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We consider smooth oriented hypersurfaces in 2-step nilpotent Lie groups
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It is proved in [12] that the Gauss map of a smooth n-dimensional oriented
hypersurface in R?*! is harmonic if and only if the hypersurface is of a constant
mean curvature (CMC). The same is proved for the cases of S, which is a Lie
group and thus has a natural definition of the Gauss map [9], and, in different
settings, of H? [10]. A generalization of this proposition to the case of Lie groups
with a bi-invariant metric (this class of Lie groups includes, for example, Abelian
groups R**! and $3 & SU(2)) is proved in [6]. In this paper we use the methods
of |6] for an investigation of the Gauss map of a hypersurface in some 2-step
nilpotent Lie group with a left invariant metric. The theory of such groups is
highly developed (see, for example, [3] and [4]).

The paper is organized as follows. After some preliminary information
(Sect. 1.), in Sect. 2 we obtain an expression for the Laplacian of the Gauss map
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of a hypersurface in a 2-step nilpotent Lie group (Th. 1). Using this expression we
prove some facts concerning relations between harmonic properties of the Gauss
map and the mean curvature of the hypersurface (see Sect. 3.), in particular, a
sufficient condition for the stability of CMC-hypersurfaces (Prop. 6). In Section 4
we consider the cases of Heisenberg type groups and Heisenberg groups. We show
that the harmonicity of the Gauss map of a hypersurface in such groups is, in
general, not equivalent to the constancy of the mean curvature. Also we obtain
necessary and sufficient conditions for this equivalence in the particular case of
Heisenberg groups (Prop. 7).

The author is grateful to Prof. L.A. Masal'tsev for his interest to this work.
The author would also thank Prof. Yu.A. Nikolayevsky and Prof. A.L. Yampolsky
for careful reading of manuscript.

1. Preliminaries

Let us recall some basic definitions and facts about the stability of constant
mean curvature hypersurfaces in Riemannian manifolds. Suppose M is a smooth
n-dimensional manifold immersed in a smooth n + 1-dimensional Riemannian
manifold as a CMC-hypersurface. Denote by n a unit normal vector field of M.
Let D C M be a compact domain. The index form of D is a quadratic form Q(-,-)
on C*(D) defined by the equation

Q(w,w) = —/wLw dVs, (1)

D

where dV)s is the volume form of the induced metric on M, L is the Jacobi
operator Ay + (Ric(n,n) + ||B||2), Ric(+,-) is the Ricci tensor of the ambient

manifold, ||B]| is the norm of the second fundamental form of the immersion, and
Ay is the Laplacian of the induced metric (see, for example, [2]).

Let M be a minimal hypersurface (a hypersurface of a nonzero constant
mean curvature, correspondingly). A compact domain D C M is called sta-
ble if Q(w,w) > 0 for every function w € C*°(D) vanishing on 9D (for every
w € C°°(D) vanishing on dD and with [wdVy; = 0). The hypersurface M is

D

stable if every compact domain D C M is stable, and is unstable otherwise (see,
for example, [1]). It is proved in [7, Th. 1] that if the Jacobi equation Lw = 0
admits a solution w strictly positive on M, then M is stable.

Let (M, g) be a smooth Riemannian manifold. Denote by Ay, the Laplacian
of g. For each ¢ € C°°(M, S™) denote by A the vector (Aprr, ..., Aprdni1),
where (¢1, ..., ¢nr1) is the coordinate functions of ¢ for the standard embedding
of a unit sphere S — R**!. It is well known that the harmonicity of ¢ is

Journal of Mathematical Physics, Analysis, Geometry, 2006, vol. 2, No. 2 187



Ye.V. Petrov

equivalent to the equation Ay = 2e(¢)p, where e(¢p) is the energy density
function of ¢ (see [14, p. 140, Cor. (2.24)]).

Suppose M is an oriented hypersurface in an n + 1-dimensional Lie group N
with a left invariant Riemannian metric. Fix the unit normal vector field n of
M with respect to the orientation. Let p be a point of M. Denote by L, the
left translation by a € N, and let dL, be the differential of this map. We can
consider p as an element of N if we identify this point with its image under the
immersion. Let G be the map of M to S” C N such that G(p) = (dL,) " (n(p))
for all p € N, where N is the Lie algebra of N. We call G the Gauss map of M. Tt
is proved in [6] that if a metric of N is bi-invariant (see [11] on a structure of such
Lie groups), then the Gauss map is harmonic if and only if the mean curvature
of M is constant.

Now we consider the case of nilpotent Lie groups. Let N be a finite dimen-
sional Lie algebra over R with a Lie bracket [-,-]. The lower central series of N is
defined inductively by N = N, N*+1 = [N* N] for all positive integers k. The
Lie algebra N is called k-step nilpotent if N* # 0 and N**1 = 0. A Lie group N
is called k-step nilpotent if its Lie algebra N is k-step nilpotent.

In the sequel, we consider a 2-step nilpotent connected and simply connected
Lie group N and its Lie algebra . Let Z be the center of M. Since N is 2-step
nilpotent, 0 # [N, N] C Z. Suppose that A is endowed with a scalar product
(+,-). This scalar product induces a left invariant Riemannian metric on N, which
we also denote by (-,-). Let V be an orthogonal complement to Z in N with
respect to (-,-). Then [V,V] = [N,N] C Z. For each Z € Z a linear operator
J(Z):V — V is well defined by (J(2)X,Y) = ([X,Y],Z), where X,Y € V are
arbitrary vectors.

An important class of 2-step nilpotent groups consists of the so-called 2m + 1-
dimensional Heisenberg groups, which appear in some problems of quantum and
Hamiltonian mechanics [8]. The Lie algebra of a Heisenberg group has a basis
Ki,...,Kn, Li,..., Ly, Z and the structure relations

[Ki,Lj] = 6ijZ, [Kl,K]] = [LZ,LJ] = [Kl,Z] = [LZ,Z] = 0, 1 < ’L,_] S m,

where ¢;; is the Kronecker symbol. We introduce a scalar product such that
this basis is orthonormal. The three-dimensional Heisenberg group with a left
invariant Riemannian metric is often denoted by N4l and is a three-dimensional
Thurston geometry. A Lie algebra A is of Heisenberg typeif J(Z)? = —(Z,Z)1d |y,
for every Z € Z [4]. Its Lie group N is called a Lie group of Heisenberg type. This
class of groups contains, for example, Heisenberg groups and quaternionic Heisen-
berg groups [3, p. 617]. A general approach to the structure of 2-step nilpotent
Lie algebras was developed in the paper [5].
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The Riemannian connection associated with (-,-) is defined on left invariant
fields by (see [3])

VxY = 3[X,Y], X,Y €V,
VxZ=VzX = —1J(Z2)X, X€V, Z€Z (2)
V7 =0 Z,7% € Z.

From this one can obtain for the curvature tensor
RX,V)X* = L1J(X,Y)X*

— IV, X" )X X, X*Y €V;
+1J([X, X*))Y,

R(X,Z)Y = —1[X,J(2)Y],
R(X,Y)Z = —i[X, J(2)Y] XY €V, Z € Z; 3)
[Y J(Z)X],
R(X,2)z* = —3J(Z2)J(Z")X
R(Z,Z)X = J(Z*) ()X XeV,Z,7"c Z;
+1J(2)J(Z*)X
R(Z,Z¥Z* = 0, Z,7*, 7" € Z.
And the Ricci tensor is defined by
[
Ric(X,Y) = 13 (J(Z)?X,Y), X,Y €V;
k=1
Ric(X,Z) = 0, XeV, ZeZ; (4)
Ric(Z,z*) = —-1Tx(J(2)J(Z%)), Z,Z* € Z.
Here dim Z = [, and Z1,..., Z; is an orthonormal basis for Z.

2. The Laplacian of the Gauss Map

Suppose dimN = dimN = n+1, dimZ = n — ¢ + 1, where n and ¢ are
positive integers, ¢ < n

Let M be a smooth oriented manifold, dim M = n. Suppose M — N is an
immersion of this manifold in N as a hypersurface, and 7 is the unit normal vector
field of M in N. For each point p of M, suppose that n(p) = Y411 = Xpn+1+ Znt1,
where X,11 € V, Zp41 € Z. Throughout this paper, we denote by X;, Y;, Z;
elements of T,N as well as the corresponding left invariant vector fields, which
are elements of A'. Choose an orthonormal frame {Y7,...,Y,} in the vector
space T,M C T,N such that for 1 <i:<¢—-1Y; = X,;, Y, = X, — Z,, and for
g+1 <i<nY; = Z;, where Xy,..., X, are elements of V, Z,, ..., Z, belong to Z,
Xng1 = AXy, Zypy1 = ppZg, where X > 0 and p > 0, | Xy| = | Zn41|, | Z¢] = | Xn41l-
Let Ey,...E, be an orthonormal frame defined on some neighborhood U of p
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such that F;(p) =Y; and (VEiEj)T (p) =0, for all 3,57 = 1,...n (such a frame is
called geodesic at p). Here we denote by (-)” the projection to T, M.
We can rewrite (4) in the following form:

n+1

Ric(X,Y) = 13 (J(Z)*X,Y), X,Y €V;

=q
Ric(X,Z) = 0, xev,zez,
Ric(Z,2*) = -1 S A2 T(ZH) X, Xk), Z,Z% € Z.

1<k<q, k=n+1
In particular, for all X, Y € V

2 YIX XX, Y)
1<i<q, i=n+1

= > XXX ZNX, Y, Z5)

1<i<q, i=n+1 j=q
n+1 (6)
=—2 Y. (J(Z)X, Xi)(J(Z;)Y, X;)
Jj=q 1<i<q, i=n+1
n+1
= Y (J(Z)*X.Y) = 2Rie(X.Y).
Jj=q

For 1 < 4,5 < n, denote by b;; = (Vg,Ej,n) the coefficients of the second
fundamental form of the immersion, by || B|| the norm of this form, and by H the
mean curvature of the immersion on U. Since the frame is orthonormal on U,

n
5 i=1 5 (7)
IB[]* = (bi)” -
1<, j<n
Suppose that on U
n+1

n=> Y
=1
nt1

where {a;}77, are some functions on U. It is clear that a;j(p) = 6jn+1. Then the
Gauss map G. U — S™ c R**! takes the form

n+1

G =Y a;¥(e)
j=1

In particular, G(p) = Yp+1(e). Denote by A the Laplacian Ajps of the induced
metric on M.
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Theorem 1. Let M be a smooth oriented manifold immersed in a 2-step nilpo-
tent Lie group N as a hypersurface and G be the Gauss map of M. Then, in the
above notation

q q—1
AG(p)=k21< Yk(nH)+J§1<J([Xka DX Xntr)

¢ n
+ HB(Xey Zni1) Ity Xn1) =2 20 20 bi(p)(I(Z5) X3, Xi)
i=1j=q+

+2 qubz-q(p)(J(Zq)Xi, Xi) +nH(p){(J(Zpn+1) Xn+1, Xk)> Yi(e)

qg—1
+ (Z (J([Xn+17X]])X]7 Xn+1> + 4<R(Xn+17 Zn+1)Zn+17 Xn+1>

j=1
9 z 3 ) (2) X Xur) +2 ibiq(p><J(zq>Xi,Xn+l>
i=1j=¢q i=

1BI() — Ric( nH,YnH)) Yo ().

Here Yi(nH) denotes the derivative of the function nH with respect to the
vector field Y.

P roof. Since the frame Fy,..., E, is geodesic at p, the Laplacian at this
point has the form

n+l n
=YY EiEi(a))Yj(e). (9)
j=1i=1
For 1 <7< n we have on U
n+1 n+1
Ven=Y Bia)Vi+ > a;VgYj, (10)
j=1 j=1
n+1 n+1 n+1
VEeVEn=) BiEi(a)Y;+2) Ei(e)VeYj+Y aVeVeY.  (11)
j=1 j=1 j=1

Considering this expression at p and taking its scalar product with Yy for 1 <
E<n+1, we get

n+1
(VEVEDYe) = EiEi(ar) + 2 Ei(a;)(VE,Y), Vi) + (V5 Vi Yai1, Vi)
=1
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Then for scalar coefficients in (9) we have

n
E,Ei(ak) = > (VE,VEN, YE)
n+l n ! =t n (12)
=2 > > Ei(a;){(VEY},Yi) — > (VE,VEYni1, Yi).
j=1i=1

=1

o8

)

For 1 < k < n, the first expression in (7) and the definition of a second
fundamental form imply at p

Yk(nH) = Ej <Z<VEZE1777>> = Z(kainEivn>

=1 =1

i=1

—Z( (Y, Yi)Yi, Y1) + <inkaEi,n>>.

The second equality in the equation above follows from the fact that the projection
(VEZ.EZ-)T = 0 at p and the vector Vg, n is tangent to M. The fourth equality is
a consequence of

[Ey, Ej) = ([Ex, E}))" = (Vi Ei — Vi, E) =0
at p. Since ([Eg, E;],n) =0 on U, and [Ey, E;](p) = 0, at p we have

for 1 <4 < n, hence

n
( (Y, Y)Y, Vo) + (ininEkam)- (13)

=1

Differentiating (Ef,n) = 0 two times with respect to E; (here we put 1 <
k,i < n) and using (Vg Eg, Vg,n)(p) = 0, we derive from (13)

n

i(vElvEln, Vi) = = £ (V6 s Eon)
= i=1 (14)
= —Yk(nH) + ;( (Yk, )Y;,Yn+1> —Yk(nH) +RiC(Yk,Yn+1).
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For 1 < i < n, differentiating (n,n7) = 1 two times with respect to E;, we get
2(VE,Ven,n +2(Vgn,Vgn) = 0. This equation and the second expression in
(7) imply at p

n

Z (ininnv Yn+1> = - Z (VEﬂYa VEi")
=

i=1 i
n n
—Z%X¥V&HJ%MV&nJ%> (15)
1=17=
=— (Ve Ej,n)? = —|IB[*().
1<ij<n

Consider the scalar products (Vg,n, Yy) at the point p, for 1 <i<n,1 <k <
n+ 1. As |n| = |Yn+1| = 1, we obtain from (10)

0=(Vennp) =(Ven Yni1) = Ei(ani1) + (VE Yat1, Yor1) = Ei(ant1).

For 1 < k < n, (Ek,n) =0 implies

bzk(p) = (inEka77>(p) = —(VEZ-U,EH(P) = _<inn7Yk>
= —Ei(ak) — (VEiYn-HaYk)-

Hence at p we have

n+l n

23" Filay)(Vi Y5 V)

j=1i=1

—ZZ < +(Vy,Yni1,Y, >> (Vv Y;, Yy).
j=11i=1

It follows from (2) that for 1 < i,j < ¢ the expression b;;(p)(Vx,; X;,Ys) is skew-
symmetric with respect to 4, j; hence the sum of such terms with respect to 7 and
4 vanishes. Sum up other expressions using the symmetry VxZ = VzX for all
X €V, Z € Z and the symmetry of the second fundamental form. We obtain

1=1j=q¢+1 (16)
big(P)(J(Z¢) X5, Yie) +2 >0 (VviYai1, Vi) (Vy Y, Yi).

1<ij<n

ii B (VYY) = 25 3 biy(p)(J(Z) X, Ye)

Now we can complete the proof of the theorem using the following technical
lemmas.
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Lemma 2. The last summand on the right hand side of (16) is equal to

2 > (VyiYai1, VH(VyY;, Yy)

1<, j<n
i 2Ric(YkaYn+1) + 4<R(XkaZn+1)Zn+1aXn+1>a I1<k< q—1
2 Ric(X,, Xn+1) + 2Ric(Zy, Zns1)

+4(R(X, +1) nt1s Xnt1) k=g 17
—4(R(Xnt1,24) Zns1, Xnt1)s (17)
—2Ric(Yg, Ynt1)

+1<k<n;
+4<R( n+1aZk) n+1, n+1>a 1
2 Ric(Xps1, Xns1) — 2RIC(Zpst, Znst) —

+8(R(X 415 Znt1) Znt1s Xnt1)s

Lemma 3. The last summand on the right hand side of (12) can be reduced
to the form

- Z(VE VE Yo, Yi)

H(p){J(Zn+1) TL+17X/€> Ric(Yg, Yot1), 1<k<qg—1;
— Rlc( Xn+1) — Ric(Zy, Zn41) b= o 18)
+4<R(Xn+17 Zq) Zp415 Xnt1), -
Ric(Yy, Yny1) — {R(Xnt1, Zk) Zny1, Xny1), ¢+ 1<k <my
— RiC(Xn+1, Xn+1) + RIC( n+1» Zn+1)

kE=n+1.
—4(R(Xn415 Znt1) Zng1s Xnt1),s

Now, if we combine (12) with (16), (17), (18), and (6), we get (8). ]

Proof of Lemma 2. Forl<k<qg—1from the expressions for the
Riemannian connection we get

q—1
ZZ (Vy:Yor1, Vi) (Vi Yy, Xe) = ) ((%[XiaXnJrl]a_Zq)
i=1

i=1 j=1

- <—§J(zn+1)xi,xq>> (57(Z0) X, X5
-1 n 1
+Z Z <§[XiaXn+1]’Zj><__J( )Xzan>
i=1 j=q+1
qg—1
+ (Zuen) X+ 5 (Z0) X, X5 T(20) X, X
]:1
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+<(2

5 (Zusa) X, Xob + {5 X, X, —zq>> (7(Z3) X, Xi)

| =

J(Zq)Xn-H - 2

n
1 1
+ Z (§[an X1l Zj><—§J(Zj)Xq, Xp)
J=gq+1

b3 S X XL x5, 30

i=q+1 j=1

1
+ Z __J n-l-la ><_§J(Zl)X(Ian>
i=q+1
The skew-symmetry of J implies (J(Z) Xy, Xy 41) = —(J(Z2) Xp41, Xy) = 0 for all
Z € Z, and [Xy, X,,4+1] = 0. Hence we can rewrite the above expression in the

form
ZZ (Vy,Yoi1, V;(Vy Y, Xi)

=1 j=1

1 n
=3 Z Z (=J(Zj) Xnt1, Xi)(J(Zj) Xk, Xi)
j=q 1<i<q, i=n+1
1 n
=—5 Z X1, J(Z5) Xg) = 3 Z(J(Zj)ZXnJrlan)
J=q
= RIC(XkaXn—l—l) + 2(R(Xks Zn+1) Zn+1, Xnt1)-
This implies the first equality in (17).
For ¢ +1 < k < n, we have

qg—1q—1
1 1
ZZ Vy Yo, iV Y, Z) = ZZ<_§J(Zn+1)XiaXj><§[Xian]aZlc>
i=1 j=1 i=1 j=1
142 | |
= (Zo) X, Xg) (5155, Xa). ~Z) | (51X5, X, Z4)
=1
q—1 1
+ n+1X +3 J( ) n+1vXj><§[Xquj]vZk>

—_

.

qa 4
- iZZ<_J(zn+1)xi,Xj><[Xz-,Xj1,Zk>
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1

1 S (=T Zn) X, X)) (T (Zk) X, Xj)
1<i<q, i=n+11<j<q, j=n+1

1

3 Y (=T (Zn) X1, Xl T (Zk) Xngr, Xi)
1<i<q, i=n+1

LY (T X T — (T (Fa) X, T )

1<i<q, i=n+1
1 1
T2 @I (Zn) X Xi) = (I Z) T (Znst) X1, Xnsn)
1<i<q, i=n+1
== RiC(Zk:a Zn+1) + 2<R(Xn+17 Zk:)ZnJrla Xn+1>'
This completes the proof of (17) and of the lemma, as Y, = X, — Z,, and Y41 =
[

Xnt1+ Zny1
Proof of Lemma 3. LetonU

n+1
E; = ZCinj, (19)
=1

1 € 7 € n+1 are scalar functions on U. Note that

where ¢;j, 1 < 1 <
d;j. Using (19), we get

Ez(p) = Y;;, SO Cz](p)
n+1 d
=3 -21 Cij <[vaXn+1] - J(Z”“)Xj>
]:

n,

VEYni1 = ) ¢ijVy; Yoq
! n (20)
+%Cqu(Zq)Xn+1 - % Z CijJ(Zj)Xn+1 - Cin+1J(Zn+1)Xn+1-
J=q+1
Also, for 1 < k < n at p we have
n+1 n+1
Ve Ei=) (Yk(Cz'j)Yj + Cz’j(p)VYij> = Yile)V;+VyYi (21
j=1 j=1
In particular, at p
(22)

bri(p) = (VEEi, 1) (p) = Yi(Cint1) + (Vv Yi, Yag1).

Considering (21) for k = i, projecting both sides of it to T, M, and using the

properties of the geodesic frame, we get

n
0= Yi(cij)Vj + (Vv Yi)".
7=1
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For1 <i<g—landg+1 <i<nVyY;=0,and Vy Y, = J(Z,))X, = (quYq)T,
since (J(Zq)Xq, Xn11 + Zn+1> = 0. Then, for 1 < j < ¢ we obtain
Y;’(Cij) = _<J(Zq)anY3>a I =q;
0, g+1<i<n.

We can deduce from (22) and the above considerations that for 1 <1 < n b (p) =
Yi(¢in+1). Differentiate (20) with respect to E; at p. For 1 <1 < ¢ —1 we get

1
Vi Ve Yni = =Yi(cing1) I (Zng1) Xnp1 + §in <[XiaXn+1] - J(Zn+1)Xi>

= —bii(p)J (Zn+1) Xnt1 — %J([XiaXnJrl])

For + = q we have

4[Xza J( n-l-l)X]

n
Ve, VEYnr1 = =Yy(Cing1) I (Zny1) Xn1 + ZYq(qu)VYanH
Pt

1
+§VYq ([anXn+1] - J(Zn+1)Xq + J(Zq)Xn-i—l) = _bqq(p)J(Zn-i-l)Xn-i-l

M|>—~

Z Zg) X, Xj) ([Xj,Xn+1] - J(Zn+1)Xj>

1 1 1
—1Xa J(Zn+1)Xq] + Z[an J(Zg)Xn1] = 7T (Zg) T (Zn11) Xq + ZJ(Zq)QXnH-
For ¢ +1 <7 < n we obtain
1
VEVEYni1 = =Yi(cint1)J (Zns1) Xnt1 — 3Vzi (J(Zi) Xnt1)

1
= —bii(p)J (Znt1) Xns1 + ZJ(Zi)ZXnJrl-
Summing up these expressions, we get for 1 <k <qg—1
n
Y VeV EYu1, Xi) = nH ()T (Zni1) X1, X)
i=1

-1

L]

(J([Xi, Xna]) Xi, Xp) +
1

e~ =
L\Dl’—‘

q—
+ Z Zqg) X g, X\ (=T (Zn 1) X, Xk)

<.
Il
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U2 (Z) Xy X0) = G2 X1, X0 = 7 32 T Ko, Xi)

4 ,
i=q+1
1
= nH(p)(J(Zn+1) X1, Xp) = 5 Yo (T X, Xi) X, Xp)
1<i<q, i=n+1
— WH () (1) X1, Xi) — Ric( X, X i1).
Here we use the equation J(Z;).J(Zn+1)Xg = J(Znt1)?Xn+1, which follows from

the construction of the frame. Thus we obtam the first expression in (18).
For ¢ +1 < k < n we have

»-Jkl»—‘

- Z (VEVEYni1, Zk) =

q—
Z XzaJ n+1 ] Zk>
=1 i=1

-1

(J(ZQ)XQ7X]><[X]7XTL+1]7Zk>
1

1
X (Zai) X, ) —
1
= Y BB X X 4 2T (B K, X
1<i<q, i=n+1
= Ric(Zk, Zny1) — HR(Xnt1, Zk) Znt1, Xntr)-

In the above calculation we used the fact that J(Z,)X, = J(Zn4+1)Xn4+1 and
[Xq, J(Zq)Xn+1] = [Xn+1, J(Zn+1) n+1] AS Y X Zq and Yn+1 = Xn_|_1 —|—
Zni1, we get the last three equalities in (18). |

»Q

1
2 <

<.
Il

(X, T(Z0) X 1], )

3. Mean Curvature and Harmonicity

Consider the tangent bundle TN and the distribution in T'N formed by left
invariant vector fields from Z. Since Z is an Abelian ideal, we can integrate
this distribution and obtain a foliation. Denote this foliation by Fz. Let G be
harmonic. Since by (8), in this case Yz (nH) = 0 for all ¢ + 1 < k < n, we have

Corollary 4. If the Gauss map of M is harmonic, then for each leaf M' of
Fz the mean curvature of the immersion is constant on M N M'.

Now we obtain some analogues of the results for Lie groups with bi-invariant
metrics that were stated in [6].

Let v be a vector field on M defined by v(p) =Yy, for p € M. In other words,
we obtain v(p) rotating the unit normal vector n(p) by the angle 7 in the 2-plane
containing 7(p) and orthogonal to both dL,(V) and dL,(Z).
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Proposition 5. Let M be a compact smooth oriented hypersurface in a 2-step
nilpotent Lie group N. Assume that:

(1) the mean curvature of M is constant on the integral curves of v;
(ii) the Gauss map of M is harmonic;
(iii) ||B||? + Ric(n,n) = 0 on M and ||B||? + Ric(n,n) > 0 at some point of M;

(iv) the set of points p € M such that n(p) ¢ dL,(V) is dense in M.

Then G(M) is contained in a closed hemisphere of S™ if and only if G(M) is
contained in a great sphere of S™.

Proof. One of the implications in the proposition is obvious. Suppose
that some closed hemisphere of S™ contains G(M), i.e., there exists a unit vector
v € R such that for all p € M (G(p),v) is nonpositive. Consider a smooth
function f = (G,v) on M. The coefficient of Y;(e) in (8) vanishes. For all points

from some dense set of M we have X, # 0 and thus X, 1; = p‘()’}:‘l‘Xq. This,
together with Y,(nH) = 0, implies that the coefficient of Y, ;1(e) is equal to
—||B||? — Ric(n,n) on the dense subset of M and hence on the whole M because
both the coefficient and —||B||> — Ric(n,n) are continuous. Taking the scalar

product of (8) with v, we obtain

Af =~ (I1BI? + Ric(n,n)) f > 0.

Then f is a subharmonic function on the compact manifold M. Thus f is constant,
and (||B||2 + Ric(n,n)) f=—Af=0. From the hypothesis, this implies f = 0,

hence G(M) is contained in the equator v*. This completes the proof. [ |

Proposition 6. Suppose that a smooth oriented hypersurface M in a 2-step
nilpotent Lie group N is CMC, its Gauss map is harmonic, for all p from some
dense set of M the normal vector n(p) ¢ dL,(V), and G(M) is contained in an
open hemisphere of S™. Then M is stable.

Proof  From the hypothesis, there exists v € R*! such that for all
p € M (G(p),v) > 0. As in the proof of Prop. 5, consider a scalar function
w(p) = (G(p),v) on M. This function is smooth and positive. As above, (8)
implies the Jacobi equation (A + || B||? + Ric(n,n)) w = 0. Now [7, Th. 1] implies
the stability of M. [
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4. Groups of Heisenberg Type

Let N be a group of Heisenberg type. Then from (5), for all X, Y €V,

n+1
Ric(X,Y) = 5 > (J(Zk)?*X,Y) = —%(n +1—¢)(X,Y).
k=q

Also, we can rewrite the coefficients in (8) for 1 <k < ¢ and for k =n+ 1 in the

form
1

(J([ X, X51) X, Xng1) + 4(R(Xg, Znt1) Zng1, Xng1)
1

L]

<.
Il

0, 1<k<g—-1;
_ | 1Zanil Kl (= n = 141Z0nil”), k=g
Xnsr* (g—n—1+]Z0il*) k=n+L
Moreover,
Ric(Zn i1, Zn11) = =5 T T Zni0)? = 120l
and thus

1
Ric(Yn+41, Yot1) = |Zn+1| (n +1-gq) |Xn+1|
Equation (8) now takes the form
q=1 7 n
AG(p) = > | —Yi(nH) -2 21 P> lbij(p)<J(Zj)Xian>
i=1 j=q+

23 bl (2 X, X0) + nH(p)<J(zn+1)Xn+1,Xk>) Yi(e)

(= Y0 + s Xl (5= = 14 Z0 )

—23 Y by(p)I(Z) X X,)

i=1j=q+1
£235 b))%, X,) + nH(p><J(zn+1>Xn+1,Xq>) e (23)
> ( _ Yk(nH)) Yi(e)

i=1j=q+1

<_2Z Z bZ]( )< ( )XzaXn—l—l)
+2 qu biq(P)(J (Zq) Xi, Xns1) = | BI*(9) = § | Znsa |

#Xunl (e == 1)+ Z0al?) ) Yo )
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Consider the case n = ¢, i.e., dimZ = 1. It is easy to see that n is then
even, n = 2m, where m is a positive integer, and N is isomorphic to the 2m + 1-
dimensional Heisenberg group (recall that N is connected and simply connected).

In this case at p we can choose Xi,..., Xom41 so that

J(Z)Xl:Xm_H, lgigm—l;

Xom Xom . Xomy1 .
J(2)Xm = = if Z 0;or———— if X 0;
J) Xpyi=—X; 1 <i<m—1;
J(2)Xom = — | Xom| X = — | Zomt1| Xim;

J(Z2)Xoms1 = — | Xom1| Xm-
Choose Zom = |Xom+1| Z and Zopi1 = |Zam+1| Z. Then (23) has the form
m—1
26(p) = =" (Viemt) + 2 ss (4) Ko ) Yile)
k=1

- (Ym(zmm T 2 H (p) | Xom 1]
+ 2021 2m (P) | X2m+1] |Z2m+1|> Yy (e)

=S (V) = 202 s0) X ]) i)
~ (Yam2mE) + Xomir|* Zama
— o () [Xoms1] |zzm+1|) Ym(e)
— (IB120) + % s § X
Ko ]! — 2bamm(0) |X2m+1|2) Yom 11 (6)

Consider an example of the three-dimensional Heisenberg group Nil. In the
space R? with Cartesian coordinates (z,y, z), define vector fields

0 0 0 0

Then Span(X,Y, 7) is a Lie algebra (with the only nonzero bracket [X,Y] = Z),
which is the Lie algebra of Nil. Introduce a scalar product in such a way that
the vectors X,Y and Z are orthonormal. Consider the following unit vector field:

_ Y + 7
U
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and vector fields

Y —zZ
Fy = Xa Fy = )
V1+a?
which are orthogonal to 7. In the notation of section , in each p F} = Xj,

Fy = X9 — Zs, n = X3 + Z3. By direct computation of covariant derivatives
it can be shown that the distribution spanned by F; and F5 is integrable and
form the tangent bundle of some two-dimensional foliation F in N4l. From the
(22-1)°

2(1+22)%’
H = 0. Thus the leaves of this foliation are minimal surfaces. The Laplacian on

G=nis

and

computation of the second fundamental form we obtain ||B||? =

AG = (F1F1 + FyFy — (VFIFI)T — (VFQFQ)T) G

T 1

(14 22)? 2 (1+m2)2n'

We obtain the same result considering (24) at some p. In fact,

2b22 |X3| |Z3| = 0;

T
| Xs1* | Zs] = 2b21 | X3]| 23| = 1 +22)°
IBIZ + 21752 = 21X + 130 = 2 [ X2 = — .
2 2 (14 22)

In particular, foliation F gives an example of a CMC-surface in N3l such that
its Gauss map is not harmonic.

Proposition 7. Suppose that M is a smooth oriented 2m-dimensional ma-
nifold tmmersed in the 2m + 1-dimensional Heisenberg group. If any two of the
following three claims are true, then the third one is also true:

(i) M is CMC;
(ii) the Gauss map of M is harmonic;

(113) at every point of M, the following holds:
(
bomr =0,1<k<m—1,m+1<k<2m—1;
Zomia| (1Xoms1]” = 2b2mm ) = 0 (25)

| Zom+1] (b11+ -+ + bam—12m—1 + 3b2m2m) = 0.

\

Here b;j, 1 < 14,5 < 2m are the coefficients of the second fundamental form
of M in the basis chosen as above.

202 Journal of Mathematical Physics, Analysis, Geometry, 2006, vol. 2, No. 2



The Gauss Map of Hypersurfaces in 2-Step Nilpotent Lie Groups

Proof. If (i) is true, then the equivalency of (i) and (i7) immediately
follows from (24). Suppose (i) and (ii) are true. Let A be a set of such points
of M that |Xom11] # 0. At the points of A (24) implies the expressions in (25).
Since the distribution orthogonal to Z is nonintegrable, A is dense in M. Now
the continuity of the left hand sides of the equations (25) implies (%ii). |

In the case m = 1 the next theorem shows that the restrictions for M arising
from (25) are rather strict.

Theorem 8. Let M be a smooth oriented CMC-surface in the Heisenberg group
Nil whose Gauss map ts harmonic. Then M is a “cylinder”, that is, its position
vector in the coordinates x, y, z has the form

r(s,t) = (f1(s), fa(s), 1), (26)

where f1 and fy are some smooth functions.

Proof Foreach p € M denote a(p) = |X3|, b(p) = |Z3|. Then a and b
are smooth scalar functions on M, and a? 4+ b*> = 1. Consider an arbitrary point
p of M. Choose X; as above and put Xy = J(Z)X;. Denote by T1 and T, the
vector fields that at each p € M are equal to X1 and Xs, respectively. Consider
unit tangent vector fields F; and F5, and a unit normal vector field n of M of the
form

F1 = Tl, F2 = bT2 —CLZ, n= aT2 + bZ.

Denote by k1 and ks the geodesic curvatures of the integral curves of Fy and Fj,
respectively. In other words,

Vi F = t1F, Vi Fy = =\ F, VR, Fi = —koFy, Vi, Fy = ko Fy, (27)

where V is the Riemannian connection on M induced by the immersion. The
Gaussian curvature of the surface is

K = Fi(k2) + Fa(r1) — (k1)” = (k2)*. (28)

Assume that for some p € M a(p) # 0 and b(p) # 0. Then ab # 0 on some
neighborhood U of p. Then (25) implies that on U the matrix of the second

fundamental form of M is -
3H sa
2
( sa® —H ) ' (29)

In particular, the extrinsic curvature K,y of the surface is —3H? — ia‘l.
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Denote by B the second fundamental form of the immersion. Then the Codazzi
equations for M are

(Vi B) (Fy, F1) — (VR B) (Fi, 1) = (R(F1, F2) Fi,n) = ab;

(VR,B) (F1, F2) — (VR B) (F, Fy) = (R(F3, F1)F2,n) = 0.

Computing the covariant derivatives of the second fundamental form, we obtain

for U
aFy(a) + 4Hk) — a’ky — ab = 0,

aFy(a) — 4Hky — a?k1 = 0. (30)

The Gauss equation has the form

1 1
K = Kewt + (R(Fy, F3)Fy, Fi) = —3H” — ZG4 - %b2 + ZGQ-

From (28) we obtain

1 3 1
Zat = Sp? 4 —a?.

Fi(k2) + Fo(r1) = (k1)° = (k2)” = =3H” — Ja* = 19 +

(31)

Using (30) and the form of Fy and n, we can derive

2
(Vi Fa,n) = —(F5, V) = —(F, Vg (%F2 + (% + b) Z>>

1 1
=—-F (%) (Fo, Fo) — Iy (g) (Fy,7Z) — %(FQaVF1F2> - E(FZaVHZ)

a 1 1 1 1 4HKq
=-Fi(5) +af (z) "t =g (‘ a

N —

+a/<;2+b> +

=— — K

2
(Ve Fi,m) = —(F1,Vrn) = —(F1,Vp, (%Fb + (% + b) Z>>

a 1 a 1 1 a 1
=——(F1,Vp,F) — —(F1,Vp,7Z) = ——ko — —(Th, =bT}) = ——Kko — —.
b< 1, Vi, Fh) b< 1, Vi,7) p 2 b< 5 1) p2 g
In the above equations we used the fact that Z is left invariant and the expres-
sions (2) for the covariant derivative. Since ab # 0, the integrability condition

([F1, F2],n) = 0 takes the form Hk; = 0. Besides, (29) implies
3H = by = (Vi F1,n) = —(F1, V)

1 a
E<F13VF12> = —K1.

2
=—(F,Vp (2F2+ (a—+b> Z>>:—E<F1aVF1F2>_ 7,

b b b
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Thus H = k; = 0. In particular, Vg F1 = 0, hence T} = F} is a geodesic vector
field in the ambient manifold. Note that T} belongs to the distribution that spans
the left invariant vector fields of V. Considering the set of geodesics in Nil (see
[3, Prop. (3.1) and (3.5)]), we obtain that T} = ¢X +dY’, where ¢,d € R are some
constants, i.e., Ty = X7 and Ty = Xy are left invariant. Note that the second
equation of (30) implies F»(a) = Fy(b) = 0. Thus we obtain

VF2F2 = VF2 (bXQ — GZ) = beXQ,azXQ — aVbXQ,aZZ = —ale.

Therefore k9 = —ab. It follows from this equation, from the computations above
in this proof, and from (29) that

1 a 1
5612 =bia = (Vp, Fp,n) = k25 = a* —

?

DN | =

and a®> = b* = % But then a = b = g, and the first equation in (30) implies
ako + b = 0, which leads to a contradiction.

Thus ab = 0 at each point of M. Since a? +b%> = 1 and a, b are continuous,
a =1 or b =1 identically. The latter case is impossible since Z is not integrable;
then the normal vector of M is orthogonal to Z, and Fo = —Z. Therefore M is
invariant under the action of Z by left translations, and M is formed by integral

curves of Z, which are geodesics (0,0,¢). Then M has the form (26). ]

Note that a similar result was obtained in [13] by a different method. Also, in
[13] the equations of the CMC-surfaces of the form (26) were obtained. Proposi-
tion 7 then implies that the Gauss maps of all these surfaces are harmonic.
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