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We determine all cases when there exists a meromorphic solution of

the ODE
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This equation describes traveling waves solutions of the Kuramoto�Siva-

shinsky equation. It turns out that there are no other meromorphic solutions

besides those explicit solutions found by Kuramoto and Kudryashov. The

general method used in this paper, based on Nevanlinna theory, is applicable

to �nding all meromorphic solutions of a wide class of nonlinear ODE.
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The Kuramoto�Sivashinsky equation

�t + ��xxxx + b�xxx + ��xx + ��x = 0; �; b; � 2 R; � 6= 0;

arises in several problems of physics and chemistry [13], and it was intensively

studied in the recent years [2,10�13,17,19]. Solutions of the form of a traveling

wave

�(x; t) = c+ w(z); z = x� ct;

satisfy the ordinary di�erential equation

�w000 + bw00 + �w0 + w2=2 +A = 0; � 6= 0; (1)

which is the object of our study here. We allow complex values for parameters

�; �; b and A in the equation (1).
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It is known [17, 19] that the general solution of (1) has movable logarithmic

branch points, which indicates chaotic behavior. However, for some values of

parameters �; b; � and A, physically meaningful one-parametric families of mero-

morphic solutions were found in [11�13]. Here and in what follows, �meromorphic

function� means a function meromorphic in the complex planeC. In [19] the possi-

bility of existence of other meromorphic solutions, except those found in [11�13],

is discussed. All known meromorphic solutions of the equation (1) are elliptic

functions or their degenerations. More precisely, let us say that a meromorphic

function f belongs to the class W if f is a rational function of z, or a rational

function of exp(az); a 2 C, or an elliptic function. The letter W is chosen for

Weierstrass who proved that only these functions can satisfy an algebraic addition

theorem.

In this paper we will show that for any choice of parameters, such that � 6= 0,

all meromorphic solutions of the equation (1) belong to the class W . Moreover,

there are no meromorphic solutions except those found in [11�13].

The crucial fact about (1) used here is the following

Uniqueness Property: there is exactly one formal meromorphic Laurent

series with a pole at zero that satis�es the equation.

To check this we substitute the series

w(z) =

1X
k=m

ckz
k with m < 0; cm 6= 0 (2)

into the equation (1), and obtain m = �3; c�3 = 120� 6= 0, and the rest of the

coe�cients ck are determined uniquely (see, for example, [2, 4]). The principal

part of the expansion is

w(z) = 120�z�3 � 15bz�2 +

�
60�

19
�

15b2

76�

�
z�1 + : : : : (3)

Theorem 1. All meromorphic solutions w of the equation (1) belong to the

class W . If for some values of parameters such solution w exists, then all other

meromorphic solutions form a one-parametric family w(z� z0); z0 2 C. Further-

more,

(i) Elliptic solutions exist only if b2 = 16��. They are of order 3 and have

one triple pole per parallelogram of periods.

(ii) All exponential solutions have the form P (tan kz), where P is a polynomial

of degree at most 3 and k 2 C.

(iii) Nonconstant rational solutions occur if and only if b = � = A = 0 and

they have the form w(z) = 120�(z � z0)
�3, z0 2 C.
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Statements (i)�(iii) permit to �nd all values of parameters when meromorphic

solutions occur, as well as solutions themselves, explicitly. It turns out that there

are no other elliptic solutions except those found by N.A. Kudryashov in [12] (see

also [19]). This fact was recently independently established by A.N.W. Hone [10].

Similarly, it follows from (ii) that there are no other exponential solutions except

those found by Y. Kuramoto and T. Tsuzuki [13] and N.A. Kudryashov [11].

Our Theorem 1 does not exclude the existence of other �explicit� solutions,

but it implies that all solutions except those listed in (i)�(iii) have more compli-

cated singularities, other than poles, like branching points, or essential isolated

singularities in C, or nonisolated singularities.

We will see that the proof of Theorem 1 is of very general character, and

applies to many other equations which have the uniqueness property of formal

Laurent solutions stated above. In [4] the author proved a similar result about the

generalized Briot�Bouquet equation F (w(k); w) = 0, where F is a polynomial in

two variables and k is odd. If k is even, the equation does not have the uniqueness

property, as stated above. However, the conjecture that all meromorphic solutions

of all generalized Briot�Bouquet equations belong to the classW is plausible, and

recently Tuen Wai Ng informed the author that he made a progress towards this

conjecture.

It is desirable to search other interesting ODE's with this uniqueness property.

The method proposed here will permit to �nd all their meromorphic solutions.

We also mention that for any given algebraic ODE, the uniqueness property can

be checked with an e�cient algorithm explained in [1].

The proof of Theorem 1 can be based on any of the two standard tools of

analytic theory of di�erential equations, Nevanlinna theory or Wiman�Valiron

theory (see [18, Ch. V] and [7, Ch. VI]). We choose Nevanlinna theory here as

a more general method. For convenience of a reader unfamiliar with this theory

we include the Appendix with de�nitions and statements of the results we use.

P r o o f o f T h e o r e m 1. We write equation (1) as

L(w) = w2
� 2A; where L(w) = 2(�w000 + bw00 + �w0): (4)

Let w be a meromorphic solution of (1). The symbols O and o in our formulas

refer to asymptotics when r ! 1; r 62 E, where E � [0;1) is a set of �nite

measure.

We consider two cases.

Case 1. w has �nitely many poles (possibly none). Then the Nevanlinna

characteristic T (r; L(w)) can be estimated as follows:

T (r; L(w)) = m(r; L(w)) +O(log r)

� m(r; L(w)=w) +m(r; w) +O(log r)

� (1 + o(1))T (r; w) +O(log r);
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where we used property (13) and the Lemma on the Logarithmic Derivative (see

the Appendix) to estimate m(r; L(w)=w). On the other hand, T (r; w2 � 2A) =

2T (r; w) +O(1) (Appendix, (9), (10)). So (4) gives

T (r; w) = O(log r);

thus w is a rational function.

If z0 and z1 are two poles of w in C then both w(z + z0) and w(z + z1) are

solutions of (1) with a pole at zero, thus w(z) � w(z� z1+ z0) by the uniqueness

property, and we conclude that w is periodic. This is a contradiction because the

only periodic rational functions are constants, and they do not have poles.

If w has one pole inC, then w(z) = c(z�z0)
�3+P (z); where P is a polynomial.

Substituting this to our equation, we conclude that P = 0, b = � = A = 0 and

c = 120�: This gives (iii).

Case 2. w has in�nitely many poles. Arguing as above we conclude that for

every pair of poles z0 and z1, the di�erence z0 � z1 is a period of w. So the set of

all poles is of the form z0+� where � is a nontrivial discrete subgroup of (C;+).

Thus � is isomorphic to either Z or Z�Z, and we consider each case separately.

If � is isomorphic to Z�Z then w is elliptic and there is exactly one pole per

period. From (3) we conclude that all poles are of order 3. The residues at these

poles should be zero, so we obtain from (3) b2 = 16��. This proves (i).

Now we consider the remaining case when � is isomorphic to Z. Then C=� =

C
� = Cn0, and w is a simply periodic meromorphic function, so it is factorized

as R(exp(az)), where R is a meromorphic function in C�, having exactly one pole

in C�. Our goal is to prove that R is rational.

Making the change of the independent variable � = exp(az) in (1) we obtain

a3��3R000 + (3a3� + a2b)�2R00 + (a3� + a2b+ a�)�R0 = R2=2�A: (5)

Now we argue exactly as in Case 1, denoting the left hand side of (5) by L(R).

As R has only one pole, the Lemma on the Logarithmic Derivative implies

T (r; L(R)) � (1 + o(1))T (r;R) +O(log r);

but T (r;R2=2 � A) = 2T (r;R) + O(1), so, by (5), T (r;R) = O(log r), and thus

R has no essential singularity at 1. Applying the same argument to R(1=�), we

conclude that R has no essential singularity at zero. So R is rational.

Now it is easy to see from (5) that R cannot have a pole at1 (if R(�) � c�d),

d > 0, then the right hand side has order �2d while the left hand side has order

at most �d). Similar argument shows that R cannot have a pole at zero.

Thus R has only one pole in C, and this pole has to be of order 3 by (3). So

we obtain statement (ii).

This completes the proof.
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Conclusions and generalizations

The method of this paper permits the following generalization. Consider an al-

gebraic autonomous di�erential equationX
ajw

j0(w0)j1 : : : (w(k))jk = 0; (6)

where j = (j0; : : : ; jm) is a multi-index, and aj are constants. The number j0 +

: : :+ jk is called the degree of a monomial. Uniqueness Property can be replaced

by the following

Finiteness Property. There are only �nitely many formal Laurent series of

the form (2) that satisfy the equation.

For any given equation, Finiteness Property can be veri�ed either by substi-

tuting to the equation a Laurent series with undetermined coe�cients or by an

algorithm in [2].

Theorem 2. Suppose that (6) has the �niteness property, so that the equation

is satis�ed by �nitely many Laurent series �n, 1 � n � p, of the form (2). If in

addition (6) has only one monomial of top degree, then all meromorphic solutions

belong to the class W . Each solution is either

a) an elliptic with at most p poles per parallelogram of periods, or

b) has the form R(eaz), where R is a rational function with at most p poles in

C
�, or

c) is a rational function R with at most p poles in C.

Nevanlinna and Wiman�Valiron theories usually give only necessary condi-

tions for existence of meromorphic solutions of nonlinear ODE. However, some-

times these necessary conditions are so strong that they permit to �nd or classify

all meromorphic solutions. For example, all meromorphic solutions of the di�er-

ential equations F (w0; w; z) = 0; where F is a polynomial and w = w(z) were

classi�ed in [5, 6] in this way.

In combination with the Finiteness Property, Nevanlinna theory permits to

make a strong conclusion that all meromorphic solutions belong to the class W ,

and moreover, to give a priori bounds for degrees of these meromorphic solutions,

as in statements (i)�(iii) of our Theorem 1. Having established such bounds one

can plug the solution with indetermined coe�cients into the equation, and �nd all

meromorphic solutions explicitly. Such computation can be hard, but in principle

it can be always done in �nitely many steps.

Other instances known to the Author when such method was applied success-

fully are the paper on Briot�Bouquet-type equations [4] mentioned above, and [3]

where all meromorphic solutions of the equation

w00w � (w0)2 + aw00 + bw0 + cw + d (7)
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were found. The method of [3] is a combination of the Finiteness Property and

Wiman�Valiron theory. Solutions of (7) do not have poles, but for generic pa-

rameters the following version of the Finiteness Property holds: there are at most

two holomorphic solutions w with w(0) = 0 in a neighborhood of 0.

Appendix

Good general introductions to Nevanlinna theory can be found in [18], which

contains a chapter on analytic theory of di�erential equations, and [14, Ch. VI].

The modern development is described in [8, 9]. Nevanlinna's own books are

[15, 16].

Let f 6� 0 be a meromorphic function in a punctured neighborhood of in�nity

fz : r0 � jzj < 1g. Let n(r; f) be the counting function of poles, that is n(r; f)

is the number of poles in the ring r0 � jzj � r, counting multiplicity. We set for

r > r0

N(r; f) =

rZ
r0

n(t; f)

t
dt; (8)

and

m(r; f) =
1

2�

�Z
��

log+ jf(rei�)j d�;

where x+ = maxfx; 0g. The Nevanlinna characteristic is de�ned by

T (r; f) = m(r; f) +N(r; f):

Using another number r0 in the de�nition of N(r; f) adds to the characteristic

O(log r) as r !1 and we will see that such summands are negligible when f has

an essential singularity at in�nity.

The characteristic T (r; f) is a nonnegative function, and

1. If the singularity of f at in�nity is essential then T (r; f) is increasing and

T (r; f)= log r ! 1 as r ! 1. If the in�nite point is a removable or a pole, we

have T (r; f) = O(log r).

2. The algebraic properties of T (r; f) are similar to the properties of the

degree of a rational function:

T (r; fg) � T (r; f) + T (r; g); (9)

T (r; fn) = nT (r; f); (10)

T (r; f + g) � T (r; f) + T (r; g) +O(1); (11)

T (r; 1=f) = T (r; f) +O(1): (12)
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Here we assume that the same r0 was used in the de�nition of T (r; f) and T (r; g).

Properties (9�11) are elementary and follow from the similar properties of N(r; f)

and m(r; f), for example,

m(r; fg) � m(r; f) +m(r; g): (13)

Property (12) is the restatement of the Jensen formula, which is fundamental

for the whole subject. These properties show that T (r; f) can be considered as

a generalization of the degree of a rational function to functions of �in�nite degree�,

that is to meromorphic functions which have an essential singularity at in�nity.

For such functions, the �generalized degree� T (r; f) is an increasing function rather

than a number. If f is a rational function and f(0) 6= 1 we can take r0 = 0 in

the de�nition of N(r; f). Then it is easy to see that T (r; f) = deg f log r +O(1):

For applications to di�erential equations, the most important property is

The Lemma on the Logarithmic Derivative

m(r; f 0=f) = O(log T (r; f) + log r); r !1; r 62 E;

where E is some exceptional set of �nite length. The term log r can be omitted

if f has no essential singularity at in�nity. The exceptional set E may indeed

occur but it does not hurt in most applications. From now on all our asymptotic

relations have to be understood with r !1; r 62 E.

As the di�erentiation increases the orders of poles by a factor at most 2,

we obtain N(r; f 0) � 2N(r; f): Combined with the Lemma on the Logarithmic

Derivative, and property (13) this gives

T (r; f 0) = N(r; f 0) +m(r; f 0) � 2N(r; f) +m(r; ff 0=f)

� 2N(r; f) +m(r; f) +m(r; f 0=f) � (2 + o(1))T (r; f):

Thus T (r; f (n)) = O(T (r; f)). If f has no poles, we obtain

T (r; f 0) = m(r; f 0) = m(r; ff 0=f) � m(r; f) +m(r; f 0=f) � (1 + o(1))T (r; f);

and, by induction,

T (r; fn) � (1 + o(1))T (r; f):

Finitely many poles contribute O(log r) to N(r; f), so for functions with �nitely

many poles we have

T (r; fn) � (1 + o(1))T (r; f) +O(log r):

Similarly, if L(f) is a linear di�erential polynomial of f with rational coe�cients,

and f has �nitely many poles, we obtain

T (r; L(f)) � (1 + o(1))T (r; f) +O(log r):
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The Author thanks Tuen Wai Ng and Robert Conte for bringing to his atten-

tion the connection between papers [4] and [19], and stimulating discussions.
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