(x0; : : : ; xn) belong to the coe�cient ring of

system (7);

(II) necessary and su�cient condition for the existence of solution of system

(8) in some algebraic extension of the coe�cient �eld is the vanishing of polyno-

mials di under a given specialization of coe�cients.

*Sign � means that sum in the right hand side of this equality consists single summand dix
m

0

(after a reduction of similar terms).
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Polynomials d1; d2; : : : ; dk of the theorem, are called the system of resultants

or resultant forms for a system of homogeneous equations with several unknowns.

3. Existence Theorems

Let us introduce by analogy with the polynomial w = w(y) another polynomial

w
0 = w

0 3
0 +

P
n�1
m=1(w

0 3
m
+w

0 3
2n�1�m), whose w

0
i
are given by the right hand sides of

equalities (2), if coordinates of vector y = fy0; y1; : : : ; y2n�2g in them are replaced

by coordinates of vector y0 = fy00; y
0
1; : : : ; y

0
2n�2g. According to Theorem 1 the

existence of a half-circulant Hadamard matrix of order 4n is equivalent to the

solvability of certain equations. The equations can be represented in the form:

8>>>>>>><
>>>>>>>:

Wi =
@w

@yi
� 3yi = 0; i = 0; 1; 2; : : : ; 2n� 2;

W
0
i
= @w

0

@y0
i

� 3y0
i
= 0; i = 0; 1; 2; : : : ; 2n� 2;

W2n�1 = y0 � np
2n�1 = 0; W

0
2n�1 = y

0
0 �

np
2n�1 = 0;

Yj = y
2
j
+ y

2
2n�1�j + y

0 2
j

+ y
0 2
2n�1�j �

2n
2n�1 = 0;

j = 1; 2; : : : ; n� 1:

(9)

Since wi(y) and w
0
i
(y0) are homogeneous polynomial of third degree with re-

spect to its variables, then a homogeneous system, corresponding to (9), has the

form: 8>>>>>>>><
>>>>>>>>:

�Wi =
@w

@yi
� 3yiy2n�1 = 0; i = 0; 1; 2; : : : ; 2n� 2;

�W 0
i
= @w

0

@y0
i

� 3y0
i
y2n�1 = 0; i = 0; 1; 2; : : : ; 2n� 2;

�W2n�1 = y0 �
ny2n�1p
2n�1 = 0; �W 0

2n�1 = y
0
0 �

ny2n�1p
2n�1 = 0;

�Yj = y
2
j
+ y

2
2n�1�j + y

0 2
j

+ y
0 2
2n�1�j �

2ny2
2n�1

2n�1 = 0;

j = 1; 2; : : : ; n� 1:

(10)

System (10) consists homogeneous equations with respect to 4n�1 unknowns

y0; y1; : : : ; y2n�2; y2n�1; y
0
0; : : : ; y

0
2n�2 of degree less than 3. Therefore, one can

obtain every of them from quadratic form (recpectively, linear form) of 4n � 1

variables under some specialization of its undetermined coe�cients. According to

Theorem 2 there exists a �nite system of polynomials d1; d2; : : : ; dk whit respect

to these coe�cients, possessing by characteristics, indicated in the theorem, which

are resultants of system (10).

Theorem 3. Let d1; d2; : : : ; dk be a �nite resultant system of homogeneous

system (10). If every polynomial d1; d2; : : : ; dk vanishes after the substitution of

corresponding coe�cients of system (10), then one can inscribe a regular simplex

of the same dimension into the (4n� 1)-dimensional cube.
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P r o o f. Since all resultants of system (10) vanish, then it has nontrivial

solution �y0; : : : ; �y2n�1; �y
0
0; : : : ; �y

0
2n�2 in some algebraic extension of its coe�cient

�eld. We shall prove that this solution is real-valued indeed.

Observe �rst of all that if �y2n�1 = 0, then it follows from the �rst equa-

tion of system (10) that @ �w
@yi

= 0, i = 0; 1; : : : ; 2n � 2, where the bar means

that the solution is substituted into a given partial derivative. Multiplying �Wi

by yi and summing obtained equalities termwise, we have by Euler's rule: 3w �
3y2n�1

P2n�2
i=0 y

2
i
= 0 or after a substitution of the solution: 3 �w�3�y2n�1

P2n�2
i=0 �y2

i

= 0. Since �y2n�1 = 0 by assumption, then �w = 0. That is, the point with coor-

dinates �y0; �y1; : : : ; �y2n�2; 0 belongs to hypersurface F of projective space P 2n�1,

representing by equation W = w � ny
3
2n�1 = 0. Since the homogeneous polyno-

mial w does not depend on the variable y2n�1, then both partial derivative @W

@yi

and @W

@y2n�1
vanish in the indicated point, i.e., the point �y0; �y1; : : : ; �y2n�2; 0 is a

singular point of F . This is impossible, since the hypersurface F is irreducible

and smoth in P
2n�1 by the established above.

Consequently, �y2n�1 6= 0. Thus one can assume that in all equations of sys-

tem (10) we have y2n�1 = 1. But system (10) coincides at y2n�1 = 1 with system

(9). Therefore solution �y0; : : : ; �y2n�2; 1; �y
0
0; : : : ; �y

0
2n�2 of system (10) is the solu-

tion of system (9). And since the �rst two groups of equations Wi = 0 and

W
0
i
= 0 of system (9) coincide with system (6) up to notations, then vectors

�y = f�y0; �y1; : : : ; �y2n�2g and �y0 = f�y00; �y
0
1; : : : ; �y

0
2n�2g are solutions of system (6).

By Lemma 2 system (6) coincides with system (4), whose all solutions are real-

valued by Lemma 1, that is, the original solution of system (10) is real-valued

too.

It follows from last equations of system (9) that the coordinates of vectors �y

and �y0 satisfy the conditions �y0 = �y00 = np
2n�1

so and for any j is true: �y2
j
+

�y22n�1�j+�y0 2
j
+�y0 22n�1�j =

2n
2n�1 . Consequently, vectors �y and �y0 represent solutions

of system (6), satisfying all conditions of Theorem 1. Thus, there exists a half-

circulant Hadamard matrix H of order 4n, having form (1). Removing from H

its �rst column (with entries equals 1), we obtain matrix �H, whose rows are the

coordinates of the vertices of a regular hypersimplex in E
4n�1, inscribed into the

hypercube with edge 2, whose centre coincide with the origin (since rows of any

Hadamard's matrix H are pairwise orthogonal, then the vision angle (from the

origin) for each edge of the indicated hypersimplex is the same ' = arccos �1
4n�1 ).

This concludes the proof.

The resultant system of Theorem 3 consists a �nite number of polynomials.

This number can be very large, especially with increase of n. It happens because

the number of equations of system (10) (which equals 5n�1) exceeds signi�cantly

the number of unknown quantities (4n� 1). But, if both quantities are equal to

each other, then the corresponding resultant system consists a single resultant.
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More precisely, there exists such resultant form R that another resultant form,

which belongs to the ideal of resultant forms of a given system of homogeneous

equations, is divided by R [5, p. 185]. In connection with this, we modify system

(10) to the following form:

8>>>><
>>>>:

�Wi =
@w

@yi
� 3yiy2n�1 = 0; i = 0; 1; 2; : : : ; 2n� 2;

�W 0
i
= @w

0

@y
0

i

� 3y0
i
y2n�1 = 0; i = 0; 1; 2; : : : ; 2n� 2;

�W 4
2n�1 +

�W 0 4
2n�1 +

n�1P
j=1

�Y 2
j
= 0;

(11)

where it will be necessary to substitute in place of �W2n�1, �W 0
2n�1 and �Yj their

expressions from (10). Then the number of equations of the modi�ed system will

equal 4n� 1, i.e., equate the number of unknowns.

Theorem 4. Let R be resultant of system (11). If R = 0 after the substitution

of coe�cients of system (11), then one can inscribe a regular simplex of the same

dimension into the (4n� 1)-dimensional cube.

P r o o f. It can be proved �rst as above that system (11) has a real-valued

solution �y0; : : : ; �y2n�1; �y
0
0; : : : ; �y

0
2n�2 with �y2n�1 = 1. Then it follows from the

third equation of system (11) that

�W2n�1 = �y0 � np
2n�1 = 0; �W 0

2n�1 = �y00 �
np
2n�1 = 0;

�Yj = �y2
j
+ �y22n�1�j + �y0 2

j
+ �y0 22n�1�j �

2n
2n�1 = 0; j = 1; 2; : : : ; n� 1;

i.e., the given solution of (11) satis�es the last three equations of (10) too.

Thus, the coordinates of vectors �y = f�y0; �y1; : : : ; �y2n�2g and �y0 = f�y00; �y
0
1; : : : ;

�y02n�2g satisfy the equations (6) and all conditions of Theorem 1, whence the

assartion of our theorem follows. This concludes the proof.

If dimension of considered space is very large, the �nding of even one resultant

is a complex technical task. Therefore the following "negative" result may be more

e�ective.

Theorem 5. A half-circulant Hadamard matrix of order 4n does not exist if

and only if there exists polynomials Ai; A
0
i
; A2n�1; A

0
2n�1; Bj, depending on vari-

ables y0; y1; : : : ; y2n�2; y
0
0; : : : ; y

0
2n�2, and such that we have for nonhomogeneous

system (9)

2n�2X
i=0

(AiWi +A
0
i
W

0
i
) +A2n�1W2n�1 +A

0
2n�1W

0
2n�1 +

n�1X
j=1

BjYj � 1: (12)
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P r o o f. If relation (12) is true, then, obviously, Wi;W
0
i
;W2n�1;W

0
2n�1; Yj

cannot vanish simultaneously, i.e., system (9) have no solutions. Then any half-

circulant Hadamard matrix of order 4n cannot exist by Theorem 1 too. Con-

versely, if such matrix does not exist, then system (9) has no solutions by Theo-

rem 1. Consequently, according to Theorem 1 from [5, p. 178], there exist poly-

nomials Ai; A
0
i
; A2n�1; A

0
2n�1; Bj of variables y0; y1; : : : ; y2n�2; y

0
0; : : : ; y

0
2n�2 such

that relation (12) is valid for equations of nonhomogeneous system (9). This

concludes the proof.

R e m a r k 1. The conditions of Th. 4 are satis�es, for example, if the

number 2n� 1 is prime one. This follows from [2, Ths. 1 and 2].

R e m a r k 2. The role of the hypersurface of projective space P
2n�1,

represented by equations w = ny
3
2n�1, in proofs of the existence of a regular

hypersimplex inscribed into the (4n� 1)-dimensional cube, is di�erent from that

of our paper [6]. Indeed, in the present paper the homogeneous equivalents of

algebraic equations of Theorem 1, are considered actually in projective space

P
4n�2, while in [6] they are considered on product of two projective spaces P 2n�1

and P
0 2n�1.
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