Journal of Mathematical Physics, Analysis, Geometry 2006, vol. 2, No. 4, pp. 372–387

Generalized Resolvents of Symmetric Relations Generated on Semi-Axis by a Differential Expression and a Nonnegative Operator Function

V.M. Bruk

Saratov State Technical University 77 Politechnitseskaja Str., Saratov, 410054, Russia E-mail:bruk@san.ru

Received July 10, 2005

Generalized resolvents of a minimal symmetric relation generated on the semi-axis by a formally selfadjoint differential expression and a nonnegative operator function are described.

Key words: symmetric relation, generalized resolvent, characteristic operator function, inductive limit, projective limit.

Mathematics Subject Classification 2000: 47A06, 47A10, 34B27.

1. Introduction

In [1], A.V. Straus described the generalized resolvents of the symmetric operator generated by a formally selfadjoint differential expression of even order in a scalar case. In [2] these results were used for the operator case. A differential expression with a nonnegative weight generates a linear relation. This relation is not an operator, in general. The generalized resolvents formulae for these relations are given in [3–5]. However, in these papers either the finite-dimensional case [3, 5] or the infinite-dimensional case [3, 4] under conditions that the kernel (the null space) of the maximal relation contained only solutions of the corresponding homogeneous equation was considered. In our paper a general situation is considered. We use projective and inductive limits of special spaces in the singular case to construct the spaces where a characteristic operator function acts. We consider the case of semi-axis instead of the general singular case only to simplify notations. The detailed bibliography is given in [1–5] and in the monograph [6].

© V.M. Bruk, 2006

2. Notations and Auxiliary Formulae

Let H be a separable Hilbert space with the scalar product (\cdot, \cdot) and the norm $\|\cdot\|$; A(t) be an operator function strongly measurable on the interval $[a, \infty)$; the values of A(t) are bounded operators in H such that for all $x \in H$ the scalar product $(A(t)x, x) \geq 0$ almost everywhere. Suppose the norm $\|A(t)\|$ is integrable on every compact interval $[a, \beta] \subset [a, \infty)$.

We denote by l the differential expression of order r (r = 2n or r = 2n + 1):

l[y] =

$$\begin{cases} \sum_{k=1}^{n} (-1)^{k} \{ (p_{n-k}(t)y^{(k)})^{(k)} - i[(q_{n-k}(t)y^{(k)})^{(k-1)} + (q_{n-k}(t)y^{(k-1)})^{(k)}] \} + p_{n}(t)y^{(k)} \} \\ \sum_{k=0}^{n} (-1)^{k} \{ i[(q_{n-k}(t)y^{(k)})^{(k+1)} + (q_{n-k}(t)y^{(k+1)})^{(k)}] + (p_{n-k}(t)y^{(k)})^{(k)} \}. \end{cases}$$

Coefficients of l are bounded selfadjoint operators in H. The leading coefficients, $p_0(t)$ in the case of r = 2n and $q_0(t)$ in the case of r = 2n + 1, have the bounded inverse operator almost everywhere. The functions $p_{n-k}(t)$ are strongly differentiable k times and the functions $q_{n-k}(t)$ are strongly differentiable k times in the case r = 2n, and k + 1 times in the case r = 2n + 1. In general, we do not assume the coefficients of the expression l to be smooth as we have just said. According to [7] we treat l as a quasidifferential expression. Quasi-derivatives for the expression l are defined in [7]. Suppose the functions $p_j(t)$, $q_m(t)$ are strongly measurable, the function $q_0(t)$ in the case r = 2n + 1 is strongly differentiable, and the norms of functions

$$p_0^{-1}(t), \ p_0^{-1}(t)q_0(t), \ q_0(t)p_0^{-1}(t)q_0(t), \ p_1(t), \ \dots, \ p_n(t), \ q_0(t), \ \dots, \ q_{n-1}(t)$$

(in the case $r = 2n$),
 $q_0'(t), \ q_1(t), \ \dots, \ q_n(t), \ p_0(t), \ \dots, \ p_n(t)$
(in the case $r = 2n + 1$)

are integrable on every compact interval $[a, \beta] \subset [a, \infty)$.

We define the scalar product

$$\langle y_1, y_2 \rangle = \int_a^\infty (A(t)y_1(t), y_2(t))dt,$$

where $y_i(t)$ are *H*-valued functions continuous on $[a, \infty)$, and $\int_a^{\infty} ||A^{1/2}(t)y_i(t)||^2 dt$ $< \infty, i = 1, 2$. By identifying with zero the functions y such that $\langle y, y \rangle = 0$ and making the completion, we obtain the Hilbert space. We denote this space

by $B = L_2(H, A(t); a, \infty)$. Let \tilde{y} be some element belonging to B, i.e., \tilde{y} is a corresponding class of functions. If $y_1, y_2 \in \tilde{y}$, then y_1, y_2 are identified with respect to the norm generated by the scalar product $\langle \cdot, \cdot \rangle$. By \tilde{y} we denote the class of functions containing y. Suppose $y \in \tilde{y}$. Without loss of generality, further we will often say that y(t) belongs to B.

Let $(a_0, b_0) \subset [a, \infty)$ and $B_0 = L_2(H, A(t); a_0, b_0)$. If $\tilde{y} \in B_0$, then extending y by zero to the whole interval $[a, \infty)$ we can consider that $\tilde{y} \in B$. If $\tilde{y} \in B$, then restricting y to the interval (a_0, b_0) we can consider that $\tilde{y} \in B_0$ (it is not excepted that $\tilde{y} \neq 0$ in B and $\tilde{y} = 0$ in B_0).

Let G(t) be the set of elements $x \in H$ such that A(t)x = 0, and H(t) be the orthogonal complement of G(t) in H, $H = H(t) \oplus G(t)$, and $A_0(t)$ be the restriction of A(t) to H(t). Suppose $H_{\tau}(t), -\infty < \tau < \infty$, is the Hilbert scale of spaces [8, Ch. 2] generated by the operator $A_0^{-1}(t)$. For the fixed t, operator $A_0^{1/2}(t)$ is a continuous one-to-one mapping of $H(t) = H_0(t)$ onto $H_{1/2}(t)$. We denote the adjoint operator of $A_0^{1/2}(t)$ by $\hat{A}_0^{1/2}(t)$. The operator $\hat{A}_0^{1/2}(t)$ is a continuous one-to-one mapping of $H_{-1/2}(t)$ onto H(t) and $\hat{A}_0^{1/2}(t)$ is an extension of $A_0^{1/2}(t)$. Let $\tilde{A}_0(t) = A_0^{1/2}(t)\hat{A}_0^{1/2}(t)$. The operator $\tilde{A}_0(t)$ is a continuous one-to-one mapping of $H_{-1/2}(t)$ onto H(t) and $\hat{A}_0(t)$ is a continuous one-to-one mapping of $H_{-1/2}(t)$ onto H(t) and $\hat{A}_0(t)$ is a continuous one-to-one mapping of $H_{-1/2}(t)$ onto H(t) and $\tilde{A}_0(t)$ is a continuous one-to-one mapping of $H_{-1/2}(t)$ onto $H_{1/2}(t)$ onto $H_{1/2}(t)$ and $\tilde{A}_0(t)$ is a continuous one-to-one mapping of $H_{-1/2}(t)$ onto $H_{1/2}(t)$ and $\tilde{A}_0(t)$ is an extension of $A_0(t)$. We denote $\tilde{A}(t)$ (respectively $\tilde{A}^{1/2}(t)$) the operator defined on $H_{-1/2} \oplus G(t)$ such that $\tilde{A}(t)$ ($\tilde{A}^{1/2}(t)$) is equal to $\tilde{A}_0(t)$ (respectively $\hat{A}_0^{1/2}(t)$) on $H_{-1/2}(t)$ and $\tilde{A}(t)(\tilde{A}^{1/2}(t))$ is equal to $\tilde{A}_0(t)$ (respectively $\hat{A}_0^{1/2}(t)$) is an extension of A(t) ($A^{1/2}(t)$) is equal to zero on G(t). The operator $\tilde{A}(t)$ ($\tilde{A}^{1/2}(t)$) is an extension of A(t) ($A^{1/2}(t)$) respectively).

In [3] it is proved that spaces $H_{-1/2}(t)$ are measurable with respect to parameter t [9, Ch. 1] whenever we take functions of the form $\tilde{A}_0^{-1}(t)A^{1/2}(t)h(t)$ instead of measurable functions, where h(t) is a measurable H-valued function. The space B is a measurable sum of spaces $H_{-1/2}(t)$ and B consists of elements (i.e., classes of functions) with representatives of the form $\tilde{A}_0^{-1}(t)A^{1/2}(t)h(t)$, where $h(t) \in L_2(H; a, \infty)$, i.e., $\int_a^{\infty} ||h(t)||^2 dt < \infty$. If y_1, y_2 are representatives of the class of functions $\tilde{y} \in B$, then $\tilde{A}^{1/2}(t)y_1(t)$, $\tilde{A}^{1/2}(t)y_2(t)$ are the same functions in the space $L_2(H; a, \infty)$. We denote this function by $\tilde{A}^{1/2}(t)\tilde{y}$.

We define minimal and maximal relations generated by the expression l and the function A(t) in the following way. Let D'_0 be the set of finite on $(a; \infty)$ functions y satisfying the following conditions: a) the quasi-derivatives $y^{[0]}, \ldots, y^{[r]}$ of function y exist, they are absolutely continuous up to the order r-1; b) $l[y](t) \in H_{1/2}(t)$ almost everywhere; c) the function $\tilde{A}_0^{-1}(t)l[y]$ belongs to B. To each class of functions identified in B with $y \in D'_0$ we assign the class of functions identified in B with $\tilde{A}_0^{-1}(t)l[y]$. This correspondence L'_0 may not be an operator as it may happen that some function y is identified with zero in B and $\tilde{A}_0^{-1}(t)l[y]$

is not equal to zero. So, we get a linear relation L'_0 in the space B. The closure of L'_0 we denote by L_0 . The relation L_0 is called as a minimal one. Let L^*_0 be the relation adjoint of L_0 . L^*_0 is called the maximal relation.

Terminology concerning linear relations can be found in the monographs [6, 8]. Further the following notations are used: R as a range of values; $\{\cdot, \cdot\}$ as an ordered pair.

We consider the differential equation $l[y] = \lambda A(t)y$, where λ is a complex number. Let $W_j(t, \lambda)$ be the operator solution of this equation satisfying the initial conditions: $W_j^{[k-1]}(a, \lambda) = \delta_{jk} E$ (*E* is the identity operator, δ_{jk} is the Kronecker symbol, $j, k = 1, \ldots, r$). By $W(t, \lambda)$ we denote the one-row operator matrix $(W_1(t, \lambda), \ldots, W_r(t, \lambda))$. The operator $W(t, \lambda)$ maps continuously H^r into *H* for fixed t, λ . The adjoint operator $W^*(t, \lambda)$ maps continuously *H* into H^r . If l[y] exists for the function y, then we denote $\hat{y} = (y, y^{[1]}, \ldots, y^{[r-1]})$ (we treat \hat{y} as a one-columned matrix). Let $z = (z_1, \ldots, z_m)$ be some system of functions such that $l[z_j]$ exists for each j. By \hat{z} we denote the matrix $(\hat{z}_1, \ldots, \hat{z}_m)$. The analogous notations are used for the operator functions.

We consider the operator matrices of orders 2n and 2n+1 for the expression l in cases r = 2n and r = 2n + 1 respectively:

where all the elements, that are not indicated, are equal to zero. (In matrix $J_{2n+1}(t)$ the element $2iq_0^{-1}(t)$ stands on the intersection of the row n+1 and the column n+1.) Suppose the expression l is defined for the functions y, z, then, in these notations, Lagrange's formula has the following form:

$$\int_{\alpha}^{\beta} (l[y], z)dt - \int_{\alpha}^{\beta} (y, l[z])dt = (J_r(t)\hat{y}(t), \hat{z}(t))|_{\alpha}^{\beta}, \quad a \le \alpha < \beta < \infty.$$
(1)

It follows from "method of the variation of arbitrary constants" that general solution of the equation

$$l[y] - \lambda \tilde{A}(t)y = \tilde{A}(t)f(t)$$

is represented in the form:

$$y(t) = W(t,\lambda) \left(c + J_r^{-1}(a) \int_a^t W^*(s,\bar{\lambda})\tilde{A}(s)f(s)ds \right),$$
(2)

where $c \in H^r$. Consequently,

376

$$\hat{y}(t) = \hat{W}(t,\lambda) \left(c + J_r^{-1}(a) \int_a^t W^*(s,\bar{\lambda})\tilde{A}(s)f(s)ds \right).$$
(3)

3. Construction of a Space Containing the Range of the Characteristic Operator Function $M(\lambda)$

Let Q_0 be a set of elements $c \in H^r$ such that function W(t,0)c is identified with zero in the space B, i.e., $\int_a^\infty \|A^{1/2}(s)W(s,0)c\|^2 ds = 0$. It follows from the equalities

$$W(t,\lambda)c = W(t,0)\left(c + \lambda J_r^{-1}(a)\int_a^t W^*(s,0)\tilde{A}(s)W(s,\lambda)cds\right),\qquad(4)$$

$$W(t,0)c = W(t,\lambda)\left(c - \lambda J_r^{-1}(a)\int_a^t W^*(s,\bar{\lambda})\tilde{A}(s)W(s,0)cds\right)$$
(5)

that the function $W(t, \lambda)c$ is identified with zero in the space B if and only if $c \in Q_0$ (in the finite-dimensional case this fact was obtained in [7]). By Q we denote an orthogonal complement of Q_0 in H^r , $H^r = Q \oplus Q_0$.

Let $[a, \beta_m], m = 1, 2, \ldots$, be a system of intervals such that $[a, \beta_m] \subset [a, \beta_{m+1})$ and $\beta_m \to \infty$ as $m \to \infty$. We denote $B_m = L_2(H, A(t); a, \beta_m)$. Suppose $Q_0(m)$ is the set of elements $c \in Q$ such that the function $W(t, \lambda)c$ is identified with zero in the space B_m , i.e., $\int_a^{\beta_m} ||A^{1/2}(s)W(s,\lambda)c||^2 ds = 0$. It follows from (4), (5) that $Q_0(m)$ does not depend on λ . Let Q(m) be the orthogonal complement of $Q_0(m)$

in Q, i.e., $Q = Q(m) \oplus Q_0(m)$. Obviously, $Q_0(1) \supset Q_0(2) \supset \ldots \supset Q_0(m) \supset \ldots$ and $Q(1) \subset Q(2) \subset \ldots \subset Q(m) \subset \ldots \subset Q$.

We define the quasiscalar product

$$(c,d)^{(i)}_{-} = \int_{a}^{\beta i} (\tilde{A}(s)W(s,0)c, W(s,0)d)ds, \quad c,d \in Q,$$

in space Q. This quasiscalar product generates the semi-norm

$$\|c\|_{-}^{(i)} = \left(\int_{a}^{\beta_{i}} \left\|A^{1/2}(s)W(s,0)c\right\|^{2} ds\right)^{1/2} \le \gamma \|c\|, \ c \in Q, \ \gamma = \gamma(i) > 0.$$
(6)

Clearly, $\|\cdot\|_{-}^{i} \leq \|\cdot\|_{-}^{i+1}$.

Note that if $c \in Q(m)$, then $||c||_{-}^{(m)} > 0$ for $c \neq 0$. Therefore the semi-norm $||\cdot||_{-}^{i}$ is a norm on the set Q(m) for $i \geq m$. By $Q_{-}^{(i)}(m)$ we denote the completion of Q(m) with respect to this norm. It follows from (4), (5) that we obtain the same set $Q_{-}^{(i)}(m)$ with the equivalent norm whenever we replace W(s,0) by $W(s,\lambda)$ in (6). The inclusion map $Q_{-}^{(k)}(m) \subset Q_{-}^{(i)}(m)$ is continuous for $k \geq i \geq m$. We denote $Q_{-}(m) = Q_{-}^{(m)}(m)$.

Let ker (a, β_m, λ) be a closure of the set of elements (i.e., of classes of functions) in the space \mathbb{B}_m with the representatives of the form $W(t, \lambda)x$, where $x \in Q(m)$. (We denote these classes by $\tilde{W}(t, \lambda)x$.) It follows from (4–6) that the operator $c \to \tilde{W}(t, \lambda)c$ ($c \in Q_-(m)$) is the continuous one-to-one mapping of $Q_-(m)$ onto ker (a, β_m, λ) . By $W_m(\lambda)$ we denote this operator. Here $\tilde{W}(t, \lambda)c$ is the class of functions such that the sequence $\{\tilde{W}(t, \lambda)c_k\}$ converges to $\tilde{W}(t, \lambda)c$ in the space \mathbb{B}_m whenever $\{c_k\}$ converges to c in the space $Q_-(m)$.

By Q(n, m) we denote the orthogonal complement of Q(m) in Q(n) for n > m, i.e., $Q(n) = Q(m) \oplus Q(n, m)$. Then

$$Q_{-}(n) = Q_{-}^{(n)}(m) \dot{+} Q_{-}^{(n)}(n,m),$$
(7)

where $Q_{-}^{(n)}(n,m)$ is the completion of Q(n,m) with respect to the norm $\|\cdot\|_{-}^{(n)}$. Hence denoting

$$\ker(Q(m), a, \beta_n, \lambda) = W_n(\lambda)Q_-^{(n)}(m), \ \ker(Q(n, m), a, \beta_n, \lambda) = W_n(\lambda)Q_-^{(n)}(n, m),$$

we obtain

$$\ker(a,\beta_n,\lambda) = \ker(Q(m),a,\beta_n,\lambda) + \ker(Q(n,m),a,\beta_n,\lambda).$$
(8)

We define the linear mappings g_{mn} : ker $(a, \beta_n, \lambda) \rightarrow$ ker (a, β_m, λ) $(n \geq m)$ in the following way. Let $g_{mn}z = W_m(\lambda)j_{mn}W_n^{-1}(\lambda)z$ for $z \in$ ker $(Q(m), a, \beta_n, \lambda)$ and $g_{mn}z = 0$ for $z \in$ ker $(Q(n, m), a, \beta_n, \lambda)$ (here j_{mn} is the inclusion map of $Q_-^{(n)}(m)$ into $Q_-(m)$). It follows from (7), (8) and the properties of the operators $W_k(\lambda)$ that mappings g_{mn} are continuous.

Moreover, we introduce the linear mappings $h_{mn}: Q_{-}(n) \to Q_{-}(m) \ (n \geq m)$ in accordance with (7) in the following way. Since the inclusion map of $Q_{-}^{(n)}(m)$ into $Q_{-}(m)$ is continuous, we define $h_{mn}c = j_{mn}c$ whenever $c \in Q_{-}^{(n)}(m)$, and we define $h_{mn}c = 0$ whenever $c \in Q_{-}^{(n)}(n,m)$. Mappings h_{mn} are continuous.

By ker (a, ∞, λ) we denote a projective limit of the family {ker (a, β_n, λ) ; $n \in \mathbb{N}$ } with respect to mappings g_{mn} and by Q_- we denote a projective limit of the family $\{Q_-(n)\}; n \in \mathbb{N}\}$ with respect to mappings h_{mn} , i.e.,

$$\ker(a,\infty,\lambda) = \lim(pr)g_{mn}\ker(a,\beta_n,\lambda), \quad Q_- = \lim(pr)h_{mn}Q_-(n).$$

It follows from the definition of projective limit [10, Ch. 2] that Q_{-} is a subspace of the product $\prod_{n} Q_{-}(n)$ and Q_{-} consists of the elements $c = \{c_n\}$ such that $c_m = h_{mn}c_n$ for all $m \leq n$. Similarly, $\ker(a, \infty, \lambda)$ is a subspace of $\prod_{n} \ker(a, \beta_n, \lambda)$ and the analogous statement is true in regard to $\ker(a, \infty, \lambda)$. By p_n, p'_n we denote the projections $\prod_{n} Q_{-}(n)$ and $\prod_{n} \ker(a, \beta_n, \lambda)$ onto $Q_{-}(n)$ and $\ker(a, \beta_n, \lambda)$ respectively.

The mappings g_{mn} , h_{mn} and the operators $W_n(\lambda) : Q_-(n) \to \ker(a, \beta_n, \lambda)$ satisfy the equality: $g_{mn} = W_m(\lambda)h_{mn}W_n^{-1}(\lambda)$. Consequently, the family of operators $\{W_n(\lambda)\}$ generates the isomorphism (i.e., the linear homeomorphism) $W(\lambda) : Q_- \to \ker(a, \infty, \lambda)$. If $c = \{c_n\} \in \prod_n Q_-(n)$, then $W(\lambda)c = \{W_n(\lambda)c_n\}$ and $W(\lambda)Q_- = \ker(a, \infty, \lambda)$. Moreover,

$$p'_n(W(\lambda)Q_-) = W_n(\lambda)p_n(Q_-).$$
(9)

Lemma 1. Let w_n be a representative of the class of functions $\tilde{w}_n = W_n(\lambda)d$ $(d \in Q_-(n))$ and let w_m be restriction of w_n to $[a, \beta_m]$ $(m \le n)$. Then

$$\tilde{w}_m = W_m(\lambda)h_{mn}d. \tag{10}$$

P r o o f. According to (7) we represent d in the form d = d' + d'', where $d' \in Q_{-}^{(n)}(m) \subset Q_{-}(m), d'' \in Q_{-}^{(n)}(n,m)$. Suppose the sequences $\{d'_k\}, \{d''_k\}$ $(d'_k \in Q(m), d''_k \in Q(n,m))$ converge to d', d'' in the spaces $Q_{-}^{(n)}(m), Q_{-}^{(n)}(n,m)$ respectively. Then the sequence $\{\tilde{W}(t,\lambda)d'_k\}$ converges to $W_n(\lambda)d'$ in the space B_n . Therefore $\{\tilde{W}(t,\lambda)d'_k\}$ converges to $W_m(\lambda)j_{mn}d'$ in B_m and the functions $W(t,\lambda)d''_k$ are identified with zero in B_m . Hence follows (10). Lemma 1 is proved.

Journal of Mathematical Physics, Analysis, Geometry, 2006, vol. 2, No. 4

Let $c' \in H^r$. Then the function $\tilde{A}^{1/2}(t)W(t,\lambda)c'$ belongs to $L_2(H;a,\beta_n)$ for all n and $\tilde{A}^{1/2}(t)W(t,\lambda)c'$ coincides with $\tilde{A}^{1/2}(t)W(t,\lambda)c''$ in this space, where $c'' = P_n P_0 c \in Q(n)$, P_0 is the orthogonal projection of H^r onto Q, P_n is the orthogonal projection of Q onto Q(n). Suppose the sequence $\{d_k\}$, $d_k \in Q(n)$, converges to d in the space $Q_-(n)$; then classes of functions $\tilde{W}(t,\lambda)d_k \in B_n$ with the representatives of $W(t,\lambda)d_k$ converge to the class of functions $\tilde{W}(t,\lambda)d$ in B_n . Therefore functions $\tilde{A}^{1/2}(t)W(t,\lambda)d_k$ converge to the function z(t) = $\tilde{A}^{1/2}(t)\tilde{W}(t,\lambda)d$ in the space $L_2(H;a,\beta_n)$. It follows from (10) that the restriction of z(t) to the interval $[a,\beta_m]$, m < n, coincides with $\tilde{A}^{1/2}(t)\tilde{W}(t,\lambda)h_{mn}d$.

Suppose $c = \{c_n\} \in Q_-$; then $c_m = h_{mn}c_n \ (m \leq n)$. It follows from (10) that the restriction of function $\tilde{A}^{1/2}(t)\tilde{W}(t,\lambda)c_n$ to the interval $[a,\beta_m]$ coincides with the function $\tilde{A}^{1/2}(t)\tilde{W}(t,\lambda)c_m$ in the space $L_2(H;a,\beta_m)$. Therefore by $\tilde{A}^{1/2}(t)\tilde{W}(t,\lambda)c$ we denote the function coinciding with $\tilde{A}^{1/2}(t)\tilde{W}(t,\lambda)c_n$ on any interval $[a,\beta_n]$. Correspondingly, by $\tilde{W}(t,\lambda)c$ we denote the $H_{-1/2}(t)\oplus G(t)$ -valued function coinciding with $\tilde{W}(t,\lambda)c_n$ in the spaces B_n for all n. It follows from (9), (10) that $\tilde{W}(t,\lambda)c_n = \tilde{W}(t,\lambda)c_m$ in the space $B_m, m \leq n$.

4. Construction of a Domain of the Characteristic Operator Function $M(\lambda)$

The space $Q_{-}(n)$ can be treated as a negative one with respect to Q(n). By $Q_{+}(n)$ we denote a corresponding space with the positive norm. It follows from (7) that $Q_{+}(n) = Q_{+}^{(n)}(m) + Q_{+}^{(n)}(n,m)$, where $Q_{+}^{(n)}(m)$, $Q_{+}^{(n)}(n,m)$ are the corresponding positive spaces with respect to $Q_{-}^{(n)}(m)$, Q(m) and $Q_{-}^{(n)}(n,m)$, Q(n,m). The inclusion $Q_{+}(m) \subset Q_{+}^{(n)}(m)$ is dense and continuous. Consequently the inclusion map of $Q_{+}(m)$ into $Q_{+}(n)$ is continuous for $m \leq n$.

Suppose $h_{nm}^+: Q_+(m) \to Q_+(n), n \ge m$, is the adjoint mapping of h_{mn} ; then h_{nm}^+ is the continuous inclusion map of $Q_+(m)$ into $Q_+(n)$. By Q_+ we denote inductive limit [10, Ch. 2] of the family $\{Q_+(n); n \in \mathbf{N}\}$ with respect to mappings h_{nm}^+ , i.e., $Q_+ = \lim(ind)h_{nm}^+Q_+(n)$. It follows from [10, Ch. 4] that Q_+ is the adjoint space of Q_- . The space Q_+ can be treated as the union $Q_+ = \bigcup_n Q_+(n)$ with the strongest topology such that all inclusion maps of $Q_+(n)$ into Q_+ are continuous [10, Ch. 2].

Let $\tilde{y} \in B_m$ and $m \leq n$. Suppose y is a representative of the class of functions \tilde{y} , then we can treat \tilde{y} as an element of the space B_n whenever we extend yby zero out of the interval $[a, \beta_m]$. If $m \leq n$, then the space B_m can be treated as a subspace B_n . The topology of B_m is induced by the topology of B_n . Let i_{nm} be the inclusion map of B_m into B_n . By \tilde{B} we denote the inductive limit of the spaces B_n with respect to the mappings i_{nm} , i.e., $\tilde{B} = \lim(ind)i_{nm}B_n$. The

space \tilde{B} can be treated as $\tilde{B} = \bigcup_{n} B_{n}$ with the strongest topology such that all inclusion maps of B_{n} into \tilde{B} are continuous.

Suppose $\{F_n\}, n \in \mathbf{N}$, is a family of locally convex spaces such that $F_m \subset F_n$ for $m \leq n$ and this inclusion map is continuous. According to [8, Ch. 1], an inductive limit $F = \lim(ind)F_n$ of the locally convex spaces $F_n, n \in \mathbf{N}$, is called a regular one if for every bounded set $S \subset F$ there is $n \in \mathbf{N}$ such that $S \subset F_n$ and S is a bounded set in F_n . It follows from [8, Ch. 1] that the inductive limits Q_+ and \tilde{B} are regular. According to [10, Ch. 2], the inductive limit of bornological spaces is a bornological space. Since Q_+, \tilde{B} are the inductive limits of the reflexive Banach spaces, we see that Q_+, \tilde{B} are bornological.

Suppose F_n are bornological spaces such that their inductive limit F is regular. Let F_0 be a locally convex space. It follows from [10, Ch. 2] that a linear mapping $u: F \to F_0$ is continuous if and only if for every $n \in \mathbb{N}$ restriction of u to F_n maps every bounded set $S \subset F_n$ into the bounded set $u(S) \subset F_0$. According to [10, Ch. 2, Ex. 17], we can take a bounded sequence instead of the bounded set $S \subset F_n$. Further, these statements will be used for the proof of the continuity of corresponding operators. We take the space Q_- instead of F_0 . Then the following conditions are equivalent: (i) the set u(S) is bounded in Q_- ; (ii) the sets $p_k u(S)$ are bounded in the spaces $p_k Q_- = Q_-(k)$ for every $k \in \mathbb{N}$; (iii) the sets $W_k(\lambda)p_k u(S)$ are bounded in the spaces B_k for every $k \in \mathbb{N}$; (iii) the sets consisting of elements of the form $\tilde{W}(t, \lambda)c_k$ are bounded for every $k \in \mathbb{N}$, where $c_k \in p_k u(S) \subset Q_-(k)$.

Thus the following lemma is proved.

Lemma 2. Suppose the spaces F_n are bornological and their inductive limit F is regular. The linear operator $u: F \to Q_-$ is continuous if and only if for every $n \in \mathbf{N}$ and every bounded set $S \subset F_n$ and every $k \in \mathbf{N}$ the sets consisting of elements of the form $\tilde{W}(t, \lambda)c_k$ are bounded in B_k , where $c_k \in p_k u(S) \subset Q_-(k)$. Any bounded sequence can be taken in place of bounded set S.

Further, we shall take a family of space $\{Q_+(n)\}$ or $\{B_n\}$ in place of $\{F_n\}$. Then $F = Q_+$ or $F = \tilde{B}$ respectively. As it was mentioned above, the operator $W_n(\lambda)$ is a continuous one-to-one mapping of $Q_-(n)$ onto the closed subspace $\ker(a, \beta_n, \lambda)$ of the space B_n . Then the adjoint operator $W_n^*(\lambda)$ maps continuously B_n onto $Q_+(n)$. Therefore $W_n^*(\lambda)$ is the continuous operator of B_n into Q_+ . The operator $W_n^*(\lambda)$ has the following form:

$$W_n^*(\lambda)\tilde{f} = \int_a^{\beta_n} W^*(s,\lambda)\tilde{A}(s)f(s)ds = \int_a^\infty W^*(s,\lambda)\tilde{A}(s)f(s)ds,$$
(11)

where $\tilde{f} \in \mathbf{B}$ and f vanishes outside $[a, \beta_n]$.

Journal of Mathematical Physics, Analysis, Geometry, 2006, vol. 2, No. 4

We note that the norms $||W^*(s,\lambda)A^{1/2}(s)||$, $||A^{1/2}(s)f(s)||$ belong to $L_2(a,\beta_n)$. Hence the integral in the right side of (11) exists.

Since B consists of finite functions, in accordance with (11) we can define the operator $W_*(\lambda)$ mapping \tilde{B} onto Q_+ by the formula

$$W_*(\lambda) ilde{f} = \int\limits_a^\infty W^*(s,ar{\lambda}) ilde{A}(s)f(s)ds.$$

It follows from the reasoning given before Lemma 2 that the operator $W_*(\lambda)$: $\tilde{B} \to Q_+$ is continuous. Obviously, $W_*(\lambda)\tilde{f} = W_n^*(\bar{\lambda})\tilde{f}$ for $\tilde{f} \in B_n$.

5. The Main Result

To prove the main theorem we need several lemmas.

Lemma 3. $\tilde{g} \in B$ belongs to the range $R(L'_0 - \bar{\lambda}E)$ of the relation $L'_0 - \bar{\lambda}E$ if and only if there is an interval (a, β_n) such that g is finite on (a, β_n) and

$$\int_{a}^{\beta_{n}} W^{*}(s,\lambda)\tilde{A}(s)g(s)ds = 0.$$
(12)

P r o o f. Let g be finite and (12) is true. We denote

$$z(t) = W(t, \bar{\lambda}) \left(J_r^{-1}(a) \int_a^t W^*(s, \lambda) \tilde{A}(s) g(s) ds \right).$$

From (2), (3), (12) we obtain that the ordered pair $\{\tilde{z}, \tilde{g}\} \in L'_0 - \lambda E$.

Vice versa, let $\{\tilde{z}, \tilde{g}\} \in L'_0 - \bar{\lambda}E$. It follows from (2), (3) that there is a representative z of the class of functions \tilde{z} such that the equality

$$\hat{z}(t) = \hat{W}(t,\bar{\lambda}) \left(c + J_r^{-1}(a) \int_a^t W^*(s,\lambda)\tilde{A}(s)g(s)ds \right)$$

is true, where $c \in Q$. Since the function z is finite, we see that c = 0 and g is finite on some interval (a, β_n) and equality (12) is true. Lemma 3 is proved.

R e m a r k. In Lemma 3 we can replace the interval (a, β_n) by any interval such that the function z vanishes out of this interval, where $\{\tilde{z}, \tilde{g}\} \in L'_0 - \bar{\lambda}E$. Equality (12) and the equality $(\tilde{g}, \tilde{W}(t, \lambda)c)_{B_n} = 0$ are equivalent for all $c \in Q_-(n)$.

Lemma 4. If the ordered pair $\{\tilde{y}, \tilde{f}\} \in L_0^* - \lambda E$, then \tilde{y} can be represented in the following form:

$$\tilde{y}(t) = \tilde{W}(t,\lambda)c + \tilde{W}(t,\lambda)J_r^{-1}(a)\int_a^t W^*(s,\bar{\lambda})\tilde{A}(s)f(s)ds$$
$$= \tilde{W}(t,\lambda)\left(c + J_r^{-1}(a)\int_a^t W^*(s,\bar{\lambda})\tilde{A}(s)f(s)ds\right),$$
(13)

where $c \in Q_{-}$.

Proof. We denote

$$u(t) = W(t,\lambda) \left(J_r^{-1}(a) \int_a^t W^*(s,\bar{\lambda})\tilde{A}(s)f(s)ds \right)$$

Let $\{\tilde{z}, \tilde{g}\} \in L'_0 - \bar{\lambda}E$ and z(t) = 0 for $t \ge \beta_n$. From Lagrange's formula (1), we obtain

$$\int_{a}^{\beta_{n}} (\tilde{A}(s)g(s), u(s))ds - \int_{a}^{\beta_{n}} (\tilde{A}(s)z(s), f(s))ds = 0$$

The equality

$$\int_{a}^{\beta_n} (\tilde{A}(s)g(s), y(s))ds - \int_{a}^{\beta_n} (\tilde{A}(s)z(s), f(s))ds = 0$$

is true for every ordered pair $\{\tilde{y}, \tilde{f}\} \in L_0^* - \lambda E$. It follows from the last two equalities that $(\tilde{g}, \tilde{y} - \tilde{u})_{B_n} = 0$. Since ker (a, β_n, λ) is closed and $g \in R(L'_0 - \lambda E)$ is arbitrary, from Lemma 3 and remark we obtain the equality $\tilde{y} - \tilde{u} = \tilde{W}(t, \lambda)c_n$. Since the interval (a, β_n) is taken arbitrarily, we obtain (13) where $c = \{c_n\} \in Q_-$.

Note that Lemmas 3, 4 follow also from paper: V.M. Bruk, J. Math. Phys., Anal., Geom. 2 (2006), 1–10.

Theorem. Every generalized resolvent R_{λ} , $\operatorname{Im} \lambda \neq 0$, of the relation L_0 is the integral operator

$$R_{\lambda}\tilde{f} = \int_{a}^{\infty} K(t,s,\lambda)\tilde{A}(s)f(s)ds \quad (\tilde{f}\in \mathbf{B}).$$

The kernel $K(t, s, \lambda)$ has the form

$$K(t,s,\lambda) = \tilde{W}(t,\lambda)(M(\lambda) - (1/2)\mathrm{sgn}(s-t)J_r^{-1}(a))W^*(s,\bar{\lambda}),$$

Journal of Mathematical Physics, Analysis, Geometry, 2006, vol. 2, No. 4

where $M(\lambda): Q_+ \to Q_-$ is the continuous operator such that $M(\bar{\lambda}) = M^*(\lambda)$ and

$$(\mathrm{Im}\lambda)^{-1}\mathrm{Im}(M(\lambda)x,x) \ge 0 \tag{14}$$

for every fixed λ , $\operatorname{Im}\lambda \neq 0$, and for every $x \in Q_+$. The operator function $M(\lambda)x$ is holomorphic for every $x \in Q_+$ in the semi-planes $\operatorname{Im}\lambda \neq 0$.

P r o o f. First, we prove the theorem for the functions finite on (a, ∞) . Suppose $\tilde{f} \in B$ and f is a finite function. It follows from (13) that $\tilde{y} = R_{\lambda}\tilde{f}$ has the following form:

$$\tilde{y} = \tilde{y}(t, \tilde{f}, \lambda) = \tilde{W}(t, \lambda) \left(c(\tilde{f}, \lambda) + (1/2)J_r^{-1}(a) \int_a^t W^*(s, \bar{\lambda})\tilde{A}(s)f(s)ds - (1/2)J_r^{-1}(a) \int_t^\infty W^*(s, \bar{\lambda})\tilde{A}(s)f(s)ds \right),$$
(15)

where $c(\tilde{f}, \lambda) \in Q_{-}$ and $c(\tilde{f}, \lambda)$ is uniquely determined by \tilde{f} and λ , $\operatorname{Im} \lambda \neq 0$. Indeed, if it is not so, then $\tilde{W}(t, \lambda)c(\tilde{f}, \lambda) = R_{\lambda}0 = 0$, and this equality is true whenever $c(\tilde{f}, \lambda) = 0$. Therefore, $c(\tilde{f}, \lambda) = C(\lambda)\tilde{f}$ where $C(\lambda) : \tilde{B} \to Q_{-}$ is the linear operator.

Now we show that the operator $C(\lambda)$ is continuous for every fixed λ . Let the sequence $\{\tilde{f}_k\}$ $(\tilde{f}_k \in B_n)$ be bounded in B_n for a fixed number $n \in \mathbf{N}$. Then $\{\tilde{f}_k\}$ is bounded in B. Hence the sequence $\{R_\lambda \tilde{f}_k\}$ is bounded in B. Consequently, $\{R_\lambda \tilde{f}_k\}$ is bounded in B_m . It follows from (15) that the sequence $\{\tilde{W}(t,\lambda)p_mc(\tilde{f}_k,\lambda)\}$ is bounded in B_m . Since $n, m \in \mathbf{N}$ are arbitrary and according to Lemma 2, it follows that the operator $C(\lambda)$ is continuous.

Now we prove that $c(f, \lambda)$ is uniquely determined by the element $W_*(\lambda)f \in Q_+$. We assume that $W_*(\lambda)\tilde{f} = 0$. Then the ordered pair $\{\tilde{z}, \tilde{f}\} \in L_0 - \lambda E$, where

$$\tilde{z}(t) = \tilde{W}(t,\lambda) \left((1/2)J_r^{-1}(a) \int_a^t W^*(s,\bar{\lambda})\tilde{A}(s)f(s)ds - (1/2)J_r^{-1}(a) \int_t^\infty W^*(s,\bar{\lambda})\tilde{A}(s)f(s)ds \right).$$

Since $(L_0 - \lambda E)^{-1} \subset R_{\lambda}$, we obtain that $\tilde{W}(t, \lambda)c(\tilde{f}, \lambda)$ belongs to the range of the operator R_{λ} . Hence $c(\tilde{f}, \lambda) = 0$.

Thus $C(\lambda) = M(\lambda)W_*(\lambda)\tilde{f}$, where $M(\lambda): Q_+ \to Q_-$ is an everywhere defined operator. We prove that $M(\lambda)$ is continuous for every fixed λ . Let the sequence $\{q_k\} = \{W_*(\lambda)\tilde{f}_k\}$ be bounded in $Q_+(n)$. By $B_n^{(0)}$ we denote the orthogonal

Journal of Mathematical Physics, Analysis, Geometry, 2006, vol. 2, No. 4

complement of ker $W_n^*(\lambda)$ in the space B_n . The operator $W_n^*(\lambda)$ is a continuous one-to-one mapping of $B_n^{(0)}$ onto $Q_+(n)$. Consequently, there exists a bounded sequence $\{\tilde{g}_k\}$ ($\tilde{g}_k \in B_n^{(0)}$) in B_n such that $q_k = W_*(\lambda)\tilde{f}_k = W_n^*(\lambda)\tilde{g}_k$. Then the sequence $\{R_\lambda \tilde{g}_k\}$ is bounded in B. Consequently, $\{R_\lambda \tilde{g}_k\}$ is bounded in B_m for every $m \in \mathbf{N}$. Hence the sequence $\{\tilde{W}(t,\lambda)p_m M(\lambda)q_k\}$ is bounded in B_m . It follows from Lemma 2 that the operator $M(\lambda)$ is continuous.

Now we prove that the function $M(\lambda)x$ is holomorphic $(\operatorname{Im}\lambda \neq 0)$ for every $x \in Q_+$. It follows from (15) and holomorphicity of R_{λ} that the function $\lambda \to \tilde{W}(t,\lambda)p_nC(\lambda)\tilde{f}$ is holomorphic in \mathbb{B}_n for every $\tilde{f} \in \mathbb{B}_j$, $n, j \in \mathbb{N}$. Substituting $p_nC(\lambda)\tilde{f}$ for c in equality (4), we get that function $\lambda \to \tilde{W}(t,0)p_nC(\lambda)\tilde{f}$ is holomorphic. Since the operator $x \to \tilde{W}(t,0)x$ is a continuous one-to-one mapping of $Q_-(n)$ onto $\ker(a,\beta_n)$ and $\ker(a,\beta_n)$ is closed in \mathbb{B}_n , we obtain that $\lambda \to p_nC(\lambda)\tilde{f} = p_nM(\lambda)W_j^*(\bar{\lambda})\tilde{f}$ is the holomorphic function for every $\tilde{f} \in \mathbb{B}_j$. Now holomorphicity of function $\lambda \to p_nM(\lambda)x$ follows from the lemma proved in [11].

Lemma 5. Suppose bounded operators $S_3(\lambda) : B_1 \to B_3$, $S_1(\lambda) : B_1 \to B_2$, $S_2(\lambda) : B_2 \to B_3$ satisfy the equality $S_3(\lambda) = S_2(\lambda)S_1(\lambda)$ for every fixed λ belonging to some neighborhood of a point λ_0 and suppose the range of operator $S_1(\lambda_0)$ coincides with B_2 , where B_1 , B_2 , B_3 are Banach spaces. If functions $S_1(\lambda)$, $S_3(\lambda)$ are strongly differentiable in the point λ_0 , then in this point function $S_2(\lambda)$ is strongly differentiable.

In this lemma it should be taken that $B_1 = B_j$, $B_2 = Q_+(j)$, $B_3 = Q_-(n)$, $S_1(\lambda) = W_i^*(\bar{\lambda})$, $S_2(\lambda) = p_n M(\lambda)$, $S_3(\lambda) = p_n C(\lambda)$.

So, the operator function $\lambda \to p_n M(\lambda)x$ is strongly differentiable for every $n \in \mathbf{N}$ and for every $x \in Q_+$. Now holomorphicity of the operator function $M(\lambda)x$ for every $x \in Q_+$ follows from the closeness of Q_- in the product of spaces $Q_-(n)$ [10, Ch. 2] and from the definition of topology of the product space.

It follows from the equality $R^*_{\lambda} = R_{\bar{\lambda}}$ that $M(\bar{\lambda}) = M^*(\lambda)$ and

$$\tilde{A}^{1/2}(s)K^*(t,s,\lambda)A^{1/2}(t) = \tilde{A}^{1/2}(s)K(s,t,\bar{\lambda})A^{1/2}(t).$$
(16)

Now we show inequality (14). First, we prove the following statement.

Lemma 6. Suppose \tilde{u} , \tilde{u}_0 , \tilde{v} , $\tilde{v}_0 \in B_n$ satisfy the equalities

$$\tilde{u}(t) = \tilde{W}(t,\lambda)(c + J_r^{-1}(a) \int_a^t W^*(s,\bar{\lambda})\tilde{A}(s)u_0(s)ds),$$

$$\tilde{v}(t) = \tilde{W}(t,\lambda)(d + J_r^{-1}(a) \int_a^t W^*(s,\bar{\lambda})\tilde{A}(s)v_0(s)ds),$$
(17)

where $d \in Q_{-}(n)$, $c = -J_{r}^{-1}(a) \int_{a}^{\beta_{n}} W^{*}(s,\bar{\lambda})\tilde{A}(s)u_{0}(s)ds$. Then

$$\int_{a}^{\beta_{n}} (\tilde{A}(t)u_{0}(t), v(t))dt - \int_{a}^{\beta_{n}} (\tilde{A}(t)u(t), v_{0}(t))dt$$
$$= -(J_{r}(a)c, d) - (\lambda - \bar{\lambda}) \int_{a}^{\beta_{n}} (\tilde{A}(t)u(t), v(t))dt.$$
(18)

P r o o f. Since $J_r(a)c \in Q_+(n)$, we see that the right-hand side (18) exists. Let $d_k \in Q(n)$ and the sequence $\{d_k\}$ converges to d as $k \to \infty$ in the space $Q_-(n)$. If we replace d by d_k in (17), then we obtain the function denoted by $\tilde{v}_k(t)$. The sequence $\{\tilde{v}_k\}$ converges to \tilde{v} in the space B_n . We apply Lagrange's formula (1) to the functions u, v_k . From the equalities $\hat{u}(\beta_n) = 0$, $\tilde{A}(t)u_0(t) = l[u] - \lambda \tilde{A}(t)u$, $\tilde{A}(t)v_0(t) = l[v_k] - \lambda \tilde{A}(t)v_k$, we obtain the equality of the form (18), where v is replaced by v_k . By calculating to the limit as $k \to \infty$, we obtain (18). The lemma is proved.

In order to prove inequality (14), we take the arbitrary element $x \in Q_+$. Then there is $n \in \mathbf{N}$ such that $x \in Q_+(n)$. Consequently, there exists $\tilde{f} \in B_n$ such that

$$\int_{a}^{\beta_{n}} W^{*}(s,\bar{\lambda})\tilde{A}(s)f(s)ds = W_{*}(\lambda)\tilde{f} = x.$$

Let $\tilde{z}(t) = \tilde{W}(t,\lambda)(M(\lambda)x + (1/2)J_r^{-1}(a)x)$. Suppose $\tilde{y} = R_{\lambda}\tilde{f}$ has the form of (15), where $c(\tilde{f},\lambda) = M(\lambda)x$. Having made some elementary transformations we can apply Lemma 6 to the functions $\tilde{u} = \tilde{y} - \tilde{z}$, $\tilde{u}_0 = \tilde{f}$, $\tilde{v} = \tilde{y} + \tilde{z}$, $\tilde{v}_0 = \tilde{f}$. Then we have

$$\int_{a}^{\beta_{n}} (\tilde{A}(t)f, z+y)dt - \int_{a}^{\beta_{n}} (\tilde{A}(t)(y-z), f)dt$$
$$= 2(x, M(\lambda)x) - (\lambda - \bar{\lambda}) \int_{a}^{\beta_{n}} (\tilde{A}(t)(y-z), y+z)dt.$$

Consequently,

$$(\operatorname{Im}\lambda)^{-1}\operatorname{Im}(M(\lambda)x,x) = (z,z)_{\mathrm{B}_n} + \{(\lambda - \bar{\lambda})^{-1}[(R_\lambda \tilde{f}, \tilde{f})_{\mathrm{B}_n} - (\tilde{f}, R_\lambda \tilde{f})_{\mathrm{B}_n}] - (R_\lambda \tilde{f}, R_\lambda \tilde{f})_{\mathrm{B}_n}\}.$$
 (19)

The operator function R_{λ} is a generalized resolvent of the minimal relation generated in the space B_n by the expression l and the function A(t) (the proof is similar to the proof of the corresponding statement for the operator from [1]).

Consequently, the addend in figurate brackets in the right-hand side (19) is nonnegative. Now (14) follows from (19).

Now we assume that $f \in B$ is not finite, in general. By V_1 we denote the operator $x \to \tilde{W}(t,\lambda)(M(\lambda)x + (1/2)J_r^{-1}(a)x)$. The operator V_1 maps continuously $Q_+(n)$ into B for every $n \in \mathbf{N}$. Indeed, for any bounded sequence $\{x_k\}$ in $Q_+(n)$ there exists a bounded sequence $\{\tilde{g}_k\}$ $(\tilde{g}_k \in B_n^{(0)})$ in B_n such that $x_k = W_n^*(\lambda)\tilde{g}_k$. Then the sequence $\{R_{\lambda}\tilde{g}_k\}$ is bounded in B. The functions g_k vanish out of the interval $[a, \beta_n]$. Consequently, the equality

$$R_{\lambda}\tilde{g}_{k} = \tilde{W}(t,\lambda)(M(\lambda)x_{k} + (1/2)J_{r}^{-1}(a)x_{k})$$

is true out of the interval $[a, \beta_n]$. Therefore the sequence $\{\tilde{W}(t, \lambda)(M(\lambda)x_k +$ $(1/2)J_r^{-1}(a)x_k$ is bounded in the space B. This implies that the operator V_1 is continuous. Hence we obtain the inequality

$$\int_{a}^{\infty} (\tilde{A}(t)\tilde{W}(t,\lambda)(M(\lambda)x + (1/2)J_{r}^{-1}(a)x, \tilde{W}(t,\lambda)(M(\lambda)x + (1/2)J_{r}^{-1}(a)x)dt \\ \leq k(n,\lambda) \|x\|_{Q_{+}(n)}^{2}, \quad k(n,\lambda) > 0.$$
(20)

Now suppose $\tilde{f} \in B$ and f is a nonfinite function, in general. We take the sequence $\{f_n\}$ converging to f in the space B, where $f_n \in B$ and functions f_n are finite. Using (20) and (16), we obtain that for every finite function g ($\tilde{g} \in B$) there exists the limit

$$\begin{split} &\lim_{n\to\infty}\int\limits_{a}^{\infty}(\tilde{A}^{1/2}(t)\int\limits_{a}^{\infty}K(t,s,\lambda)\tilde{A}(s)f_{n}(s)ds,\tilde{A}^{1/2}(t)g(t))dt\\ &=\lim_{n\to\infty}\int\limits_{a}^{\infty}(\tilde{A}^{1/2}(s)f_{n}(s),\tilde{A}^{1/2}(s)\int\limits_{a}^{\infty}K(s,t,\bar{\lambda})\tilde{A}(t)g(t)dt)\\ &=\int\limits_{a}^{\infty}(\tilde{A}^{1/2}(s)f(s),\tilde{A}^{1/2}(s)\int\limits_{a}^{\infty}K(s,t,\bar{\lambda})\tilde{A}(t)g(t)dt).\end{split}$$

Hence the sequence $\left\{ \int_{a}^{\infty} K(t,s,\lambda)\tilde{A}(s)f_{n}(s)ds \right\}$ converges to $R_{\lambda}\tilde{f}$ as $n \to \infty$

at least weakly in the space B. The theorem is proved.

References

- [1] A.V. Straus, On the Generalized Resolvents and Spectral Functions of the Differential Operator of the Even Order. - Izv. Acad. Nauk SSSR. Ser. Mat. 21 (1957), No. 1, 785–808. (Russian)
- [2] V.M. Bruk, On the Generalized Resolvents and Spectral Functions of the Differential Operator of the Even Order in the Space of Vector Functions. — Mat. Zametki 15 (1974), No. 6, 945–954. (Russian)

Journal of Mathematical Physics, Analysis, Geometry, 2006, vol. 2, No. 4

- [3] V.M. Bruk, On the Linear Relation in the Space of Vector Functions. Mat. Zametki 24 (1978), No. 4, 499–511. (Russian)
- [4] V.M. Bruk, On the Generalized Resolvents of the Linear Relations Generated by Differential Expression and Nonnegative Operator Function. — The editorial of Siberian mathematical journal, Novosibirsk, 1985. Dep. VINITI, No. 8827-B85, 18 p. (Russian)
- [5] V.I. Khrabustovsky, Spectral Analysis of Periodical Systems with Degenerate Weight on Axis and Semi-axis. — Theory Funct., Funct. Anal. and Appl., Kharkov Univ., Kharkov 44 (1985), 122–133. (Russian)
- [6] F.S. Rofe-Beketov and A.M. Kholkin, Spectral Analysis of Differential Operators. World Sci. Monogr. Ser. Math., Vol. 7, 2005.
- [7] V.I. Kogan and F.S. Rofe-Beketov, On Square-Integrable Solutions of Symmetric Systems of Differential Equations of Arbitrary Order. In: Proc. Roy. Soc. Edinburgh. A 74 (1975), 5–40.
- [8] V.I. Gorbatchuk and M.L. Gorbatchuk, Boundary Value Problems for Differential-Operator Equations. Kluwer Acad. Publ., Dordrecht-Boston-London, 1991.
- [9] J.L. Lions and E. Magenes, Problemes aux Limities non Homogenenes et Applications. Dunod, Paris, 1968.
- [10] H. Schaefer, Topological Vector Spaces. The Macmillan Company, New York; Collier-Macmillan Lim., London, 1966.
- [11] V.M. Bruk, On Boundary Value Problems Associated with Holomorphic Families of Operators. - Funct. Anal., Ulyanovsk 29 (1989), 32-42. (Russian)