Generalized Resolvents of Symmetric Relations Generated on Semi-Axis by a Differential Expression and a Nonnegative Operator Function

V.M. Bruk
Saratov State Technical University 77 Politechnitseskaja Str., Saratov, 410054, Russia
E-mail:bruk@san.ru

Received July 10, 2005

Generalized resolvents of a minimal symmetric relation generated on the semi-axis by a formally selfadjoint differential expression and a nonnegative operator function are described.

Key words: symmetric relation, generalized resolvent, characteristic operator function, inductive limit, projective limit.

Mathematics Subject Classification 2000: 47A06, 47A10, 34B27.

1. Introduction

In [1], A.V. Straus described the generalized resolvents of the symmetric operator generated by a formally selfadjoint differential expression of even order in a scalar case. In [2] these results were used for the operator case. A differential expression with a nonnegative weight generates a linear relation. This relation is not an operator, in general. The generalized resolvents formulae for these relations are given in [3-5]. However, in these papers either the finite-dimensional case $[3,5]$ or the infinite-dimensional case $[3,4]$ under conditions that the kernel (the null space) of the maximal relation contained only solutions of the corresponding homogeneous equation was considered. In our paper a general situation is considered. We use projective and inductive limits of special spaces in the singular case to construct the spaces where a characteristic operator function acts. We consider the case of semi-axis instead of the general singular case only to simplify notations. The detailed bibliography is given in $[1-5]$ and in the monograph [6].

[^0]
2. Notations and Auxiliary Formulae

Let H be a separable Hilbert space with the scalar product (\cdot, \cdot) and the norm $\|\cdot\| ; A(t)$ be an operator function strongly measurable on the interval $[a, \infty)$; the values of $A(t)$ are bounded operators in H such that for all $x \in H$ the scalar product $(A(t) x, x) \geq 0$ almost everywhere. Suppose the norm $\|A(t)\|$ is integrable on every compact interval $[a, \beta] \subset[a, \infty)$.

We denote by l the differential expression of order $r(r=2 n$ or $r=2 n+1)$:

$$
\begin{gathered}
l[y]= \\
\left\{\begin{array}{c}
\sum_{k=1}^{n}(-1)^{k}\left\{\left(p_{n-k}(t) y^{(k)}\right)^{(k)}-i\left[\left(q_{n-k}(t) y^{(k)}\right)^{(k-1)}+\left(q_{n-k}(t) y^{(k-1)}\right)^{(k)}\right]\right\}+p_{n}(t) y, \\
\sum_{k=0}^{n}(-1)^{k}\left\{i\left[\left(q_{n-k}(t) y^{(k)}\right)^{(k+1)}+\left(q_{n-k}(t) y^{(k+1)}\right)^{(k)}\right]+\left(p_{n-k}(t) y^{(k)}\right)^{(k)}\right\} .
\end{array}\right.
\end{gathered}
$$

Coefficients of l are bounded selfadjoint operators in H. The leading coefficients, $p_{0}(t)$ in the case of $r=2 n$ and $q_{0}(t)$ in the case of $r=2 n+1$, have the bounded inverse operator almost everywhere. The functions $p_{n-k}(t)$ are strongly differentiable k times and the functions $q_{n-k}(t)$ are strongly differentiable k times in the case $r=2 n$, and $k+1$ times in the case $r=2 n+1$. In general, we do not assume the coefficients of the expression l to be smooth as we have just said. According to [7] we treat l as a quasidifferential expression. Quasi-derivatives for the expression l are defined in [7]. Suppose the functions $p_{j}(t), q_{m}(t)$ are strongly measurable, the function $q_{0}(t)$ in the case $r=2 n+1$ is strongly differentiable, and the norms of functions

$$
\begin{aligned}
& p_{0}^{-1}(t), p_{0}^{-1}(t) q_{0}(t), q_{0}(t) p_{0}^{-1}(t) q_{0}(t), p_{1}(t), \ldots, p_{n}(t), q_{0}(t), \ldots, q_{n-1}(t) \\
& \text { (in the case } r=2 n) \\
& q_{0}^{\prime}(t), q_{1}(t), \ldots, q_{n}(t), p_{0}(t), \ldots, p_{n}(t) \\
& \text { (in the case } r=2 n+1)
\end{aligned}
$$

are integrable on every compact interval $[a, \beta] \subset[a, \infty)$.
We define the scalar product

$$
\left\langle y_{1}, y_{2}\right\rangle=\int_{a}^{\infty}\left(A(t) y_{1}(t), y_{2}(t)\right) d t
$$

where $y_{i}(t)$ are H-valued functions continuous on $[a, \infty)$, and $\int_{a}^{\infty}\left\|A^{1 / 2}(t) y_{i}(t)\right\|^{2} d t$ $<\infty, i=1,2$. By identifying with zero the functions y such that $\langle y, y\rangle=0$ and making the completion, we obtain the Hilbert space. We denote this space
by $\mathrm{B}=L_{2}(H, A(t) ; a, \infty)$. Let \tilde{y} be some element belonging to B , i.e., \tilde{y} is a corresponding class of functions. If $y_{1}, y_{2} \in \tilde{y}$, then y_{1}, y_{2} are identified with respect to the norm generated by the scalar product $\langle\cdot, \cdot\rangle$. By \tilde{y} we denote the class of functions containing y. Suppose $y \in \tilde{y}$. Without loss of generality, further we will often say that $y(t)$ belongs to B .

Let $\left(a_{0}, b_{0}\right) \subset[a, \infty)$ and $\mathrm{B}_{0}=L_{2}\left(H, A(t) ; a_{0}, b_{0}\right)$. If $\tilde{y} \in \mathrm{~B}_{0}$, then extending y by zero to the whole interval $[a, \infty)$ we can consider that $\tilde{y} \in \mathrm{~B}$. If $\tilde{y} \in \mathrm{~B}$, then restricting y to the interval $\left(a_{0}, b_{0}\right)$ we can consider that $\tilde{y} \in \mathrm{~B}_{0}$ (it is not excepted that $\tilde{y} \neq 0$ in B and $\tilde{y}=0$ in $\left.\mathrm{B}_{0}\right)$.

Let $G(t)$ be the set of elements $x \in H$ such that $A(t) x=0$, and $H(t)$ be the orthogonal complement of $G(t)$ in $H, H=H(t) \oplus G(t)$, and $A_{0}(t)$ be the restriction of $A(t)$ to $H(t)$. Suppose $H_{\tau}(t),-\infty<\tau<\infty$, is the Hilbert scale of spaces [8, Ch. 2] generated by the operator $A_{0}^{-1}(t)$. For the fixed t, operator $A_{0}^{1 / 2}(t)$ is a continuous one-to-one mapping of $H(t)=H_{0}(t)$ onto $H_{1 / 2}(t)$. We denote the adjoint operator of $A_{0}^{1 / 2}(t)$ by $\hat{A}_{0}^{1 / 2}(t)$. The operator $\hat{A}_{0}^{1 / 2}(t)$ is a continuous one-to-one mapping of $H_{-1 / 2}(t)$ onto $H(t)$ and $\hat{A}_{0}^{1 / 2}(t)$ is an extension of $A_{0}^{1 / 2}(t)$. Let $\tilde{A}_{0}(t)=A_{0}^{1 / 2}(t) \hat{A}_{0}^{1 / 2}(t)$. The operator $\tilde{A}_{0}(t)$ is a continuous one-to-one mapping of $H_{-1 / 2}(t)$ onto $H_{1 / 2}(t)$ and $\tilde{A}_{0}(t)$ is an extension of $A_{0}(t)$. We denote $\tilde{A}(t)$ (respectively $\left.\tilde{A}^{1 / 2}(t)\right)$ the operator defined on $H_{-1 / 2} \oplus G(t)$ such that $\tilde{A}(t)$ $\left(\tilde{A}^{1 / 2}(t)\right)$ is equal to $\tilde{A}_{0}(t)$ (respectively $\left.\hat{A}_{0}^{1 / 2}(t)\right)$ on $H_{-1 / 2}(t)$ and $\tilde{A}(t)\left(\tilde{A}^{1 / 2}(t)\right)$ is equal to zero on $G(t)$. The operator $\tilde{A}(t)\left(\tilde{A}^{1 / 2}(t)\right)$ is an extension of $A(t)\left(A^{1 / 2}(t)\right.$ respectively).

In [3] it is proved that spaces $H_{-1 / 2}(t)$ are measurable with respect to parameter t [9, Ch. 1] whenever we take functions of the form $\tilde{A}_{0}^{-1}(t) A^{1 / 2}(t) h(t)$ instead of measurable functions, where $h(t)$ is a measurable H-valued function. The space B is a measurable sum of spaces $H_{-1 / 2}(t)$ and B consists of elements (i.e., classes of functions) with representatives of the form $\tilde{A}_{0}^{-1}(t) A^{1 / 2}(t) h(t)$, where $h(t) \in L_{2}(H ; a, \infty)$, i.e., $\int_{a}^{\infty}\|h(t)\|^{2} d t<\infty$. If y_{1}, y_{2} are representatives of the class of functions $\tilde{y} \in \mathrm{~B}$, then $\tilde{A}^{1 / 2}(t) y_{1}(t), \tilde{A}^{1 / 2}(t) y_{2}(t)$ are the same functions in the space $L_{2}(H ; a, \infty)$. We denote this function by $\tilde{A}^{1 / 2}(t) \tilde{y}$.

We define minimal and maximal relations generated by the expression l and the function $A(t)$ in the following way. Let D_{0}^{\prime} be the set of finite on $(a ; \infty)$ functions y satisfying the following conditions: a) the quasi-derivatives $y^{[0]}, \ldots, y^{[r]}$ of function y exist, they are absolutely continuous up to the order $r-1 ; \mathrm{b}$) $l[y](t) \in H_{1 / 2}(t)$ almost everywhere; c) the function $\tilde{A}_{0}^{-1}(t) l[y]$ belongs to B . To each class of functions identified in B with $y \in D_{0}^{\prime}$ we assign the class of functions identified in B with $\tilde{A}_{0}^{-1}(t) l[y]$. This correspondence L_{0}^{\prime} may not be an operator as it may happen that some function y is identified with zero in B and $\tilde{A}_{0}^{-1}(t) l[y]$
is not equal to zero. So, we get a linear relation L_{0}^{\prime} in the space B. The closure of L_{0}^{\prime} we denote by L_{0}. The relation L_{0} is called as a minimal one. Let L_{0}^{*} be the relation adjoint of L_{0}. L_{0}^{*} is called the maximal relation.

Terminology concerning linear relations can be found in the monographs [6, 8]. Further the following notations are used: R as a range of values; $\{\cdot, \cdot\}$ as an ordered pair.

We consider the differential equation $l[y]=\lambda A(t) y$, where λ is a complex number. Let $W_{j}(t, \lambda)$ be the operator solution of this equation satisfying the initial conditions: $W_{j}^{[k-1]}(a, \lambda)=\delta_{j k} E$ (E is the identity operator, $\delta_{j k}$ is the Kronecker symbol, $j, k=1, \ldots, r)$. By $W(t, \lambda)$ we denote the one-row operator matrix $\left(W_{1}(t, \lambda), \ldots, W_{r}(t, \lambda)\right)$. The operator $W(t, \lambda)$ maps continuously H^{r} into H for fixed t, λ. The adjoint operator $W^{*}(t, \lambda)$ maps continuously H into H^{r}. If $l[y]$ exists for the function y, then we denote $\hat{y}=\left(y, y^{[1]}, \ldots, y^{[r-1]}\right)$ (we treat \hat{y} as a one-columned matrix). Let $z=\left(z_{1}, \ldots, z_{m}\right)$ be some system of functions such that $l\left[z_{j}\right]$ exists for each j. By \hat{z} we denote the matrix $\left(\hat{z}_{1}, \ldots, \hat{z}_{m}\right)$. The analogous notations are used for the operator functions.

We consider the operator matrices of orders $2 n$ and $2 n+1$ for the expression l in cases $r=2 n$ and $r=2 n+1$ respectively:

$$
\begin{aligned}
& J_{2 n}(t)=\left(\begin{array}{lllllll}
& & & & & & \\
& & & & & & \\
& & & -E & & \\
& & & & & \\
& \cdots & & & & \\
& & & & &
\end{array}\right),
\end{aligned}
$$

where all the elements, that are not indicated, are equal to zero. (In matrix $J_{2 n+1}(t)$ the element $2 i q_{0}^{-1}(t)$ stands on the intersection of the row $n+1$ and the column $n+1$.) Suppose the expression l is defined for the functions y, z, then, in these notations, Lagrange's formula has the following form:

$$
\begin{equation*}
\int_{\alpha}^{\beta}(l[y], z) d t-\int_{\alpha}^{\beta}(y, l[z]) d t=\left(J_{r}(t) \hat{y}(t), \hat{z}(t)\right)_{\alpha}^{\beta}, \quad a \leq \alpha<\beta<\infty . \tag{1}
\end{equation*}
$$

It follows from "method of the variation of arbitrary constants" that general solution of the equation

$$
l[y]-\lambda \tilde{A}(t) y=\tilde{A}(t) f(t)
$$

is represented in the form:

$$
\begin{equation*}
y(t)=W(t, \lambda)\left(c+J_{r}^{-1}(a) \int_{a}^{t} W^{*}(s, \bar{\lambda}) \tilde{A}(s) f(s) d s\right) \tag{2}
\end{equation*}
$$

where $c \in H^{r}$. Consequently,

$$
\begin{equation*}
\hat{y}(t)=\hat{W}(t, \lambda)\left(c+J_{r}^{-1}(a) \int_{a}^{t} W^{*}(s, \bar{\lambda}) \tilde{A}(s) f(s) d s\right) \tag{3}
\end{equation*}
$$

3. Construction of a Space Containing the Range of the Characteristic Operator Function $M(\lambda)$

Let Q_{0} be a set of elements $c \in H^{r}$ such that function $W(t, 0) c$ is identified with zero in the space B, i.e., $\int_{a}^{\infty}\left\|A^{1 / 2}(s) W(s, 0) c\right\|^{2} d s=0$. It follows from the equalities

$$
\begin{align*}
& W(t, \lambda) c=W(t, 0)\left(c+\lambda J_{r}^{-1}(a) \int_{a}^{t} W^{*}(s, 0) \tilde{A}(s) W(s, \lambda) c d s\right) \tag{4}\\
& W(t, 0) c=W(t, \lambda)\left(c-\lambda J_{r}^{-1}(a) \int_{a}^{t} W^{*}(s, \bar{\lambda}) \tilde{A}(s) W(s, 0) c d s\right) \tag{5}
\end{align*}
$$

that the function $W(t, \lambda) c$ is identified with zero in the space B if and only if $c \in Q_{0}$ (in the finite-dimensional case this fact was obtained in [7]). By Q we denote an orthogonal complement of Q_{0} in $H^{r}, H^{r}=Q \oplus Q_{0}$.

Let $\left[a, \beta_{m}\right], m=1,2, \ldots$, be a system of intervals such that $\left[a, \beta_{m}\right] \subset\left[a, \beta_{m+1}\right)$ and $\beta_{m} \rightarrow \infty$ as $m \rightarrow \infty$. We denote $\mathrm{B}_{m}=L_{2}\left(H, A(t) ; a, \beta_{m}\right)$. Suppose $Q_{0}(m)$ is the set of elements $c \in Q$ such that the function $W(t, \lambda) c$ is identified with zero in the space B_{m}, i.e., $\int_{a}^{\beta m}\left\|A^{1 / 2}(s) W(s, \lambda) c\right\|^{2} d s=0$. It follows from (4), (5) that $Q_{0}(m)$ does not depend on λ. Let $Q(m)$ be the orthogonal complement of $Q_{0}(m)$
in Q, i.e., $Q=Q(m) \oplus Q_{0}(m)$. Obviously, $Q_{0}(1) \supset Q_{0}(2) \supset \ldots \supset Q_{0}(m) \supset \ldots$ and $Q(1) \subset Q(2) \subset \ldots \subset Q(m) \subset \ldots \subset Q$.

We define the quasiscalar product

$$
(c, d)_{-}^{(i)}=\int_{a}^{\beta i}(\tilde{A}(s) W(s, 0) c, W(s, 0) d) d s, \quad c, d \in Q
$$

in space Q. This quasiscalar product generates the semi-norm

$$
\begin{equation*}
\|c\|_{-}^{(i)}=\left(\int_{a}^{\beta_{i}}\left\|A^{1 / 2}(s) W(s, 0) c\right\|^{2} d s\right)^{1 / 2} \leq \gamma\|c\|, \quad c \in Q, \gamma=\gamma(i)>0 . \tag{6}
\end{equation*}
$$

Clearly, $\|\cdot\|_{-}^{i} \leq\|\cdot\|_{-}^{i+1}$.
Note that if $c \in Q(m)$, then $\|c\|_{-}^{(m)}>0$ for $c \neq 0$. Therefore the semi-norm $\|\cdot\|_{-}^{i}$ is a norm on the set $Q(m)$ for $i \geq m$. By $Q_{-}^{(i)}(m)$ we denote the completion of $Q(m)$ with respect to this norm. It follows from (4), (5) that we obtain the same set $Q_{-}^{(i)}(m)$ with the equivalent norm whenever we replace $W(s, 0)$ by $W(s, \lambda)$ in (6). The inclusion map $Q_{-}^{(k)}(m) \subset Q_{-}^{(i)}(m)$ is continuous for $k \geq i \geq m$. We denote $Q_{-}(m)=Q_{-}^{(m)}(m)$.

Let $\operatorname{ker}\left(a, \beta_{m}, \lambda\right)$ be a closure of the set of elements (i.e., of classes of functions) in the space B_{m} with the representatives of the form $W(t, \lambda) x$, where $x \in Q(m)$. (We denote these classes by $\tilde{W}(t, \lambda) x$.) It follows from (4-6) that the operator $c \rightarrow \tilde{W}(t, \lambda) c\left(c \in Q_{-}(m)\right)$ is the continuous one-to-one mapping of $Q_{-}(m)$ onto $\operatorname{ker}\left(a, \beta_{m}, \lambda\right)$. By $W_{m}(\lambda)$ we denote this operator. Here $\tilde{W}(t, \lambda) c$ is the class of functions such that the sequence $\left\{\tilde{W}(t, \lambda) c_{k}\right\}$ converges to $\tilde{W}(t, \lambda) c$ in the space B_{m} whenever $\left\{c_{k}\right\}$ converges to c in the space $Q_{-}(m)$.

By $Q(n, m)$ we denote the orthogonal complement of $Q(m)$ in $Q(n)$ for $n>m$, i.e., $Q(n)=Q(m) \oplus Q(n, m)$. Then

$$
\begin{equation*}
Q_{-}(n)=Q_{-}^{(n)}(m) \dot{+} Q_{-}^{(n)}(n, m), \tag{7}
\end{equation*}
$$

where $Q_{-}^{(n)}(n, m)$ is the completion of $Q(n, m)$ with respect to the norm $\|\cdot\|_{-}^{(n)}$. Hence denoting

$$
\operatorname{ker}\left(Q(m), a, \beta_{n}, \lambda\right)=W_{n}(\lambda) Q_{-}^{(n)}(m), \operatorname{ker}\left(Q(n, m), a, \beta_{n}, \lambda\right)=W_{n}(\lambda) Q_{-}^{(n)}(n, m),
$$

we obtain

$$
\begin{equation*}
\operatorname{ker}\left(a, \beta_{n}, \lambda\right)=\operatorname{ker}\left(Q(m), a, \beta_{n}, \lambda\right) \dot{+} \operatorname{ker}\left(Q(n, m), a, \beta_{n}, \lambda\right) . \tag{8}
\end{equation*}
$$

We define the linear mappings $g_{m n}: \operatorname{ker}\left(a, \beta_{n}, \lambda\right) \rightarrow \operatorname{ker}\left(a, \beta_{m}, \lambda\right)(n \geq m)$ in the following way. Let $g_{m n} z=W_{m}(\lambda) j_{m n} W_{n}^{-1}(\lambda) z$ for $z \in \operatorname{ker}\left(Q(m), a, \beta_{n}, \lambda\right)$ and $g_{m n} z=0$ for $z \in \operatorname{ker}\left(Q(n, m), a, \beta_{n}, \lambda\right)$ (here $j_{m n}$ is the inclusion map of $Q_{-}^{(n)}(m)$ into $\left.Q_{-}(m)\right)$. It follows from (7), (8) and the properties of the operators $W_{k}(\lambda)$ that mappings $g_{m n}$ are continuous.

Moreover, we introduce the linear mappings $h_{m n}: Q_{-}(n) \rightarrow Q_{-}(m)(n \geq m)$ in accordance with (7) in the following way. Since the inclusion map of $Q_{-}^{(n)}(m)$ into $Q_{-}(m)$ is continuous, we define $h_{m n} c=j_{m n} c$ whenever $c \in Q_{-}^{(n)}(m)$, and we define $h_{m n} c=0$ whenever $c \in Q_{-}^{(n)}(n, m)$. Mappings $h_{m n}$ are continuous.

By $\operatorname{ker}(a, \infty, \lambda)$ we denote a projective limit of the family $\left\{\operatorname{ker}\left(a, \beta_{n}, \lambda\right) ; n \in \mathrm{~N}\right\}$ with respect to mappings $g_{m n}$ and by Q_{-}we denote a projective limit of the family $\left.\left\{Q_{-}(n)\right) ; n \in \mathrm{~N}\right\}$ with respect to mappings $h_{m n}$, i.e.,

$$
\operatorname{ker}(a, \infty, \lambda)=\lim (p r) g_{m n} \operatorname{ker}\left(a, \beta_{n}, \lambda\right), \quad Q_{-}=\lim (p r) h_{m n} Q_{-}(n) .
$$

It follows from the definition of projective limit [10, Ch. 2] that Q_{-}is a subspace of the product $\prod_{n} Q_{-}(n)$ and Q_{-}consists of the elements $c=\left\{c_{n}\right\}$ such that $c_{m}=h_{m n} c_{n}$ for all $m \leq n$. Similarly, $\operatorname{ker}(a, \infty, \lambda)$ is a subspace of $\prod_{n} \operatorname{ker}\left(a, \beta_{n}, \lambda\right)$ and the analogous statement is true in regard to $\operatorname{ker}(a, \infty, \lambda)$. By p_{n}, p_{n}^{\prime} we denote the projections $\prod_{n} Q_{-}(n)$ and $\prod_{n} \operatorname{ker}\left(a, \beta_{n}, \lambda\right)$ onto $Q_{-}(n)$ and $\operatorname{ker}\left(a, \beta_{n}, \lambda\right)$ respectively.

The mappings $g_{m n}, h_{m n}$ and the operators $W_{n}(\lambda): Q_{-}(n) \rightarrow \operatorname{ker}\left(a, \beta_{n}, \lambda\right)$ satisfy the equality: $g_{m n}=W_{m}(\lambda) h_{m n} W_{n}^{-1}(\lambda)$. Consequently, the family of operators $\left\{W_{n}(\lambda)\right\}$ generates the isomorphism (i.e., the linear homeomorphism) $W(\lambda): Q_{-} \rightarrow \operatorname{ker}(a, \infty, \lambda)$. If $c=\left\{c_{n}\right\} \in \prod_{n} Q_{-}(n)$, then $W(\lambda) c=\left\{W_{n}(\lambda) c_{n}\right\}$ and $W(\lambda) Q_{-}=\operatorname{ker}(a, \infty, \lambda)$. Moreover,

$$
\begin{equation*}
p_{n}^{\prime}\left(W(\lambda) Q_{-}\right)=W_{n}(\lambda) p_{n}\left(Q_{-}\right) . \tag{9}
\end{equation*}
$$

Lemma 1. Let w_{n} be a representative of the class of functions $\tilde{w}_{n}=W_{n}(\lambda) d$ $\left(d \in Q_{-}(n)\right)$ and let w_{m} be restriction of w_{n} to $\left[a, \beta_{m}\right](m \leq n)$. Then

$$
\begin{equation*}
\tilde{w}_{m}=W_{m}(\lambda) h_{m n} d \tag{10}
\end{equation*}
$$

Proof. According to (7) we represent d in the form $d=d^{\prime}+d^{\prime \prime}$, where $d^{\prime} \in Q_{-}^{(n)}(m) \subset Q_{-}(m), d^{\prime \prime} \in Q_{-}^{(n)}(n, m)$. Suppose the sequences $\left\{d_{k}^{\prime}\right\},\left\{d_{k}^{\prime \prime}\right\}$ $\left(d_{k}^{\prime} \in Q(m), d_{k}^{\prime \prime} \in Q(n, m)\right)$ converge to $d^{\prime}, d^{\prime \prime}$ in the spaces $Q_{-}^{(n)}(m), Q_{-}^{(n)}(n, m)$ respectively. Then the sequence $\left\{\tilde{W}(t, \lambda) d_{k}^{\prime}\right\}$ converges to $W_{n}(\lambda) d^{\prime}$ in the space B_{n}. Therefore $\left\{\tilde{W}(t, \lambda) d_{k}^{\prime}\right\}$ converges to $W_{m}(\lambda) j_{m n} d^{\prime}$ in B_{m} and the functions $W(t, \lambda) d_{k}^{\prime \prime}$ are identified with zero in B_{m}. Hence follows (10). Lemma 1 is proved.

Let $c^{\prime} \in H^{r}$. Then the function $\tilde{A}^{1 / 2}(t) W(t, \lambda) c^{\prime}$ belongs to $L_{2}\left(H ; a, \beta_{n}\right)$ for all n and $\tilde{A}^{1 / 2}(t) W(t, \lambda) c^{\prime}$ coincides with $\tilde{A}^{1 / 2}(t) W(t, \lambda) c^{\prime \prime}$ in this space, where $c^{\prime \prime}=P_{n} P_{0} c \in Q(n), P_{0}$ is the orthogonal projection of H^{r} onto Q, P_{n} is the orthogonal projection of Q onto $Q(n)$. Suppose the sequence $\left\{d_{k}\right\}, d_{k} \in Q(n)$, converges to d in the space $Q_{-}(n)$; then classes of functions $W(t, \lambda) d_{k} \in \mathrm{~B}_{n}$ with the representatives of $W(t, \lambda) d_{k}$ converge to the class of functions $W(t, \lambda) d$ in B_{n}. Therefore functions $\tilde{A}^{1 / 2}(t) W(t, \lambda) d_{k}$ converge to the function $z(t)=$ $\tilde{A}^{1 / 2}(t) \tilde{W}(t, \lambda) d$ in the space $L_{2}\left(H ; a, \beta_{n}\right)$. It follows from (10) that the restriction of $z(t)$ to the interval $\left[a, \beta_{m}\right], m<n$, coincides with $\tilde{A}^{1 / 2}(t) \tilde{W}(t, \lambda) h_{m n} d$.

Suppose $c=\left\{c_{n}\right\} \in Q_{-}$; then $c_{m}=h_{m n} c_{n}(m \leq n)$. It follows from (10) that the restriction of function $\tilde{A}^{1 / 2}(t) \tilde{W}(t, \lambda) c_{n}$ to the interval $\left[a, \beta_{m}\right]$ coincides with the function $\tilde{A}^{1 / 2}(t) \tilde{W}(t, \lambda) c_{m}$ in the space $L_{2}\left(H ; a, \beta_{m}\right)$. Therefore by $\tilde{A}^{1 / 2}(t) \tilde{W}(t, \lambda) c$ we denote the function coinciding with $\tilde{A}^{1 / 2}(t) \tilde{W}(t, \lambda) c_{n}$ on any interval $\left[a, \beta_{n}\right]$. Correspondingly, by $\tilde{W}(t, \lambda) c$ we denote the $H_{-1 / 2}(t) \oplus G(t)-$ valued function coinciding with $\tilde{W}(t, \lambda) c_{n}$ in the spaces B_{n} for all n. It follows from (9), (10) that $\tilde{W}(t, \lambda) c_{n}=\tilde{W}(t, \lambda) c_{m}$ in the space $\mathrm{B}_{m}, m \leq n$.

4. Construction of a Domain of the Characteristic Operator Function $M(\lambda)$

The space $Q_{-}(n)$ can be treated as a negative one with respect to $Q(n)$. By $Q_{+}(n)$ we denote a corresponding space with the positive norm. It follows from (7) that $Q_{+}(n)=Q_{+}^{(n)}(m) \dot{+} Q_{+}^{(n)}(n, m)$, where $Q_{+}^{(n)}(m), Q_{+}^{(n)}(n, m)$ are the corresponding positive spaces with respect to $Q_{-}^{(n)}(m), Q(m)$ and $Q_{-}^{(n)}(n, m)$, $Q(n, m)$. The inclusion $Q_{+}(m) \subset Q_{+}^{(n)}(m)$ is dense and continuous. Consequently the inclusion map of $Q_{+}(m)$ into $Q_{+}(n)$ is continuous for $m \leq n$.

Suppose $h_{n m}^{+}: Q_{+}(m) \rightarrow Q_{+}(n), n \geq m$, is the adjoint mapping of $h_{m n}$; then $h_{n m}^{+}$is the continuous inclusion map of $Q_{+}(m)$ into $Q_{+}(n)$. By Q_{+}we denote inductive limit [10, Ch. 2] of the family $\left\{Q_{+}(n) ; n \in \mathbf{N}\right\}$ with respect to mappings $h_{n m}^{+}$, i.e., $Q_{+}=\lim (i n d) h_{n m}^{+} Q_{+}(n)$. It follows from [10, Ch. 4] that Q_{+}is the adjoint space of Q_{-}. The space Q_{+}can be treated as the union $Q_{+}=\bigcup_{n} Q_{+}(n)$ with the strongest topology such that all inclusion maps of $Q_{+}(n)$ into Q_{+}are continuous [10, Ch. 2].

Let $\tilde{y} \in \mathrm{~B}_{m}$ and $m \leq n$. Suppose y is a representative of the class of functions \tilde{y}, then we can treat \tilde{y} as an element of the space B_{n} whenever we extend y by zero out of the interval $\left[a, \beta_{m}\right]$. If $m \leq n$, then the space B_{m} can be treated as a subspace B_{n}. The topology of B_{m} is induced by the topology of B_{n}. Let $i_{n m}$ be the inclusion map of B_{m} into B_{n}. By \tilde{B} we denote the inductive limit of the spaces B_{n} with respect to the mappings $i_{n m}$, i.e., $\tilde{B}=\lim (i n d) i_{n m} \mathrm{~B}_{n}$. The
space \tilde{B} can be treated as $\tilde{B}=\bigcup_{n} \mathrm{~B}_{n}$ with the strongest topology such that all inclusion maps of B_{n} into \tilde{B} are continuous.

Suppose $\left\{F_{n}\right\}, n \in \mathbf{N}$, is a family of locally convex spaces such that $F_{m} \subset$ F_{n} for $m \leq n$ and this inclusion map is continuous. According to [8, Ch. 1], an inductive limit $F=\lim ($ ind $) F_{n}$ of the locally convex spaces $F_{n}, n \in \mathbf{N}$, is called a regular one if for every bounded set $S \subset F$ there is $n \in \mathbf{N}$ such that $S \subset F_{n}$ and S is a bounded set in F_{n}. It follows from [8, Ch. 1] that the inductive limits Q_{+}and \tilde{B} are regular. According to [10, Ch. 2], the inductive limit of bornological spaces is a bornological space. Since Q_{+}, \tilde{B} are the inductive limits of the reflexive Banach spaces, we see that Q_{+}, \tilde{B} are bornological.

Suppose F_{n} are bornological spaces such that their inductive limit F is regular. Let F_{0} be a locally convex space. It follows from [10, Ch. 2] that a linear mapping $u: F \rightarrow F_{0}$ is continuous if and only if for every $n \in \mathbf{N}$ restriction of u to F_{n} maps every bounded set $S \subset F_{n}$ into the bounded set $u(S) \subset F_{0}$. According to [10, Ch. 2, Ex. 17], we can take a bounded sequence instead of the bounded set $S \subset F_{n}$. Further, these statements will be used for the proof of the continuity of corresponding operators. We take the space Q_{-}instead of F_{0}. Then the following conditions are equivalent: (i) the set $u(S)$ is bounded in Q_{-}; (ii) the sets $p_{k} u(S)$ are bounded in the spaces $p_{k} Q_{-}=Q_{-}(k)$ for every $k \in \mathbf{N}$; (iii) the sets $W_{k}(\lambda) p_{k} u(S)$ are bounded in the spaces B_{k} for every $k \in \mathbf{N}$; (iiii) the sets consisting of elements of the form $\tilde{W}(t, \lambda) c_{k}$ are bounded for every $k \in \mathbf{N}$, where $c_{k} \in p_{k} u(S) \subset Q_{-}(k)$.

Thus the following lemma is proved.
Lemma 2. Suppose the spaces F_{n} are bornological and their inductive limit F is regular. The linear operator $u: F \rightarrow Q_{-}$is continuous if and only if for every $n \in \mathbf{N}$ and every bounded set $S \subset F_{n}$ and every $k \in \mathbf{N}$ the sets consisting of elements of the form $\tilde{W}(t, \lambda) c_{k}$ are bounded in B_{k}, where $c_{k} \in p_{k} u(S) \subset Q_{-}(k)$. Any bounded sequence can be taken in place of bounded set S.

Further, we shall take a family of space $\left\{Q_{+}(n)\right\}$ or $\left\{\mathrm{B}_{n}\right\}$ in place of $\left\{F_{n}\right\}$. Then $F=Q_{+}$or $F=\tilde{\mathrm{B}}$ respectively. As it was mentioned above, the operator $W_{n}(\lambda)$ is a continuous one-to-one mapping of $Q_{-}(n)$ onto the closed subspace $\operatorname{ker}\left(a, \beta_{n}, \lambda\right)$ of the space B_{n}. Then the adjoint operator $W_{n}^{*}(\lambda)$ maps continuously B_{n} onto $Q_{+}(n)$. Therefore $W_{n}^{*}(\lambda)$ is the continuous operator of B_{n} into Q_{+}. The operator $W_{n}^{*}(\lambda)$ has the following form:

$$
\begin{equation*}
W_{n}^{*}(\lambda) \tilde{f}=\int_{a}^{\beta_{n}} W^{*}(s, \lambda) \tilde{A}(s) f(s) d s=\int_{a}^{\infty} W^{*}(s, \lambda) \tilde{A}(s) f(s) d s \tag{11}
\end{equation*}
$$

where $\tilde{f} \in \mathrm{~B}$ and f vanishes outside $\left[a, \beta_{n}\right]$.

We note that the norms $\left\|W^{*}(s, \lambda) A^{1 / 2}(s)\right\|,\left\|A^{1 / 2}(s) f(s)\right\|$ belong to $L_{2}\left(a, \beta_{n}\right)$. Hence the integral in the right side of (11) exists.

Since \tilde{B} consists of finite functions, in accordance with (11) we can define the operator $W_{*}(\lambda)$ mapping \tilde{B} onto Q_{+}by the formula

$$
W_{*}(\lambda) \tilde{f}=\int_{a}^{\infty} W^{*}(s, \bar{\lambda}) \tilde{A}(s) f(s) d s
$$

It follows from the reasoning given before Lemma 2 that the operator $W_{*}(\lambda)$: $\tilde{B} \rightarrow Q_{+}$is continuous. Obviously, $W_{*}(\lambda) \tilde{f}=W_{n}^{*}(\bar{\lambda}) \tilde{f}$ for $\tilde{f} \in \mathrm{~B}_{n}$.

5. The Main Result

To prove the main theorem we need several lemmas.
Lemma 3. $\tilde{g} \in \mathrm{~B}$ belongs to the range $R\left(L_{0}^{\prime}-\bar{\lambda} E\right)$ of the relation $L_{0}^{\prime}-\bar{\lambda} E$ if and only if there is an interval $\left(a, \beta_{n}\right)$ such that g is finite on $\left(a, \beta_{n}\right)$ and

$$
\begin{equation*}
\int_{a}^{\beta_{n}} W^{*}(s, \lambda) \tilde{A}(s) g(s) d s=0 \tag{12}
\end{equation*}
$$

Proof. Let g be finite and (12) is true. We denote

$$
z(t)=W(t, \bar{\lambda})\left(J_{r}^{-1}(a) \int_{a}^{t} W^{*}(s, \lambda) \tilde{A}(s) g(s) d s\right)
$$

From (2), (3), (12) we obtain that the ordered pair $\{\tilde{z}, \tilde{g}\} \in L_{0}^{\prime}-\bar{\lambda} E$.
Vice versa, let $\{\tilde{z}, \tilde{g}\} \in L_{0}^{\prime}-\bar{\lambda} E$. It follows from (2), (3) that there is a representative z of the class of functions \tilde{z} such that the equality

$$
\hat{z}(t)=\hat{W}(t, \bar{\lambda})\left(c+J_{r}^{-1}(a) \int_{a}^{t} W^{*}(s, \lambda) \tilde{A}(s) g(s) d s\right)
$$

is true, where $c \in Q$. Since the function z is finite, we see that $c=0$ and g is finite on some interval $\left(a, \beta_{n}\right)$ and equality (12) is true. Lemma 3 is proved.

R e m ark. In Lemma 3 we can replace the interval $\left(a, \beta_{n}\right)$ by any interval such that the function z vanishes out of this interval, where $\{\tilde{z}, \tilde{g}\} \in L_{0}^{\prime}-\bar{\lambda} E$. Equality (12) and the equality $(\tilde{g}, \tilde{W}(t, \lambda) c)_{\mathrm{B}_{n}}=0$ are equivalent for all $c \in$ $Q_{-}(n)$.

Lemma 4. If the ordered pair $\{\tilde{y}, \tilde{f}\} \in L_{0}^{*}-\lambda E$, then \tilde{y} can be represented in the following form:

$$
\begin{align*}
\tilde{y}(t) & =\tilde{W}(t, \lambda) c+\tilde{W}(t, \lambda) J_{r}^{-1}(a) \int_{a}^{t} W^{*}(s, \bar{\lambda}) \tilde{A}(s) f(s) d s \\
& =\tilde{W}(t, \lambda)\left(c+J_{r}^{-1}(a) \int_{a}^{t} W^{*}(s, \bar{\lambda}) \tilde{A}(s) f(s) d s\right), \tag{13}
\end{align*}
$$

where $c \in Q_{-}$.
Proof. We denote

$$
u(t)=W(t, \lambda)\left(J_{r}^{-1}(a) \int_{a}^{t} W^{*}(s, \bar{\lambda}) \tilde{A}(s) f(s) d s\right)
$$

Let $\{\tilde{z}, \tilde{g}\} \in L_{0}^{\prime}-\bar{\lambda} E$ and $z(t)=0$ for $t \geq \beta_{n}$. From Lagrange's formula (1), we obtain

$$
\int_{a}^{\beta_{n}}(\tilde{A}(s) g(s), u(s)) d s-\int_{a}^{\beta_{n}}(\tilde{A}(s) z(s), f(s)) d s=0
$$

The equality

$$
\int_{a}^{\beta_{n}}(\tilde{A}(s) g(s), y(s)) d s-\int_{a}^{\beta_{n}}(\tilde{A}(s) z(s), f(s)) d s=0
$$

is true for every ordered pair $\{\tilde{y}, \tilde{f}\} \in L_{0}^{*}-\lambda E$. It follows from the last two equalities that $(\tilde{g}, \tilde{y}-\tilde{u})_{\mathrm{B}_{n}}=0$. Since $\operatorname{ker}\left(a, \beta_{n}, \lambda\right)$ is closed and $g \in R\left(L_{0}^{\prime}-\lambda E\right)$ is arbitrary, from Lemma 3 and remark we obtain the equality $\tilde{y}-\tilde{u}=\tilde{W}(t, \lambda) c_{n}$. Since the interval $\left(a, \beta_{n}\right)$ is taken arbitrarily, we obtain (13) where $c=\left\{c_{n}\right\} \in Q_{-}$.

Note that Lemmas 3, 4 follow also from paper: V.M. Bruk, J. Math. Phys., Anal., Geom. 2 (2006), 1-10.

Theorem. Every generalized resolvent $R_{\lambda}, \operatorname{Im} \lambda \neq 0$, of the relation L_{0} is the integral operator

$$
R_{\lambda} \tilde{f}=\int_{a}^{\infty} K(t, s, \lambda) \tilde{A}(s) f(s) d s \quad(\tilde{f} \in \mathrm{~B})
$$

The kernel $K(t, s, \lambda)$ has the form

$$
K(t, s, \lambda)=\tilde{W}(t, \lambda)\left(M(\lambda)-(1 / 2) \operatorname{sgn}(s-t) J_{r}^{-1}(a)\right) W^{*}(s, \bar{\lambda})
$$

where $M(\lambda): Q_{+} \rightarrow Q_{-}$is the continuous operator such that $M(\bar{\lambda})=M^{*}(\lambda)$ and

$$
\begin{equation*}
(\operatorname{Im} \lambda)^{-1} \operatorname{Im}(M(\lambda) x, x) \geq 0 \tag{14}
\end{equation*}
$$

for every fixed $\lambda, \operatorname{Im} \lambda \neq 0$, and for every $x \in Q_{+}$. The operator function $M(\lambda) x$ is holomorphic for every $x \in Q_{+}$in the semi-planes $\operatorname{Im} \lambda \neq 0$.

Proof. First, we prove the theorem for the functions finite on (a, ∞). Suppose $\tilde{f} \in \mathrm{~B}$ and f is a finite function. It follows from (13) that $\tilde{y}=R_{\lambda} \tilde{f}$ has the following form:

$$
\begin{align*}
\tilde{y}=\tilde{y}(t, \tilde{f}, \lambda)= & \tilde{W}(t, \lambda)\left(c(\tilde{f}, \lambda)+(1 / 2) J_{r}^{-1}(a) \int_{a}^{t} W^{*}(s, \bar{\lambda}) \tilde{A}(s) f(s) d s\right. \\
& \left.-(1 / 2) J_{r}^{-1}(a) \int_{t}^{\infty} W^{*}(s, \bar{\lambda}) \tilde{A}(s) f(s) d s\right) \tag{15}
\end{align*}
$$

where $c(\tilde{f}, \lambda) \in Q_{-}$and $c(\tilde{f}, \lambda)$ is uniquely determined by \tilde{f} and $\lambda, \operatorname{Im} \lambda \neq 0$. Indeed, if it is not so, then $\tilde{W}(t, \lambda) c(\tilde{f}, \lambda)=R_{\lambda} 0=0$, and this equality is true whenever $c(\tilde{f}, \lambda)=0$. Therefore, $c(\tilde{f}, \lambda)=C(\lambda) \tilde{f}$ where $C(\lambda): \tilde{B} \rightarrow Q_{-}$is the linear operator.

Now we show that the operator $C(\lambda)$ is continuous for every fixed λ. Let the sequence $\left\{\tilde{f}_{k}\right\}\left(\tilde{f}_{k} \in \mathrm{~B}_{n}\right)$ be bounded in ${\underset{\sim}{B}}_{n}$ for a fixed number $n \in \mathbf{N}$. Then $\left\{\tilde{f}_{k}\right\}$ is bounded in B. Hence the sequence $\left\{R_{\lambda} \tilde{f}_{k}\right\}$ is bounded in B. Consequently, $\left\{R_{\lambda} \tilde{f}_{k}\right\}$ is bounded in B_{m}. It follows from (15) that the sequence $\left\{\tilde{W}(t, \lambda) p_{m} c\left(\tilde{f}_{k}, \lambda\right)\right\}$ is bounded in B_{m}. Since $n, m \in \mathbf{N}$ are arbitrary and according to Lemma 2, it follows that the operator $C(\lambda)$ is continuous.

Now we prove that $c(\tilde{f}, \lambda)$ is uniquely determined by the element $W_{*}(\lambda) \tilde{f} \in$ Q_{+}. We assume that $W_{*}(\lambda) \tilde{f}=0$. Then the ordered pair $\{\tilde{z}, \tilde{f}\} \in L_{0}-\lambda E$, where

$$
\begin{aligned}
\tilde{z}(t)= & \tilde{W}(t, \lambda)\left((1 / 2) J_{r}^{-1}(a) \int_{a}^{t} W^{*}(s, \bar{\lambda}) \tilde{A}(s) f(s) d s\right. \\
& \left.-(1 / 2) J_{r}^{-1}(a) \int_{t}^{\infty} W^{*}(s, \bar{\lambda}) \tilde{A}(s) f(s) d s\right)
\end{aligned}
$$

Since $\left(L_{0}-\lambda E\right)^{-1} \subset R_{\lambda}$, we obtain that $\tilde{W}(t, \lambda) c(\tilde{f}, \lambda)$ belongs to the range of the operator R_{λ}. Hence $c(\tilde{f}, \lambda)=0$.

Thus $C(\lambda)=M(\lambda) W_{*}(\lambda) \tilde{f}$, where $M(\lambda): Q_{+} \rightarrow Q_{-}$is an everywhere defined operator. We prove that $M(\lambda)$ is continuous for every fixed λ. Let the sequence $\left\{q_{k}\right\}=\left\{W_{*}(\lambda) \tilde{f}_{k}\right\}$ be bounded in $Q_{+}(n)$. By $\mathrm{B}_{n}^{(0)}$ we denote the orthogonal
complement of $\operatorname{ker} W_{n}^{*}(\lambda)$ in the space B_{n}. The operator $W_{n}^{*}(\lambda)$ is a continuous one-to-one mapping of $\mathrm{B}_{n}^{(0)}$ onto $Q_{+}(n)$. Consequently, there exists a bounded sequence $\left\{\tilde{g}_{k}\right\}\left(\tilde{g}_{k} \in \mathrm{~B}_{n}^{(0)}\right)$ in B_{n} such that $q_{k}=W_{*}(\lambda) \tilde{f}_{k}=W_{n}^{*}(\lambda) \tilde{g}_{k}$. Then the sequence $\left\{R_{\lambda} \tilde{g}_{k}\right\}$ is bounded in B. Consequently, $\left\{R_{\lambda} \tilde{g}_{k}\right\}$ is bounded in B_{m} for every $m \in \mathbf{N}$. Hence the sequence $\left\{\tilde{W}(t, \lambda) p_{m} M(\lambda) q_{k}\right\}$ is bounded in B_{m}. It follows from Lemma 2 that the operator $M(\lambda)$ is continuous.

Now we prove that the function $M(\lambda) x$ is holomorphic $(\operatorname{Im} \lambda \neq 0)$ for every $x \in Q_{+}$. It follows from (15) and holomorphicity of R_{λ} that the function $\lambda \rightarrow$ $\tilde{W}(t, \lambda) p_{n} C(\lambda) \tilde{f}$ is holomorphic in B_{n} for every $\tilde{f} \in \mathrm{~B}_{j}, n, j \in \mathbf{N}$. Substituting $p_{n} C(\lambda) \tilde{f}$ for c in equality (4), we get that function $\lambda \rightarrow \tilde{W}(t, 0) p_{n} C(\lambda) \tilde{f}$ is holomorphic. Since the operator $x \rightarrow \tilde{W}(t, 0) x$ is a continuous one-to-one mapping of $Q_{-}(n)$ onto $\operatorname{ker}\left(a, \beta_{n}\right)$ and $\operatorname{ker}\left(a, \beta_{n}\right)$ is closed in B_{n}, we obtain that $\lambda \rightarrow p_{n} C(\lambda) \tilde{f}=p_{n} M(\lambda) W_{j}^{*}(\bar{\lambda}) \tilde{f}$ is the holomorphic function for every $\tilde{f} \in \mathrm{~B}_{j}$. Now holomorphicity of function $\lambda \rightarrow p_{n} M(\lambda) x$ follows from the lemma proved in [11].

Lemma 5. Suppose bounded operators $S_{3}(\lambda): B_{1} \rightarrow B_{3}, S_{1}(\lambda): B_{1} \rightarrow B_{2}$, $S_{2}(\lambda): B_{2} \rightarrow B_{3}$ satisfy the equality $S_{3}(\lambda)=S_{2}(\lambda) S_{1}(\lambda)$ for every fixed λ belonging to some neighborhood of a point λ_{0} and suppose the range of operator $S_{1}\left(\lambda_{0}\right)$ coincides with B_{2}, where B_{1}, B_{2}, B_{3} are Banach spaces. If functions $S_{1}(\lambda)$, $S_{3}(\lambda)$ are strongly differentiable in the point λ_{0}, then in this point function $S_{2}(\lambda)$ is strongly differentiable.

In this lemma it should be taken that $B_{1}=\mathrm{B}_{j}, B_{2}=Q_{+}(j), B_{3}=Q_{-}(n)$, $S_{1}(\lambda)=W_{j}^{*}(\bar{\lambda}), S_{2}(\lambda)=p_{n} M(\lambda), S_{3}(\lambda)=p_{n} C(\lambda)$.

So, the operator function $\lambda \rightarrow p_{n} M(\lambda) x$ is strongly differentiable for every $n \in \mathbf{N}$ and for every $x \in Q_{+}$. Now holomorphicity of the operator function $M(\lambda) x$ for every $x \in Q_{+}$follows from the closeness of Q_{-}in the product of spaces $Q_{-}(n)[10, \mathrm{Ch} .2]$ and from the definition of topology of the product space.

It follows from the equality $R_{\lambda}^{*}=R_{\bar{\lambda}}$ that $M(\bar{\lambda})=M^{*}(\lambda)$ and

$$
\begin{equation*}
\tilde{A}^{1 / 2}(s) K^{*}(t, s, \lambda) A^{1 / 2}(t)=\tilde{A}^{1 / 2}(s) K(s, t, \bar{\lambda}) A^{1 / 2}(t) \tag{16}
\end{equation*}
$$

Now we show inequality (14). First, we prove the following statement.
Lemma 6. Suppose \tilde{u}, $\tilde{u}_{0}, \tilde{v}, \tilde{v}_{0} \in \mathrm{~B}_{n}$ satisfy the equalities

$$
\begin{align*}
& \tilde{u}(t)=\tilde{W}(t, \lambda)\left(c+J_{r}^{-1}(a) \int_{a}^{t} W^{*}(s, \bar{\lambda}) \tilde{A}(s) u_{0}(s) d s\right) \tag{17}\\
& \tilde{v}(t)=\tilde{W}(t, \lambda)\left(d+J_{r}^{-1}(a) \int_{a}^{t} W^{*}(s, \bar{\lambda}) \tilde{A}(s) v_{0}(s) d s\right)
\end{align*}
$$

where $d \in Q_{-}(n), c=-J_{r}^{-1}(a) \int_{a}^{\beta_{n}} W^{*}(s, \bar{\lambda}) \tilde{A}(s) u_{0}(s) d s$. Then

$$
\begin{align*}
& \int_{a}^{\beta_{n}}\left(\tilde{A}(t) u_{0}(t), v(t)\right) d t-\int_{a}^{\beta_{n}}\left(\tilde{A}(t) u(t), v_{0}(t)\right) d t \\
& =-\left(J_{r}(a) c, d\right)-(\lambda-\bar{\lambda}) \int_{a}^{\beta_{n}}(\tilde{A}(t) u(t), v(t)) d t \tag{18}
\end{align*}
$$

Proof. Since $J_{r}(a) c \in Q_{+}(n)$, we see that the right-hand side (18) exists. Let $d_{k} \in Q(n)$ and the sequence $\left\{d_{k}\right\}$ converges to d as $k \rightarrow \infty$ in the space $Q_{-}(n)$. If we replace d by d_{k} in (17), then we obtain the function denoted by $\tilde{v}_{k}(t)$. The sequence $\left\{\tilde{v}_{k}\right\}$ converges to \tilde{v} in the space B_{n}. We apply Lagrange's formula (1) to the functions u, v_{k}. From the equalities $\hat{u}\left(\beta_{n}\right)=0, \tilde{A}(t) u_{0}(t)=$ $l[u]-\lambda \tilde{A}(t) u, \tilde{A}(t) v_{0}(t)=l\left[v_{k}\right]-\lambda \tilde{A}(t) v_{k}$, we obtain the equality of the form (18), where v is replaced by v_{k}. By calculating to the limit as $k \rightarrow \infty$, we obtain (18). The lemma is proved.

In order to prove inequality (14), we take the arbitrary element $x \in Q_{+}$. Then there is $n \in \mathbf{N}$ such that $x \in Q_{+}(n)$. Consequently, there exists $\tilde{f} \in \mathrm{~B}_{n}$ such that

$$
\int_{a}^{\beta_{n}} W^{*}(s, \bar{\lambda}) \tilde{A}(s) f(s) d s=W_{*}(\lambda) \tilde{f}=x
$$

Let $\tilde{z}(t)=\tilde{W}(t, \lambda)\left(M(\lambda) x+(1 / 2) J_{r}^{-1}(a) x\right)$. Suppose $\tilde{y}=R_{\lambda} \tilde{f}$ has the form of (15), where $c(\tilde{f}, \lambda)=M(\lambda) x$. Having made some elementary transformations we can apply Lemma 6 to the functions $\tilde{u}=\tilde{y}-\tilde{z}, \tilde{u}_{0}=\tilde{f}, \tilde{v}=\tilde{y}+\tilde{z}$, $\tilde{v}_{0}=\tilde{f}$. Then we have

$$
\begin{aligned}
& \int_{a}^{\beta_{n}}(\tilde{A}(t) f, z+y) d t-\int_{a}^{\beta_{n}}(\tilde{A}(t)(y-z), f) d t \\
& =2(x, M(\lambda) x)-(\lambda-\bar{\lambda}) \int_{a}^{\beta_{n}}(\tilde{A}(t)(y-z), y+z) d t .
\end{aligned}
$$

Consequently,

$$
\begin{gather*}
(\operatorname{Im} \lambda)^{-1} \operatorname{Im}(M(\lambda) x, x) \\
=(z, z)_{\mathrm{B}_{n}}+\left\{(\lambda-\bar{\lambda})^{-1}\left[\left(R_{\lambda} \tilde{f}, \tilde{f}\right)_{\mathrm{B}_{n}}-\left(\tilde{f}, R_{\lambda} \tilde{f}\right)_{\mathrm{B}_{n}}\right]-\left(R_{\lambda} \tilde{f}, R_{\lambda} \tilde{f}\right)_{\mathrm{B}_{n}}\right\} \tag{19}
\end{gather*}
$$

The operator function R_{λ} is a generalized resolvent of the minimal relation generated in the space B_{n} by the expression l and the function $A(t)$ (the proof is similar to the proof of the corresponding statement for the operator from [1]).

Consequently, the addend in figurate brackets in the right-hand side (19) is nonnegative. Now (14) follows from (19).

Now we assume that $\tilde{f} \in \mathrm{~B}$ is not finite, in general. By V_{1} we denote the operator $x \rightarrow \tilde{W}(t, \lambda)\left(M(\lambda) x+(1 / 2) J_{r}^{-1}(a) x\right)$. The operator V_{1} maps continuously $Q_{+}(n)$ into B for every $n \in \mathbf{N}$. Indeed, for any bounded sequence $\left\{x_{k}\right\}$ in $Q_{+}(n)$ there exists a bounded sequence $\left\{\tilde{g}_{k}\right\}\left(\tilde{g}_{k} \in \mathrm{~B}_{n}^{(0)}\right)$ in B_{n} such that $x_{k}=W_{n}^{*}(\lambda) \tilde{g}_{k}$. Then the sequence $\left\{R_{\lambda} \tilde{g}_{k}\right\}$ is bounded in B. The functions g_{k} vanish out of the interval $\left[a, \beta_{n}\right]$. Consequently, the equality

$$
R_{\lambda} \tilde{g}_{k}=\tilde{W}(t, \lambda)\left(M(\lambda) x_{k}+(1 / 2) J_{r}^{-1}(a) x_{k}\right)
$$

is true out of the interval $\left[a, \beta_{n}\right]$. Therefore the sequence $\left\{\tilde{W}(t, \lambda)\left(M(\lambda) x_{k}+\right.\right.$ $\left.\left.(1 / 2) J_{r}^{-1}(a) x_{k}\right)\right\}$ is bounded in the space B. This implies that the operator V_{1} is continuous. Hence we obtain the inequality

$$
\begin{gather*}
\int_{a}^{\infty}\left(\tilde { A } (t) \tilde { W } (t , \lambda) \left(M(\lambda) x+(1 / 2) J_{r}^{-1}(a) x, \tilde{W}(t, \lambda)\left(M(\lambda) x+(1 / 2) J_{r}^{-1}(a) x\right) d t\right.\right. \\
\leq k(n, \lambda)\|x\|_{Q_{+}(n)}^{2}, \quad k(n, \lambda)>0 \tag{20}
\end{gather*}
$$

Now suppose $\tilde{f} \in \mathrm{~B}$ and f is a nonfinite function, in general. We take the sequence $\left\{\tilde{f}_{n}\right\}$ converging to \tilde{f} in the space B , where $\tilde{f}_{n} \in \mathrm{~B}$ and functions f_{n} are finite. Using (20) and (16), we obtain that for every finite function $g(\tilde{g} \in B)$ there exists the limit

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \int_{a}^{\infty}\left(\tilde{A}^{1 / 2}(t) \int_{a}^{\infty} K(t, s, \lambda) \tilde{A}(s) f_{n}(s) d s, \tilde{A}^{1 / 2}(t) g(t)\right) d t \\
& =\lim _{n \rightarrow \infty} \int_{a}^{\infty}\left(\tilde{A}^{1 / 2}(s) f_{n}(s), \tilde{A}^{1 / 2}(s) \int_{a}^{\infty} K(s, t, \bar{\lambda}) \tilde{A}(t) g(t) d t\right) \\
& =\int_{a}^{\infty}\left(\tilde{A}^{1 / 2}(s) f(s), \tilde{A}^{1 / 2}(s) \int_{a}^{\infty} K(s, t, \bar{\lambda}) \tilde{A}(t) g(t) d t\right) .
\end{aligned}
$$

Hence the sequence $\left\{\int_{a}^{\infty} K(t, s, \lambda) \tilde{A}(s) f_{n}(s) d s\right\}$ converges to $R_{\lambda} \tilde{f}$ as $n \rightarrow \infty$ at least weakly in the space B. The theorem is proved.

References

[1] A.V. Straus, On the Generalized Resolvents and Spectral Functions of the Differential Operator of the Even Order. - Izv. Acad. Nauk SSSR. Ser. Mat. 21 (1957), No. 1, 785-808. (Russian)
[2] V.M. Bruk, On the Generalized Resolvents and Spectral Functions of the Differential Operator of the Even Order in the Space of Vector Functions. - Mat. Zametki 15 (1974), No. 6, 945-954. (Russian)
[3] V.M. Bruk, On the Linear Relation in the Space of Vector Functions. - Mat. Zametki 24 (1978), No. 4, 499-511. (Russian)
[4] V.M. Bruk, On the Generalized Resolvents of the Linear Relations Generated by Differential Expression and Nonnegative Operator Function. - The editorial of Siberian mathematical journal, Novosibirsk, 1985. Dep. VINITI, No. 8827-B85, 18 p. (Russian)
[5] V.I. Khrabustovsky, Spectral Analysis of Periodical Systems with Degenerate Weight on Axis and Semi-axis. - Theory Funct., Funct. Anal. and Appl., Kharkov Univ., Kharkov 44 (1985), 122-133. (Russian)
[6] F.S. Rofe-Beketov and A.M. Kholkin, Spectral Analysis of Differential Operators. World Sci. Monogr. Ser. Math., Vol. 7, 2005.
[7] V.I. Kogan and F.S. Rofe-Beketov, On Square-Integrable Solutions of Symmetric Systems of Differential Equations of Arbitrary Order. - In: Proc. Roy. Soc. Edinburgh. A 74 (1975), 5-40.
[8] V.I. Gorbatchuk and M.L. Gorbatchuk, Boundary Value Problems for DifferentialOperator Equations. Kluwer Acad. Publ., Dordrecht-Boston-London, 1991.
[9] J.L. Lions and E. Magenes, Problemes aux Limities non Homogenenes et Applications. Dunod, Paris, 1968.
[10] H. Schaefer, Topological Vector Spaces. The Macmillan Company, New York; Collier-Macmillan Lim., London, 1966.
[11] V.M. Bruk, On Boundary Value Problems Associated with Holomorphic Families of Operators. - Funct. Anal., Ulyanovsk 29 (1989), 32-42. (Russian)

[^0]: (C) V.M. Bruk, 2006

