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Local extremes of the trigonometric polynomial

Bn(�) =

k=2nX

k=n

sin k�

k

are considered, and various inequalities between them are proved. In par-

ticular, the greatest and the least values of Bn(�) are found.
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Let us consider a trigonometric polynomial

Tmn(�) =
sinm�

m
+ : : :+

sinn�

n

with a derivative

T 0
mn(�) = cosm� + : : : + cosn�:

The local extremes Tmn(�), obviously, are among the points

�p : sin
n�m+ 1

2
�p = 0 and �q : cos

n+m

2
�q = 0:

For m = 1, the sequences f�pg and f�qg alternate, thus in points �p they are

local minima, and in points �q they are local maxima. Moreover, local maxima

decrease in q, and for An(�) = T1;n(�) we have ([1, p. 91])

An(�) � An(
�

n+ 1
); 0 � � � �: (1)

In the paper the similar results for local extreme of a polynomial Bn(�) = Tn;2n(�)
are obtained. This question arises, for example, when considering the series

1X
n=0

�nT2n;2n+1�1; �n = �1:
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In the proof of estimation (1) in ([1, p. 293]) the following method of averaging

is used. Let a; b be two local extremes of An(�). Consider

An(b)�An(a) =

bZ
a

A0
n(�)d� =

�
c =

a+ b

2
; d =

b� a

2

�

=

cZ
a

[A0
n(�) +A0

n(� + d)]d�:

If the sum [A0
n(�)+A0

n(�+d)] preserves a sign in the interval [a; c], we shall obtain
the sign of di�erence An(b)�An(a). Let us put

Bn(�) =
sinn�

n
+ : : :+

sin 2n�

2n
; B0

n(�) =
cos

3n

2
� sin

n+ 1

2
�

sin �=2
: (2)

As the cos 3n�=2 frequency in (2) is approximately three times more than the

sin(n+1)�=2 one, it is convenient to consider the cos 3n�=2 zeroes in the interval

(0; �) by groups of three, and we denote

aq =
�

3n
+

2�

n
(q � 1); bq = aq +

2�

3n
=

�

n
+

2�

n
(q � 1);

cq = bq +
2�

3n
= �

�

n
+

2�

n
q; �q =

2�

n+ 1
q; q � series; q = 1; : : : ;

n+ 1

2
:

The last series is incomplete if n is odd. In this case b[(n+1)=2] = �[(n+1)=2] = �.

It is easy to see that the relative arrangement of zeroes in a q-series is as follows:

aq < bq < cq < �q;

�
1 � q �

n+ 1

6

�
; seriesA;

aq < bq < �q < cq;

�
n+ 1

6
< q �

n+ 1

2

�
; seriesB:

Theorem 1. Bn(aq) > Bn(bq), q = 1; : : : ; (n+ 1)=2:

P r o o f. In this case the averaging is not necessary, because in the interval

(aq � � � bq) the functions cos 3n�=2 and sin(n+ 1)�=2 preserve the sign and

cos
3n

2
� = (�1)qÆ1; sin

n+ 1

2
� = (�1)q�1Æ2; Æi > 0:

Let �q; �q+1; �q+2; �q+3 be the four consecutive zeroes of cos 3n�=2 and

sn(�) = B0
n(�) +B0

n

�
� +

2�

3n

�
+B0

n

�
� +

4�

3n

�
; �q � � � �q+1;

be the averaging of the derivative B0
n(�) in the interval (�q; �q+3). Using obvious

statements

292 Journal of Mathematical Physics, Analysis, Geometry, 2007, vol. 3, No. 3



Local Extremums of Trigonometric Polynomial

Lemma 1.

sin

�
� +

2�

3

�
+ sin � = sin

�
� +

�

3

�
and

Lemma 2.

sin� sin(� + h)� sin(�+ h) sin� = sinh sin(�� �);

it is easy to obtain an explicit expression for sn(�):

Lemma 3.

sn(�) =
sin

�

3n
cos

3n

2
�

sin
�

2
sin

�
�

2
+

�

3n

�
sin

�
�

2
+

2�

3n

� �
�
p
3 cos

�
n�

2
+

�

3

�
sin

�

2

+2 sin
�

3n
sin

n�

2
cos

�
�

2
+

�

3n

��
= s1 + s2: (3)

The unobtrusive advantage of representation (3) in comparison with (2) is in

a regular position of zeroes. The cos

�
�

2
+

�

3n

�
zeroes are in points aq and

the sinn�=2 zeroes are in points (cq + aq+1)=2. It follows, in particular, that

in the intervals (aq; bq) and (bq; cq) these functions preserve the sign. At the

same time, with the growth of q, the sin
(n+ 1)�

2
zeroes move from the interval

(cq; aq+1) to the interval (bq; cq).

Theorem 2. Bn(aq) > Bn(aq+1), q = 1; : : : ; [(n� 1)=2].

P r o o f. By Lemma 3, it is enough to check the inequality

sn(�) = s1 + s2 � 0; aq � � � bq: (4)

Let us prove that both terms in (4) are nonpositive. It follows from the relations

cos
3n�

2
= (�1)qÆ1; sin

n�

2
= (�1)q�1Æ2;

cos

�
n�

2
+

�

3

�
= (�1)qÆ3; Æi > 0;

that can easily be checked.
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Theorem 3.

Bn(bq) < Bn(bq+1); q = 1; : : : ; [(n� 1)=2]:

P r o o f. In view of Lem. 3, it is enough to check the inequality

sn(�) = s1 + s2 � 0; bq � � � cq: (5)

A nonnegativity of both summands in (5) follows from the relations

cos
3n�

2
= (�1)q�1Æ1; sin

n�

2
= (�1)q�1Æ2;

cos

�
n�

2
+

�

3

�
= (�1)qÆ3; Æi > 0;

since cos 3n�=2 changes the sign, but sin(n�)=2 and cos

�
n�

2
+

�

3

�
preserve it.

Theorem 4. Bn(cq) > Bn(cq+1); q = 1; : : : ; [n�1
2

].

P r o o f. As in the proof of Th. 2, it is enough to check the inequality

sn(�) = s1 + s2 � 0; aq � � � cq+1: (6)

Similarly to the case above, it follows from the relations

cos
3n�

2
= (�1)q�1Æ1; cos(

n�

2
+

�

3
) = (�1)qÆ2; Æi > 0;

that s1 � 0. At the same time, sin n�

2
as well as s2 in (6) changes the sign in the

point (cq + aq+1)=2 = q2�=n. Moreover, the numerical analysis shows that for

small q the sum s1 + s2 near the point aq+1 takes positive values. Therefore, for

the estimation of

Z
aq+1

cq

s2(�)d� one more averaging is necessary. For h 2 (0; �

3n
)

we put �1 = 2�=q�h; �2 = 2�=q+h. Then cos 3n�1=2 = cos 3n�2=2. Therefore,
for �(h) = s2(�1) + s2(�2) we have

�(h) = s2(�1) + s2(�2) = 2 sin2
�

3n
cos

3n

2
�1 sin

n

2
�1

�

2
4 cos

�
�1

2
+ �

3n

�
sin �1

2
sin

�
�1

2
+ �

3n

�
sin

�
�1

2
+ 2�

3n

� +
cos

�
�2

2
+ �

3n

�
sin �2

2
sin

�
�2

2
+ �

3n

�
sin

�
�2

2
+ 2�

3n

�
3
5 < 0;
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since �1 < �2. Finally,

aq+1Z
cq

s2(�)d� =

cq+aq+1

2Z
cq

s2(�)d� +

aq+1Z
cq+aq+1

2

s2(�)d� =

2�

n
qZ

0

�(h)dh < 0;

and Theorem 4 is proved.

Theorem 5. Bn(Aq) > Bn(cq); q = 1; : : : ; [(n+ 1)=6].

P r o o f. In this case, for aq � � � bq we put

sn(�) = B0
n(�) +B0

n(� + 2�=3n)

=
cos 3n

2
�

sin �

2
sin( �

2
+ �

3n
)

�
2 sin

n+ 1

2
� sin

�

6n
cos

�
�

2
+

�

6n

�

�2 sin
��
6
+

�

6n

�
sin

�

2
cos

�
(n+ 1)

�

2
+

�

6
+

�

6n

��
: (7)

As cos 3n�=2 = (�1)qÆ, Æ > 0, aq � � � bq; it is enough to check the positivity

of the square brackets, multiplied by (�1)q�1, that is equivalent to the inequality

sin
n+ 1

2
�

�
sin

�

6n
cos

�
�

2
+

�

6n

�
+ 2 sin2

��
6
+

�

6n

�
sin

�

2

�

� sin
��
3
+

�

3n

�
sin

�

2
cos(n+ 1)

�

2
; (8)

with odd q, and we have the opposite inequality for even q. For de�niteness we

consider the case with an odd q. In (8) let us omit a positive term 2 sin2
��
6
+

�

6n

�
� sin

�

2
. Then we are restricted with the interval aq � � �

�

n+ 1
+

2�

n
(q � 1),

because cos(n+ 1)�=2 � 0 holds on the interval �

n+1
+ 2�

n
(q � 1) � �, and (8) is

obvious. After division by positive sin(n+ 1)�=2, in the case of odd q we obtain

the inequality

sin �

6n
cos

�
�

2
+ �

6n

�
sin �

2

� sin
��
3
+

�

3n

�
cot

(n+ 1)�

2
;

or

sin
�

3n
cot

�

2
� sin

��
3
+

�

3n

�
cot

(n+ 1)�

2
� 2 sin2

�

6n
: (9)
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Lemma 4.
cot (n+1)�

2

cot �

2

decreases monotonously when

aq � � �
�

n+ 1
+

2�

n
(q � 1):

P r o o f. A nonnegativity of the logarithmic derivative of fraction follows

immediately from the well-known inequality j sin(n�)j � nj sin �j and from the

positivity sin(n+ 1)� when aq � � �
�

n+ 1
+

2�

n
(q � 1).

By Lemma 4, cot
(n+ 1)�

2
�

cot(n+ 1)�=6n

cot �=6n
cot �=2 and inequality (9) follows

from the inequality

cot
�

2(n+ 1)
[1 + cos

�

3n
� sin

��
3
+

�

3n

�
cot(n+ 1)

�

6n
] � sin

�

3n
:

The last inequality, except, perhaps, some initial values n, is given by the following

Lemma 5. sin
��
3
+

�

3n

�
cot(n+ 1)

�

6n
�

3

2
:

The proof of Lem. 5 follows from the inequality

sin
��
3
+ 2�

�
cot

��
6
+ �

�
� 3=2; 0 � � �

�

2
;

with � = �=6n. The case of even q is considered in a similar way, and Th. 5 is

completely proved.

The relation between Bn(bq) and Bn(cq), q = 1; : : : ; [(n + 1)=6], is a little more

complicated. Using the averaging over zero �q =
2�

n+ 1
q, similar to that applied

in Th. 4, we receive

Proposition 1. If �q = 2�q=(n + 1) > (bq + cq)=2, that holds when 0 � q �
(n� 1)=3, then Bn(bq) < Bn(cq), otherwise Bn(cq) < Bn(bq).

From Theorems 3 and 4 it follows that Bn(bq) monotonously increases in q,

and Bn(cq) monotonously decreases. The following theorem is valid.

Theorem 6. Bn(b0) < Bn(c[n�1
2
]).

P r o o f. Really,

Bn(b0) = Bn

��
n

�
=

2nX
k=n

sin k�

n

k
= [k = l + n] = �

nX
l=0

sin l�

n

l + n

' �
Z 1

0

sin(�t)

l + t
dt = �0:433785:
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On the other hand, for example, when n is even

Bn

�
c
j
n�1

2
j

�
= Bn

�
� �

�

3n

�
=

2nX
k=n

sin(k� � k�

3n
)

k

=
2nX
k=n

(�1)k+1 sin
k�

3n

k
= (�1)n+1

nX
l=0

(�1)l
sin(�

3
+ l�

3n
)

l + n

= (�1)n+1

n

2X
l=0

"
sin(�

3
+ l�

3n
)

l + n
�

sin(�
3
+ (l+1)�

3n
)

l + 1 + n

#
:

As �����
"
sin(�

3
+ l�

3n
)

l + n
�

sin(�
3
+ (l+1)�

3n
)

l + 1 + n

#����� � 2 sin �

3n

1 + n
+

1

(l + n)(l + n+ 1)
;

then ���Bn

�
c[n�1

2
]

���� � 2 ln 2 sin
�

3n
+

1

2n
;

Bn(b0) < Bn

�
c[n�1

2
]

�
; n > 6:

For initial values n the inequality is checked by direct calculation. Theorem 6 is

proved.

As above, let �q = 2�q=(n+ 1), q = 1; : : : ; [(n� 1)=2], be the zeroes of

sin(n+ 1)�=2 in the q-series. The following assertion is valid.

Proposition 2.

Bn(�q) � Bn(cq); Bn(�q) � Bn(aq+1);

Bn(cq) � Bn(aq+1); 1 � q � [(n+ 1)=6] ;

Bn(cq) � Bn(�q); Bn(cq) � Bn(aq+1);

Bn(�q) � Bn(aq+1); [(n+ 1)=6] < q � [(n� 1)=2] : (10)

The �rst and the second inequalities in (10) can be easily checked without

averaging as in Th. 1. The last inequalities can be proved similarly to Th. 5, but

the proofs are more cumbersome because of the di�erence of denominators in �q
and cq, aq+1.
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