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1. Introduction

In this paper we consider the problem of integration of the following system
of equations

o0
Uyt =sinu+ [ (¢% — ¢%) dn ,

e (1)
Lé = no,
’U,(QI,O) = ’U,()(iﬂ), z € R, (2)
d g 9
where L(t) = 1 < g‘f_f _2% >, Uy = 3“(%2’” , Upt = 85;%;'5) , and  ug(z)
2 T
(—oo <z < o0) is a function satisfying the conditions:
1) uo(z) = 0(mod 27m) as |z| — oo,
i (3)
/ (1 + L) [uh ()] + |l (2)]) dx < oo

2) the operator L(0) does not have the points of spectral singularity (see
[6]) and has only simple eigenvalues &;(0), &(0), ..., Ex(0).
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We assume that the vector function ¢ = (¢ (z,7,t), ¢a(z,n,t))" is a solution
of the equation L¢ = n¢ satisfying the condition

¢ — A(n,t) < Ezgg;]?)m) ) as T — 00, (4)

where A(n,t) is a continuous function satisfying the condition

o0

A(—,1) = A(n, 1), / A, )Py < oo, (5)

—0o0

for all nonnegative values of ¢.

We assume that the solution u(z,t) of the problem (1)-(5) exists, possesses
the required smoothness, and tends to its limits sufficiently rapidly as x — +oo,
i.e., for all £ > 0 it satisfies the condition

u(z,t) = 0(mod 27) as |z| = oo,
(1 + |2]) iz (2, 8)] + |tiaa(, 8)]) da < 00, (6)

The main objective of this paper is to derive representations for the solutions
u(z,t), ¢(x,n,t) within the framework of the inverse scattering method for L(t)
operator.

The full description of the solutions of the Sine-Gordon equation without
sources was given in [1-2].

The scattering problem for L(t) operator was studied in the papers by
V.E. Zakharov, A.B. Shabat [3|, L.P. Nizhnik, Fam Loy Woo [4], I.S. Frolov
[5], A.B. Khasanov [6] and in many others.

Note that the similar problem for the KdV equation was considered
in the paper [7]. In the V.K. Mel'nikov’s paper [8] there was obtained
evolution of the scattering dates for the selfadjoint Dirac type operator with
the potential which is a solution of the NLS equation with the integral type
source. Notice however that in our case operator L(t) is not self-adjoint. As
it is well known, under the condition (6) the not self-adjoint operator L(t)
has a finite number of complex eigenvalues (in general multiple). Moreover,
operator L(t) may have a finite number of real points of spectral singularity.
The continuous spectrum of the operator L(t) fills up the real line, i.e.,
Oess(L(t)) = (—o0, 00). For simplicity we suppose that operator L(t) has
a finite number of simple complex eigenvalues, and does not have points of
singular spectrum.
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2. Scattering Problem for Zakharov—Shabat Eigenvalue Problem

In this section we present some facts from the theory of the direct and
inverse scattering problems for the operator L(t) (for example, see [9]). For
a while in this section we omit the dependence of functions on .

We consider the eigenvalue problem

{ Ve + 60 = U/ (2)0y (7)

Vor — 1€Ve = —u/ () vy,

on the interval —oo < x < oo. The potential u'(x) is assumed to satisfy the
condition

u(z) = 0(mod 27) as |z| — oo, / (14 |z]) |/ (z)]) dz < 00.  (8)

We define the Jost solution of the problem (7)—(8) with the following
asymptotic values

0 as Tr — —0Q, as r — oQ.

o (1o

For real £ the pairs of functions {¢, ¢} and {1/), zﬁ} are the pairs of
linearly independent solutions of (7), and therefore

p=a@Y+b&)Y, ¢=—al)yY -+, (9)

where a(§) = W {p, ¥} = o1y — oat)y, b(§) = W{ﬁ/_)aQO}, a(§)a(—E) +
b(§)b(=¢) = 1.

For real £ the coefficient b(£) has the following asymptotic b(§) = O (é)

as |£] — oo, Im& = 0. The coefficient a(£) (a(£)) can be analytically
extended into the upper (lower) half-plane Im & > 0 (Im& < 0). The

function a(&) has the asymptotic a(§) =1+ O (I?l\) as €| — oo, Im& > 0.

Besides, in the half-plane Im £ > 0 (Im§ < 0) the function a(§) (a(§))
has a finite number of zeros at the points & (fk), and these points are the
eigenvalues of the operator

o 4 u'(z)
L =1 ﬁ%.(x) _2i y
2 dx
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so that (p(xafk) = C]ﬂ/)(l‘,fk) (@(xagk) = Okw(xagk))ﬂ k= 17 27 SREE) N. It is
clear that the function ¢ = p(z, &) is an eigenfunction of the operator L
corresponding to the eigenvalue &.

We assume that the operator L does not have multiple eigenvalues. The
requirement of absence of the points of spectral singularity of the operator
L(t) means the absence of real zeros of function a(§). The class of the
potentials satisfying a(¢) # 0 as € € R' is not empty. For example, this
class contains “unreflected” potentials, i.e., potential for which () = 0. In
this case the equation a(£)a(—&) =1, £ € R' is valid.

We have the following integral representation for the function ¢ [9]

Y= ( (1) ) ei§x+/K (z,5) e *ds, (10)

Kl (1‘7 S)
KQ (1‘7 S)
related to the potential u(z) by the formulae

where the kernel K (z,s) = ( ) does not depend on ¢ and is

dKs (z, )

o (z) = 4K, (z,2), (v (2))? =8 Fral (11)

Components K;(z,y), Ko(z,y) of the kernel K (z,y) in the representa-
tion (10), for y > x are solutions of the integral Gelfand-Levitan—Marchenko
equations

Ki(z,y) — F(x +y) + ??Kl(x,z)F(z’ +5)F(s+y)dsdz = 0,

Tr x

Ks(z,y) + TF(x + 5)F(s+y)ds + T}OKQ(I‘, 2)F(z+ s)F (s + y)dsdz = 0,

r T

2r a(
Now the potential can be expressed via K (z,y) by the formula (11).
The set of the quantities {r+ (&) = %, Gy Cry k=1,2,..., N} is called

the scattering data for equations (7).
It is worthy to remark that the vector functions

o0 N
where F(z) = &= [ %ei&dg —iY Oy,
j=1

d%(SO—Cm/))‘ £=¢,
a (&) ’

hy (z) = ~=1,2,....N, (12)
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are solutions of the equations Lh, = &,h, and have the following asymp-
totics

hn~—0n<(1)>ei5” as T — —00,
(13)
1 —iépx
hnfv(O)e n as T — 00.

According to (13) we obtain
W{(pna hn} = (pnlhnZ - (PnZhnl = _Cn, n = 1, 2, ceey N. (14)

It is easy to see that the following statement is true.

Lemma 1. If Y (z,() and Z (z,n) are solutions of the equations LY =
CY and LZ = nZ, then

d .
(122 — y221) = =i (C = n) (122 + Y221)

dz
d .
dr (Y121 + y222) = =i (C+ 1) (Y121 — Y222) -
3. Evolution of the Scattering Data

Let the potential u (z,t) of the problem (7) be a solution of the system
of equations

upe = sinu + [ (¢ — ¢3) dn,

(15)
Lo =ng¢.
We put G(z,t) = }o (¢? — ¢2) dn. According to (4)

o(z,m,t) = A(n,t) (Y(z,n,t) + ¥(z,n,1)),

and therefore, by using (9), as well as the asymptotic for the Jost solution
and a(§), b(§) and Riemann—Lebesgue lemma in each nonnegative ¢, we have
G(z,t) = o(1) as x — +oo. The first equation of (15) can be rewritten in
the form

Uz = sinu + G (16)
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Lemma 2. If potential u (z,t) of the problem (7) is a solution of equation

(16), then the scattering data depend on t as

dr’ = —ir+ + 1 (Ges + Go?) dz,  (Im€ =0)
dt 26 202 2 A ’
dc e
o 2§n+/2( 2Un2 + hp1n1) d ,
d i [ (Gony + Gopy) d
%:m — ., n=12...,N.
4 f @nl@n?dl‘
Proof Here we use the method of [10] (see also [11]).
We set icosu  isiny
A= ( zsilgu 4z§cos U >
a¢ Tag
It is easy to see that
[L,A]zLA—AL:—i(8M OT> (17)
2

The operator L (t) depends on time ¢ as a parameter and therefore
oL Urt
=il 2 |
7= (% )
Comparing formulas (17) and (18) with the equation (16), we can see
that the equation (16) is identical to the operator relation

(18)

oL
— + LAl =1 19
(LA =R, (19)

0 &
where R = ( G 5
2
Let ¢ (x,&,t) be the Jost solution of the equation

Lo =E&p.
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We differentiate this relation with respect to time

Lip + Loy = S, (20)
and substitute L; from (19) into (20). This results to
(L =€) (pe — Ap) = —iRp. (21)
We seek the solutions of (21) in the form
pr— Ap=a(@)y+ 5 (z) . (22)
To find a(z) and B(x) we use the equation
Mogtp + M By = —Rep, (23)

where

According to (9)
V'Mp=—9"My =a, $"Myp= "My =0,
- P2
h = :
where ¢ < o )
Multiplying (23) by ¢ and T we yield

>TR TR

a a

On the basis of (6) and the asymptotic of the Jost solution we have

@t—Awé—é<é>ei& as r — —oo.

Therefore from (22) one gets

B(x)—>—4—£, a(x) —0 as T — —o0.
By solving (24) we obtain
T 1 T
a(r) = —/ ¢"Rodr, B (v) = ——/ YT Rpdr — é
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Therefore the relation (22) can be rewritten in the form

1 [ 1 [ :
— Ap = —/ ¢T Ropdx -1 + ——/ ST Rodr — = | o. (25)
a a 4¢

Using (9) we take the limit in (25) as # — oo and obtain

o=~ [ " Reds,
by = ——§b+ /QOTRgodx——/wTRgpdx

We differentiate the relation ¢, = C,1, with respect to ¢

dén

+ dt

§=4&n

Lo O s,

T+ ‘ssn "OE| €=, Tt

(26)

and substitute dig (p— Cntp) ‘ f—¢ from (12) into (26). This results in the

following formula:

Opn — O
where % = 8_f é_ _ é_n .

Similarly to the continuous spectrum case, by using (14) for the discrete spec-
trum, we have

Bn (17, 1 [ ;
ot A‘P"( Cn/‘D"RSD”di) fin (Cn/h”R“"”dx i, |

— 00 —0o0
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Hence, according to (27), we have

o iy + Cp 2o — (&) By, — O Adhy

Using (13) we pass to the limit in (28), as 2 — oo, and obtain

an: —L—F/BTTLPM/)ndi Ch,

— 00

)
~T
& Repr, dx
g, IO

d  Cpa(&)

Therefore
dC TG
n_ | __v bl
a 2%, + / 2 (hn2¢n2 +hn1¢n1)dx Ch,
e | (@) ds
dt 2Cna (&n)
Hence, according to the relation
. 24 T
a (fn) = _C_ (Pnl(Pn2d$7
n
we have -
i [ (Gehy+ Gohy) da
den _
dt o0
4 f On1PnadT
Lemma 2 is proved.
Let in Lemma 2 -
G= [ (¢ —d3)dn
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According to Lemma 1

o0

/ (S (2, 1) — 2(x,m) (D22, €) + P2, 6)) dr
_ i (D1(z,m) 01 (2,8) +¢2 (2,) 2 (2,6))? (p1(z,n) p2(2,8) —pa(z,n) 91 (2,6))> R
= 4 Jim 2 + = )y

By using (4), (5), (9) and the Riemann-Lebesgue lemma, we obtain

7 o0
2

/ (G} + G?) dz = 2ab | TA?(€, 1) +in./ Ag (J?:ﬂt)d?7

S . 7
Similarly,
/ (Gepna + Gopy) dz =0,
00 o , ]

/ (Ghuatpnz + Ghyitpnr) dz = 2i / A(n, aln, a(n,?)

- R n+&n

By using Lemma 2 and the relation a(§)a(¢) = W, we have the
following theorem

Theorem. If the functions u (x,t), ¢p1(n,x,t), ¢o(n,z,t are solutions of the
problem (1)-(6), then the scattering data of the operator L (t) depend on t as

o0
dr i A%(n,t)

o0

ic. P A2 (,t)
@ T (_ﬁ t {O (1+r+(n,t)r+(mt))(n+€n)> Cn:

dén _ _
W_O’ n-l,Z,...,N.

The above relations determine completely the evolution of the scattering data
for the operator L (), which allows us to find the solutions of problem for (1)-(6)
by using the inverse scattering problem method.

In conclusion we consider the following example. Let

Y
2

ul,—y = 4arctyg (62$) . An,t) = (1+ 772)
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1]

2]

3]

[4]

[5]

[6]

In this case r*(£,0) =0, £&(0) =i, C1(0) = —24.
Therefore, by using the theorem

T—1

rH(E 1) =0, &(8) =i, Ci(t) = —Ziexp <Tt>
According to the inverse scattering problem method

-1
u(z,t) = darctg <exp (296 - 7rTt)) ,

(178*2””9)((:05 nx—1sin nx)

¢1(z,m) = \/ﬁ <COS nT + (14+n2)ch(2z—g)

; . (1+e_2x+9)(sin nx+n cos nx
+ \/nZJr_l <_ ST + T+ 72 )ch(2z—g) ’

(1—1—6*2””*9)((:05 nT—nsin nx)

p2(z,m) = \/7712? <COS ne — (1+72)ch(2z—g)

(lfe_m"‘g)(sin nx+1 cos Nz

+\/nl2+1 <Sinnx + (14n?)ch(2z—g) ) ’
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