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1. Introduction and the Main Results

1.1. In papers [1-8], it is considered, in particular, the polynomial asymptotics
of subharmonic functions of finite order p and their mass distributions in terms
of the growth of reminder terms and topology of exceptional sets. Besides, the
exponents p1, ..., p, of terms had to satisfy the conditions [p] < p, < ... < p for
a noninteger p. We are going to represent another point of view by studying the
polynomial asymptotics in D’-topology and a little bit stronger topology and relax
restriction on the exponent to the natural p > p; > ... > p, > 0. It occurs that
this change of topology together with the consideration of more narrow class than
in [5] allows to obtain a multiterm asymptotic analog of Levin—Pfluger’s theory of
completely regular growth and make simpler (in our opinion) formulating of the
results and proofs.

By “D’-topology” we call the topology of the space D'(C\0) of distributions
(i.e., linear bounded functionals) over the basic space D(C\0) of finite infinitely
differentiable functions. Recall that a sequence u; — 0, j — oo in this space if
the linear functionals

<uj,g>—0 (1.1.1)

for all g € D.
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About connection between D'-topology and the topology of exceptional sets
for subharmonic functions see [9], [10, Ch. 3].

We also use Cg5,*-topology, i.e., the topology of linear functionals over the
basic space Cg5, with the convergence defined like in (1.1.1). The space C79, is
one of the infinitely differentiable functions in C\ 0 that tends to oo not faster
then O(|z|77) as z — 0 and tends to zero not slower then O(|z|™P) as z — oco. Let
us note that this topology is stronger that D’-topology because Cop 2 D(C\0).

Let u(z) be a subharmonic function in C of normal type with respect to a finite
order p, i.e.,

0 < ofu] := limsup M (r,u)r * < oo,
T—00
where M (r,u) := max|, =, u(z).We write u € SH(p).

Let pu be a mass distribution in C with no mass in zero. It has normal type

with respect to the exponent p if

0 < Afu] := limsup pu(K,)r=" < oo,

r—00

where K, := {z : |z| < r}. We write u € M(p). Define by p,, the mass distribution
associated with u. Recall

Borel’s Theorem. Let [p] < p. If u € SH(p), then pn € M(p) and vice versa.

Let p = [p] :=p. Set

p
sntesn) =+ [ %(Z) u(dédn).
[CI<R

This is a family of the homogeneous harmonic polynomial of degree p. Recall in
an equivalent formulation

Lindel6f’s Theorem. If u € SH(p) then p, € M(p) and the family {0r} is
precompact as R — 0o, and vice versa.

Denote uy(z) := u(tz)t P. The function u(z) € SH(p) is called a function of
the completely regular growth (CRG-function) if u; — h,(z) in D'-topology, as
t — oo. Here

hy(z) := rPh(e'?) (1.1.2)

and the function h(e'?) is a p-trigonometrically convex function (p-t.c. function)
(see, e.g., [10, Ch. 1, §§15, 16] ), i.e., it is a 2w-periodic generalized solution of
the equation

B+ p*h = A(dg), (1.1.3)

where A is a 27-periodic positive measure.
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Recall also that p-t.c. function as a distribution is equivalent to a continuous
function and can be represented for noninteger p in the form

2T
1
h(¢) = Spsin /* cos p(¢ — p — ) A(dep), (1.1.4)
0

where the function x cos p(¢) is a 2m-periodic extension of the function cos p¢ from
the interval (—m,7) on (—o0,00). If p(> 0) is integer, then A must satisfy the
condition

2w
/eiﬂ¢A(d¢) =0, (1.1.5)
0
and the representation has the form
1 2w
Bt =R(C} + oo [ (=) sinplo—w)AlE),  (116)
0

where C' is a complex constant, the function xi means the 27-periodic continua-
tion of the function f(v) := v from the interval [0,27) on (—o0, ).

Recall (see [9], [10, Ch.3, §1|) that u; (do not confuse with y,,) is the mass
distribution defined by the equality

<ty g >i= t”/g(Z/t)u(dIdy)
for all g € D. It can also be defined by the equality
(E) = p(tB)t,

where E is every Borel set and tF is the homothety of E.
Let p > [p]. Recall that the mass distribution yu is called regular if

e — A(dg) @ pre~tdr (1.1.7)

in D'-topology as t — oo. A(d¢) is a measure on the unit circle which is necessarily
positive.

Let p be an integer number p = [p]. Then the mass distribution is called
regular if, in addition to (1.1.7), dr(z, ut, p) converges in D'-topology as t — 0o
for some R.

Since dg(z, ut,p) is a homogeneous harmonic polynomial, the convergence in
D'-topology is equivalent to uniform convergence in every bounded domain.
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In such terms Levin—Pfluger’s theorem (see [9, Chs. 2, 3], [10, Ch. 3, Th. 3])
may be formulated as follows.

Levin—Pfluger’s Theorem. If u is a CRG-function, then its mass distribu-
tion s regular and vice versa.

1.2. Let p={p > p1 > ... > p, > 0} be a finite monotonic system of
numbers. We call a function u € SH(p) completely p-regular if

wp = hy + P Ph, 4 ..+t Ph, 4 P Po(1), (1.2.1)

where h, is a p-t.c. function and h,,(2), j = 1,2,...,n, are of the form of (1.1.2)
with the corresponding h’s being the differences of pj-t.c. functions. Therefore h,,
can be represented in the form of (1.1.4) or (1.1.6) with A’s being the functions
of bounded variation. Besides, o(1) — 0 in D’ topology.

Let p > [p] and pj € ([pl,p), 7 =1,2,...,n. We call u € M(p) p-regular if

j=n
B = iy + Y Py + 0 Po(1)) (1.2.2)
7=1

as t — 0o, where
1) = Dp(dip) ® prP~dr, (1.2.3)

with A, positive and summable, and o)+ J
as p = pj, j = 0,1,...,n, and arbitrary A,
variation on the circle.

If o(1) — 0 in D'-topology, then p is p-regular in D'-topology. However it is
possible to say that u is p-regular in other topology if o(1) — 0 in this topology.

=0,1,...,n, are of the same form

o; 's that are the functions of bounded

Theorem 1.2.1. Let p > [p] and [pn, p] "N = 0. If u is completely p-reqular
in D'-topology then its mass distribution p is p-reqular in D' topology. If p is

p-regular in Cp5, 14 *_topology, then u is completely p-reqular in D'-topology.

Let us notice that the classical Levin—Pfluger theorem of completely regular
growth function for noninteger p can be obtained from here by using the following

Proposition 1.2.2. Let p € M(p) and puy — p,) in D' as t — oo. Then
the same holds in CJ3, . 1*.

We suppose further that p is an exponent of the convergence of p.
Let us consider the situation, when p consists of noninteger numbers, but
the interval (0, p) contains integer numbers.

Theorem 1.2.3. Let uy have the representation

o]
up = hy + 7 by 4 PR, + > R{apZ I 4 10 P0(1), (1.2.4)
1
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where o(1) — 0 in D'
Then

j=n
b= iy + Y T gy + 17 Po(1) (1.2.5)
7=1

with o(1) — 0 in D'.
The inverse theorem is the following

Theorem 1.2.4. Let u € SH(p) and its mass distribution have the represen-
tation (1.2.5) with o(1) — 0 in C3, 1 * and

2T

/ e® PN, (dp) =0 (1.2.6)

0

for all k, p >k > p;.
Then (1.2.4) holds for u; with o(1) — 0 in D'.

Let us notice that the conditions (1.2.6) are not necessary for the validness of
(1.2.4).

The similar theorems can be formulated for the case when p or some of p; are
integers.

I am grateful to Prof. V. Logvinenko for his valuable notes.

2. Proofs

2.1. Consider the case when p > [p] and [p,, p] "N = (). Let u; have the re-
presentation (1.2.1) and the remainder term be o(1) in D’-topology. Applying to
(1.2.1), the operator (1/2m)A (here A is the Laplace operator) we obtain (1.2.2),
as (1/2m)Auy = g, (1/2m)Ah,, = A, (dg), j =0,...,n,and (1/2m)Ao(1) = o(1)
since the Laplace operator is continuous in D’-topology. The first assertion of
Th. 1.2.1 is proved.

Let (1.2.2) hold with o(1) in Cp%,,1*. Apply to it the operator Adj which is
conjugated to

Adyfo]i= [ H(z/¢, o) o (dody)
C\0

that acts from D to Cop, p + 1. By definition, for g € D we have
< Ad:)ﬂ’tag >=< [ht, Adp[g] >

Now substitute (1.2.2) for ;. The integral of the first n terms of (1.2.2 ) are, in
fact, the first n terms of (1.2.1). Let us verify it.
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We have
<t Ayl = [ ey [ H /e ) ap)pirt i

Counting the inner integral on dr (see, [11, Ch. 1, §17, footnote 21]), we obtain

oo
/H z[re™ p)prPi T dr = xcosplargz — 1 —m)|z|?.  (2.1.1)
0

2p; sinmp;
Hence, using (1.1.4), we obtain
< pp;y Adplg] >=< hy..g > . (2.1.2)
The last term is t”»~o(1) where o(1) is understood in Cp9,,;*. The function

Ad,lg] is a canonical potential of the function g € D. Thus Ad [ 1 € Cyout
Therefore < o(1), Ad,[g] >.— 0 as t — oo. This proves the second assertion of
Th. 1.2.1.

2.2. Let us prove Proposition 1.2.2.

Proof. Letge Cp.. Let 7, 7, 73 be a partition of unity by in-
finitely differentiable functlons such that supp 71 C (0,€), supp 72 C (¢/2,2R),
supp 13 C (R,00). Then

/ 9(2) s (didy) = I (1) + I(t) + Ts(0),

C

where

5®) = [ 9y (ehldody), §=1,2,3
C
The first integral has the estimate

|11 (t)] < lim/Cr_put(dr),
6—0
)

because g is O(]z|7P) as z — 0. Integrating by parts, we obtain

€

Li(t) <C | wi(e)e” P + girr[l] Py () (drr)
—
1)
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Since pu(r) < CrP, also py(r) < CrP. Thus
I(t) < CebP (2.2.1)

uniformly with respect to t.
In the same way we obtain

I3(t) < CRP—P7! (2.2.2)
uniformly with respect to t.

Since p1y — p, in D' and gr» € D, we have

L(t) — /g(z)Tg(|z|)up(d$dy), t — oo. (2.2.3)
C

Moreover, (2.2.1),(2.2.2), and (2.2.3) imply that

< gyt >—< g, p(p) >

for every g € C), 11 because € can be chosen to be arbitrarily small and R can be

selected to be arbitrarily large. ]

For proving Th. 1.2.3 we should only repeat the first part of the proof of
Th. 1.2.1.

2.3.

Proof of Theorem 1.24. Asin the proof of Th. 1.2.1 we apply
the operator Adj, to y; and evaluate < ., Adp[g] >.. Because of (1.2.3),

< Hi(py)s Adplg] >=< pjrfiTh < Ay, Adplg] >p>r,

where
27

< Bgys Adfo) >gi= [ Adylglire ), (09).
0
Changing the order of integration and using (1.2.6) and (2.1.1), we obtain

< N(pj)aAdp[g] >2=< /’l’(pj)7Adpj 9] >.=< hp]-ag >
As it was explained in the proof of Th. 1.2.1, < o(1), Ad,[g] >— 0. Thus

Adppy = hy + 17" hy + .. + "7 Phy, +o(1)t 7P, (2.3.1)
By Adamar’s theorem (see, e.g., [12, Ch. 4.2])

(o]
u(z) — Adyu(z) = R{arz"}. (2.3.2)
k=0

Thus (2.3.1) and (2.3.2) imply (1.2.4). ]
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