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We consider an initial boundary value problem for the heat equation in

a plane two-level junction 
"; which is the union of a domain and a large

number 2N of thin rods with the variable thickness of order " = O(N�1).

The thin rods are divided into two levels depending on boundary conditions

given on their sides. In addition, the boundary conditions depend on the

parameters � � 1 and � � 1, and the thin rods from each level are "-pe-

riodically alternated. The asymptotic analysis of this problem for di�erent

values of � and � is made as " ! 0. The leading terms of the asymptotic

expansion for the solution are constructed, the asymptotic estimate in the

Sobolev space L2(0; T ;H1(
")) is obtained and the convergence theorem is

proved with minimal conditions for the right-hand sides.
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Sobolev spaces.
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Introduction

It is an interesting problem to study the asymptotic behaviour of solutions of

boundary value problems when the domain is perturbed. There are many kinds

of the domain perturbations and we need di�erent asymptotic methods to study
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boundary value problems in perturbed domains (see, e.g., [1�9] and the references

therein).

In recent years the interest to the boundary value problems in domains with

rapidly oscillating boundaries is quickened due to the development of technolo-

gies of porous, composite and other microinhomogeneous materials and biological

structures. In the following three items we present a short review showing the

main qualitative results obtained for the boundary value problems in domains

with rapidly oscillating boundaries.

In [7, Sect. 5] the heat equation is studied in a plane bounded domain whose

boundary is a wave surface of the curve n = "F (s="), where " is a small para-

meter and F (�) is some 1-periodic function. On this waved surface the following

boundary condition @�u" + k0u" = 0 is given. This condition is classical in some

problems of heat transfer. From physical point of view, it is natural to expect that

the wave surface will radiate more heat than a smooth (homogenized) one. This

is the reason why the radiators are waved. It is shown that in the limit passage

as " ! 0 we obtain the initial boundary value problem for the heat equation in

a domain with homogenized surface and with the following boundary condition.

@�u0 + k0j�ju0 = 0, where j�j is the "waving coe�cient" of the initial boundary.

The paper [10] deals with the homogenization of an elliptic equation of the

second order with quickly oscillating coe�cients in a thin perforated domain

with rapidly varying thickness. The following inhomogeneous Neumann condi-

tion
P

n

i;j=1 aij(x=")@xju"�i = "g(bx; x=") is given on the oscillating boundary. It is

proved that this condition is transformed as " ! 0 in the "waving" summand of

the right-hand side of the homogenized equation.

In paper [11] the authors studied a boundary value problem for the Poisson

equation with the inhomogeneous Fourier boundary condition

@�u" + "
�
p(bx; bx="�)u""��1 = g(bx; bx="�)

on the very rapidly oscillating part (xn = "F (bx; bx="�); � > 1) of the boundary.

Depending on the relation between � and �� 1; di�erent limiting boundary con-

ditions as " ! 0 were obtained for the Poisson equation in the corresponding

smooth domain.

From this small review it follows that asymptotic results are very sensitive to

the type of the oscillating boundary and boundary conditions.

We have a completely di�erent situation for the boundary value problems in

thick junctions (sometimes these domains are called domains perforated by narrow

parallel channels or sheets (see [3, 4, 12�17], or thick junctions [18�23], or domains

with highly oscillating boundary (see [24, 25])). It is because of special character

of the connectedness of thick junctions: there are points in a thick junction, which

are at a short distance of order O("); but the length of all curves connecting these

points in the junction is of order O(1): As a result, there appear many new speci�c
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e�ects and di�culties in asymptotic study of boundary value problems in thick

junctions: the loss of coercivity of di�erential operators in the limit passage as

" ! 0 (for a spectral problem it means the loss of compactness); the absence of

extension operators that would be bounded uniformly in " in the Sobolev space

W
1
2 ; the power behavior of junction-layer solutions at in�nity.

The aim of the paper is to continue the asymptotic analysis of boundary value

problems in thick multilevel junctions studied in [26�30], where elliptic boundary

value problems and spectral problems were considered. First, we deal with initial

boundary value parabolic problems. These problems in thick multilevel junctions

have not been studied in full. The idea to deal with them resulted from fruitful

discussions with the specialists in radioelectronic, where these thick junctions are

in common practice as radiators (heat radiators, microstrip radiators, tubular ra-

diators, ferrite-�lled rod radiators, folded core radiators, waveguide radiators and

so on). Furthermore, we consider the inhomogeneous Fourier boundary conditions

@�u"+ "k1u" = "
�
g" on the sides of the rods from the �rst level and the following

ones @�u" + "
�
k2u" = "

�
g" on the sides of the rods from the second level. These

conditions depend on three parameters " > 0; � � 1; � � 1, and we study their

in�uence on the asymptotic behaviour of the solution as "! 0:

The outline of the paper is the following. In Section 1 the statement of the

problem is reported. The auxiliary uniform estimates for the solution are proved

in Sect. 2. The leading terms of the asymptotic expansion for the solution of the

problem are constructed in Sect. 3 for every analyzed case. The corresponding

estimates are deduced in Sect. 4 and the convergence theorem is proved in Sect. 5.

Finally, we discuss the obtained results.

1. Statement of the Problem

Let a, d1, d2, b1, b2 be positive real numbers and let d1 � d2, 0 < b1 < b2 < 1.

Consider two positive piecewise smooth functions h1 and h2 on the segments

[�d1; 0] and [�d2; 0], respectively. Suppose the functions h1 and h2 satisfy the

following conditions:

9 Æ0 2 (b1; b2) 8 x2 2 [�d1; 0] : 0 < b1 � h1(x2)=2; b1 + h1(x2)=2 < Æ0;

8 x2 2 [�d2; 0] : Æ0 < b2 � h2(x2)=2; b2 + h2(x2)=2 < 1:

It follows from these assumptions that there exist the positive constants m0, M0

such that

0 < m0 � h1(x2) < Æ0 and jh
0

1(x2)j �M0 a.e. in [�d1; 0];

0 < m0 � h2(x2) < 1� Æ0 and jh
0

2(x2)j �M0 a.e. in [�d2; 0]:

We also assume that h1 and h2 are locally constant functions in a neighborhood

of the point x2 = 0; i.e., there exists some small enough positive number �0 such

that h1 and h2 are constant on [��0; 0]:
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Let us divide a segment [0; a] into N equal segments ["j; "(j + 1)], j =

0; : : : ; N � 1. Here N is a large integer, therefore the value " = a=N is a small

discrete parameter.

A model plane thick two-level junction 
" (see �gure) consists of junction's

body 
0 = fx 2 R
2
: 0 < x1 < a; 0 < x2 < 
(x1)g, where 
 2 C

1
([0; a]),

min[0;a] 
 > 0, 
(0) = 
(a) =: 
0, and of a large number of thin rods

G
(1)
j
(") = fx 2 R

2
: jx1 � " (j + b1)j < "h1(x2)=2; x2 2 (�d1; 0]g;

G
(2)
j
(") = fx 2 R

2
: jx1 � " (j + b2)j < "h2(x2)=2; x2 2 (�d2; 0]g;

j = 0; 1; : : : ; N � 1; i.e., 
" = 
0 [G": Here G" = G
(1)
" [G

(2)
" ;

G
(1)
" =

N�1[
j=0

G
(1)
j
("); G

(2)
" =

N�1[
j=0

G
(2)
j
("):

Figure.

We see that the number of thin rods is equal to 2N and they are divided

into two levels G
(1)
" and G

(2)
" depending on their lengths, namely, d1 and d2: The

parameter " characterizes the distance between the thin neighboring rods and

their thickness. The thickness of the rods from the �rst level is equal to "h1, and

it is equal to "h2 for the rods from the second level. These thin rods from each level

are "-periodically alternated along the segment I0 = fx : x1 2 [0; a]; x2 = 0g:
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Denote by �
(i;�)
j

(") the lateral surfaces of the thin rod G
(i)
j
("); the sign "+"

and "�" indicate the right and left surfaces, respectively. The base of G
(i)
j
(") is

denoted by �
(i)
j
("): We also introduce the following notation (i = 1; 2):

�
(i;�)
" := [

N�1
j=0 �

(i;�)
j

("); �
(i)
" := [

N�1
j=0 �

(i)
j
("); �

(i)
" := �

(i;+)
" [�

(i;�)
" [�

(i)
" :

In 
" � (0; T ) we consider the following initial boundary value problem

@tu"(x; t) = �xu" + f0(x; t); (x; t) 2 
0 � (0; T );

@tu"(x; t) = �xu"(x; t); (x; t) 2 G" � (0; T );

@
p
x1u"(0; x2; t) = @

p
x1u"(a; x2; t); (x2; t) 2 (0; 
0)� (0; T ); p = 0; 1;

[u"]jx2=0
= [@x2u"]jx2=0

= 0; (x; t) 2 �
(0)
" � (0; T );

@�u"(x; t) + "k1u"(x; t) = "
�
g"(x; t); (x; t) 2 �

(1;�)
" � (0; T );

@�u"(x; t) + "
�
k2u"(x; t) = "

�
g"(x; t); (x; t) 2 �

(2)
" � (0; T );

@�u"(x; t) + k1u"(x; t) = 0; (x; t) 2 �
(1)
" � (0; T );

@�u"(x; t) = 0; (x; t) 2 �" � (0; T );

u"(x; 0) = 0; x 2 
" � ft = 0g;

(1)

where @� = @=@� is the outward normal derivative; @x1 = @=@x1; the constants

k1; k2 are positive; the parameters � � 1 and � � 1; the brackets denote the jump

of the enclosed quantities, and �
(0)
" := I0 \ 
":

Our main assumptions are as follows. For any T > 0 the given function f0

belongs to L2
(
0�(0; T )) and the function g" belongs to L

2
(0; T ;H

1
(D1)); where

D1 = fx : 0 < x1 < a; �d1 < x2 < 0g is a rectangle that is �lled up by the thin

rods from the �rst level in the limit passage as "! 0: In addition,

(i) for any T > 0 there exist constants c0; "0 such that for any " 2 (0; "0)

kg"kL2(0;T ;H1(D1)) � c0; (2)

(ii) moreover, if � = 1; then

g" ! g0 in L
2
(D1 � (0; T )) as "! 0: (3)

Recall that a function u" 2 L
2
�
0; T ; H"

�
, where H" = fu 2 H

1
(
") :

u(0; x2) = u(a; x2); x2 2 (0; 
0)g, is a weak solution to problem (1) if for

any function  2 H
1
�

" � (0; T )

�
such that  (0; x2; t) =  (a; x2; t) (x2; t) 2

(0; 
0)� (0; T ), and  (x; T ) = 0 x 2 
"; the following integral identityZ
T

0

�
�

Z

"

u" @t dx+

Z

"

rxu" � rx dx
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+ "k1

Z
�
(1;�)
"

u"  dlx + k1

Z
�
(1)
"

u"  dx2 + "
�
k2

Z
�
(2)
"

u"  dlx

�
dt

=

Z
T

0

� Z

0

f0  dx + "
�

Z
�
(1;�)
" [�

(2)
"

g"  dlx

�
dt (4)

holds. It follows from the theory of boundary value problems (see, for instance,

[31, 32]) that for any �xed value " > 0 there exists a unique weak solution to

problem (1).

Our aim is to study the asymptotic behavior of the weak solution to problem

(1) as " ! 0; i.e., when the number of the attached thin rods from each level

in�nitely increases and their thickness tends to zero. It should be noted that

the limit process as " ! 0 is accompanied by the perturbed coe�cients in the

boundary conditions on the lateral sides of thin rods.

2. Auxiliary Uniform Estimates

To homogenize boundary value problems in thick junctions with the nonhomo-

geneous Neumann or Fourier conditions on the boundaries of the thin attached

domains, the method of special integral identities was suggested in [22]. Let us

prove the corresponding integral identity for our problem. For this we de�ne

the following function

Y (t) =

�
�t+ b1; t 2 [0; Æ0);

�t+ b2; t 2 [Æ0; 1);
(5)

and then periodically extend it into R; Æ0 was de�ned in the previous section.

Integrating by parts the integral "
R
G
(1)
" [G

(2)
"
Y
�
x1="

�
@x1v dx and taking into ac-

count that the outward normal to the lateral surfaces �
(i;�)
j

(") of the thin rod

G
(i)
j
("); except a set of zero measure, has the view

�
(i)
�
(") =

1p
1 + "24�1jh0

i
(x2)j

2

�
�1 ; �"

h
0

i
(x2)

2

�
; (6)

i = 1; 2; j = 0; : : : ; N � 1; we get the identity

"

2X
i=1

Z
�
(i;�)
"

hi(x2)

2

p
1 + "24�1jh0

i
(x2)j

2
v dlx

=

Z
G
(1)
" [G

(2)
"

v dx � "

Z
G
(1)
" [G

(2)
"

Y
�x1
"

�
@x1v dx; 8 v 2 H

1
(
"): (7)
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By the same arguments as in the proof of Lem. 1 in [29], it is easy to prove

the following lemma.

Lemma 1.1. The norms k � kH1(
") and

kuk
�
(1)
"

:=

�Z

"

jruj
2
dx+ "k1

Z
�
(1;�)
"

v
2
dlx+k1

Z
�
(1)
"

u
2
dx2+ "

�
k2

Z
�
(2)
"

v
2
dlx

� 1
2

are uniformly equivalent with respect to " small enough and any � � 1:

By using the identity (7), Lem. 1.1 and the fact that � � 1; we prove in

a standard way (see, for instance, [31, Sect. 7] or [32, Sect. 3]) the following a

priori estimate for the solution to problem (1):

ku"kL2(0;T ;H1(
")) + max
t2[0;T ]

ku"(�; t)kL2(
")

� C1

�
kf0kL2(
0�(0;T )) + "

��
1
2 kg"k

L2((�
(1;�)
" [�

(2;�)
" )�(0;T ))

+ "
�
kg"k

L2(�
(2)
" �(0;T ))

�
:

(8)

Taking into account (2), with the help of the identity (7) we deduce from (8) that

ku"kL2(0;T ;H1(
")) + max
t2[0;T ]

ku"(�; t)kL2(
") � C2: (9)

R ema r k 1. In (8) and (9) and in what follows all constants fCig and fcig

in asymptotic inequalities are independent of the parameter ":

3. Formal Asymptotic Expansions for the Solution

Here the leading terms of outer expansions both in the junction's body and in

each thin rod as well as the leading terms of an inner expansion in a neighborhood

of the joint zone for the solution u" are constructed. Then, using the method of

matched asymptotic expansions, we derive the corresponding limit problem and

prove the existence and uniqueness of its solution. In this section, by reason of

(3), we take g0 instead of g" in the right-hand side of the boundary conditions on

�
(i;�)
" in problem (1) and assume that g0 is smooth.

3.1. Outer Expansions. We seek the leading terms for the solution u",

restricted to 
0 � (0; T ), in the form

u"(x; t) � v
+
0 (x; t) +

1X
k=1

"
k
v
+
k
(x; t); (10)
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and, restricted to the thin rod G
(i)
j
(") � (0; T ), j = 0; : : : ; N � 1, i = 1; 2, in the

form

u"(x; t) � v
i;�

0 (x; t) +

1X
k=1

"
k
v
i;�

k
(x; �1 � j; t); �1 = "

�1
x1: (11)

The expansions (10) and (11) are usually called outer expansions.

Plugging the series (10) into the �rst equation of problem (1) and into the

boundary conditions on @
0 n I0 and collecting coe�cients of the same powers

of "; we get the following relations for the function v+0 :

@tv
+
0 (x; t) = �x v

+
0 (x; t) + f0(x; t); (x; t) 2 
0 � (0; T );

@
p
x1v

+
0 (0; x2; t) = @

p
x1v

+
0 (a; x2; t); (x2; t) 2 (0; 
0)� (0; T ); p = 0; 1;

@�v
+
0 (x; t) = 0; (x; t) 2 �
 � (0; T );

(12)

where �
 := fx : x2 = 
(x1); x1 2 I0g:

Now let us �nd limit relations in the rectangle Di = (0; a)� (�di; 0); which is

�lled up by the thin rods from i�level in the limit passage as " ! 0; the index

i 2 f1; 2g is �xed.

Assume for a moment that the functions v
i;�

k
in (11) are smooth. We write

their Taylor series with respect to x1 at the point x1 = "(j + bi) and pass to the

"fast" variable �1 = "
�1
x1: Then (11) takes the form

u"(x; t) � v
i;�

0

�
"(j + bi); x2; t

�
+

+1X
k=1

"
k
V
i;j

k
(�1; x2; t); (x; t) 2 G

(i)
j
(") � (0; T );

(13)

where

V
i;j

k
(�1; x2; t) = v

i;�

k

�
"(j + bi); x2; �1 � j; t

�
+

kX
m=1

(�1 � j � bi)
m

m!

@
m
v
i;�

k�m

@x
m
1

�
"(j + bi); x2; �1 � j; t

�
: (14)

Let us plug (13) into (1) instead of u": Since the Laplace operator takes

the form � = "
�2 @

2

@�21

+
@
2

@x22

; the collection of coe�cients of the same power of "

gives us one-dimensional boundary value problems with respect to �1:

The �rst problem is the following:

@
2
�1�1

V
i;j

1 (�1; x2; t) = 0; �1 2 Ihi(x2)(bi); @�1V
i;j

1 (bi � hi=2; x2; t) = 0; (15)

where @�1 =
@

@�1
, @2

�1�1
=

@2

@�21

and Ihi(x2)(bi) =
�
bi�

hi(x2)

2
; bi+

hi(x2)

2

�
; the variable

x2 is regarded as a parameter in this problem.
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From (15) it follows that function V
i;j

1 does not depend on �1: Therefore, V
i;j

1

is equal to some function '
(i)
1

�
"(j+ bi); x2; t

�
; (x2; t) 2 [�di; 0]� [0; T ]; which will

be de�ned later. Then, due to (14), we have

v
i;�

1

�
"(j+bi); x2; �1�j; t

�
= '

(i)
1

�
"(j+bi); x2; t

�
�

�
�1�j�bi

�
@x1v

i;�

0

�
"(j+bi); x2; t

�
:

(16)

The problem for the function V
i;j

2 is as follows

�@
2
�1�1

V
i;j

2 = @
2
x2x2

v
i;�

0 ("(j + bi); x2; t)� @tv
i;�

0 ("(j + bi); x2; t); �1 2 Ihi(x2)(bi);

(17)

@�1V
i;j

2

�
bi � hi=2; x2; t

�
= �2

�1
h
0
(x2) @x2v

i;�

0 ("(j + bi); x2; t)

�Æ�;1kiv
i;�

0

�
"(j + bi); x2; t

�
� Æ�;1g0

�
"(j + bi); x2; t

�
; (18)

where Æ�;1; Æ�;1 are Kronecker's symbols (recall that � � 1 and � � 1).

The solvability condition for problem (17)�(18) is given by the di�erential

equation

hi(x2) @tv
i;�

0 ("(j + bi); x2; t) = @x2

�
hi(x2) @x2v

i;�

0

�
"(j + bi); x2

��
� 2 Æ�;1ki v

i;�

0

�
"(j + bi); x2

�
+ 2 Æ�;1g0

�
"(j + bi); x2; t

�
: (19)

Plugging (13) into the Fourier condition on the bases �
(i)
" ; i = 1; 2; we get

@x2v
1;�
0

�
"(j+b1);�d1; t

�
= k1 v

1;�
0

�
"(j+b1);�d1; t

�
; @x2v

2;�
0

�
"(j+b2);�d2; t

�
= 0:

(20)

To �nd the conditions in points of the joint zone I0; we use the method of

matched asymptotic expansions for the outer expansions (10), (11) and an inner

expansion which is constructed in the following subsection.

3.2. Inner Expansion. In a neighborhood of the joint zone I0 we introduce

the "rapid" coordinates � = (�1; �2); where �1 = "
�1
x1 and �2 = "

�1
x2: Passing

to " = 0, we see that the rods G
(1)
0 (") and G

(2)
0 (") transform into the semi-

in�nite strips ��
h1

= Ih1(0)(b1)� (�1; 0]; �
�

h2
= Ih2(0)(b2)� (�1; 0]; respectively;

the domain 
0 transforms into the �rst quadrant f� : �1 > 0; �2 > 0g: Taking

into account the periodicity of thin rods, we can regard that the union � of

semi-strips ��
h1
; �

�

h2
and �

+
= (0; 1) � (0;+1) is the base domain in which the

junction-layer problems should be considered. Obviously, the solutions of these

junction-layer problems must be 1-periodic in �1; i.e.,

@
p

�1
Z(�)j�1=0 = @

p

�1
Z(�)j�1=1 ; � 2 @�

+
; �2 > 0; p = 0; 1:
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So, we seek the leading terms of the inner expansion in a neighborhood of

the joint zone I0 in the form

u"(x) � v
+
0 (x1; 0; t) + "

�
Z1

�
x="
�
@x1v

+
0 (x1; 0; t)

+

�
�(x1; t) �1(x=") + (1� �(x1; t)) �2(x=")

�
@x2v

+
0 (x1; 0; t)

�
+ : : : ; (21)

where Z1(�); �1(�); �2(�); � 2 �; are 1-periodic with respect to �1 solutions to

junction-layer problems; the function � will be de�ned from matching conditions.

Plugging (21) into the di�erential equation of problem (1) and into the corres-

ponding boundary conditions, taking into account that the Laplace operator takes

the form "
�2
�� in the coordinates � and collecting the coe�cients of the same

power of "; we get junction-layer problems for the functions Z1; �1; �2: So, the

functions �1 and �2 are the solution to the following homogeneous problem

��� �(�) = 0; � 2 �;

@�2�(�1; 0) = 0; �1 2 (0; 1) n
�
Ih1(0)(b1) [ Ih2(0)(b2)

�
;

@�1�(�) = 0; � 2

�
@�

�

h1
n Ih1(0)(b1)

�
[

�
@�

�

h2
n Ih2(0)(b2)

�
;

@
p

�1
�(0; �2) = @

p

�1
�(1; �2); �2 > 0; p = 0; 1:

(22)

The main asymptotic relations for the functions �1; �2 can be obtained from

general results on the asymptotic behaviour of solutions to elliptic problems in

domains with di�erent exits to in�nity (see, for instance, [33]). The proofs simplify

substantially if the polynomial property of the corresponding sesquilinear forms

is employed (see [34]). However, for the domain �; we can de�ne more exactly

the asymptotic relations and detect other properties of the junction-layer solutions

�1; �2 in the same way as in the papers [19, 20].

Proposition 3.1. There exist two solutions �1, �2 2 H
1
];loc

(�) to the

problems (22), which have the following di�erentiable asymptotics:

�1 =

8><>:
�2 +O(exp(�2��2)); �2 ! +1; � 2 �

+
;

h
�1
1 (0) �2 + �

(1)
1 +O(exp(�h

�1
1 (0)�2)); �2 ! �1; � 2 �

�

h1
;

�
(2)
1 +O(exp(�h

�1
2 (0)�2)); �2 ! �1; � 2 �

�

h2
;

(23)

�2 =

8><>:
�2 +O(exp(�2��2)); �2 ! +1; � 2 �

+
;

�
(1)
2 +O(exp(�h

�1
1 (0)�2)); �2 ! �1; � 2 �

�

h1
;

h
�1
2 (0) �2 + �

(2)
2 +O(exp(�h

�1
2 (0)�2)); �2 ! �1; � 2 �

�

h2
:

(24)

Here H1
];loc

(�) = fu : �! R ju(0; �2) = u(1; �2) for any �2 > 0, u 2 H1
(�R) for

any R > 0g, where �R = � \ f� : �R < �2 < Rg; �
(i)
1 , �

(i)
2 , i = 1; 2, are some

�xed constants.
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Any other solution to the homogeneous problem (22), which has a polynomial

growth at in�nity, can be presented as a linear combination c0 + c1�1 + c2�2:

The function Z1 is a solution to the following problem:

��� Z1(�) = 0; � 2 �;

@�2Z1(�1; 0) = 0; �1 2 (0; 1) n
�
Ih1(0)(b1) [ Ih2(0)(b2)

�
;

@�1Z1(�) = �1; � 2

�
@�

�

h1
n Ih1(0)(b1)

�
[

�
@�

�

h2
n Ih2(0)(b2)

�
;

@
p

�1
Z1(0; �2) = @

p

�1
Z1(1; �2); �2 > 0; p = 0; 1:

Similarly to [19, 20, 34], it is easy to verify that there exists the unique solution

Z1 2 H
1
];loc

(�) with the following asymptotics:

Z1 =

8><>:
O(exp(�2��2)); �2 ! +1; � 2 �

+
;

��1 + b1 + �
(1)
3 +O(exp(�h

�1
1 (0)�2)); �2 ! �1; � 2 �

�

h1
;

��1 + b2 + �
(2)
3 +O(exp(�h

�1
2 (0)�2)); �2 ! �1; � 2 �

�

h2
:

(25)

Now let us verify matching conditions for the outer expansions (10), (11)

and the inner expansion (21), namely, the leading terms of the asymptotics of

the outer expansions as x2 ! �0 must coincide with the leading terms of the

inner expansion as �2 ! �1. Near the point ("(j + bi); 0) 2 I0 at the �xed value

of t, the function v+0 has the following asymptotics:

v
+
0 ("(j + bi); 0; t) + " �2 @x2v

+
0 ("(j + bi); 0; t) +O("

2
�
2
2); x2 ! 0 + 0:

Taking into account the asymptotics of Z1 and �1; �2 as �2 ! +1; we see

that the matching conditions are satis�ed for the expansion (10) and (21).

The asymptotics of (11) are equal to

v
i;�

0 ("(j + bi); 0; t) + "

�
'
(i)
1 ("(j + bi); 0; t)

+

�
��1 + bi + j

�
@x1v

i;�

0 ("(j + bi); 0; t) + �2 @x2v
i;�

0 ("(j + bi); 0; t)

�
+ : : :

as x2 ! 0� 0; (x; t) 2 G
(i)
j
(")� (0; T ); i = 1; 2: (26)

The �rst terms of asymptotics of (21) in G
(1)
j
(") are

v
+
0 ("(j + b1); 0; t) + "

��
��1 + j + b1 + �

(1)
3

�
@x1v

+
0 ("(j + b1); 0; t)

+

�
�("(j + b1); t)

� �2

h1(0)
+ �

(1)
1

�
+

�
1� �("(j + b1; t))

�
�
(1)
2

	
@x2v

+
0 ("(j + b1); 0; t)

�
as �2 ! �1; � 2 �

�

h1
; (27)
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and in G
(2)
j
(") are

v
+
0 ("(j + b2); 0; t) + "

��
��1 + j + b2 + �

(2)
3

�
@x1v

+
0 ("(j + b2); 0; t)

+

��
1� �("(j + b2); t)

�� �2

h2(0)
+ �

(2)
2

�
+ �("(j + b2); t)�

(2)
1

	
@x2v

+
0 ("(j + b2); 0; t)

�
as �2 ! �1; � 2 �

�

h2
: (28)

Comparing the �rst terms of (26), (27) and (28), we get

v
+
0 ("(j + bi); 0; t) = v

i;�

0 ("(j + bi); 0; t); j = 0; 1; : : : ; N � 1; i = 1; 2: (29)

Comparing the second terms of (26) and (27), and (26) and (28), we �nd

'
(i)
1 ("(j + bi); 0; t) = �

(i)
3 @x1v

i;�

0 ("(j + bi); 0; t); i = 1; 2;

and the following relations

�("(j + b1); t) @x2v
+
0 ("(j + b1); 0; t) = h1(0) @x2v

1;�
0 ("(j + b1); 0; t); (30)�

1� �("(j + b2); t)
�
@x2v

+
0 ("(j + b2); 0; t) = h2(0) @x2v

2;�
0 ("(j + b2); 0; t); (31)

for j = 0; 1; : : : ; N � 1:

Since the segments fx : x1 = "(j+bi); x2 2 [�di; 0]g; j = 0; 1; : : : ; N �1; �ll

in the rectangle Di in the limit passage as "! 0 (N ! +1) for i = 1 and i = 2;

we can extend the equation (19) into the whole rectangle D1 = I0 � (�d1; 0) for

i = 1 and into rectangle D2 for i = 2: On the basis of the same arguments, we

extend the relations (20), (29), (30) and (31) into the whole interval I0:

From the limiting relations (30) and (31) it follows that

@x2v
+
0 (x1; 0; t) = h1(0)@x2v

1;�
0 (x1; 0; t)+h2(0)@x2v

2;�
0 (x1; 0; t); (x1; t) 2 I0�(0; T );

and

�(x1; t) =
h1(0) @x2v

1;�
0 (x1; 0; t)

h1(0) @x2v
1;�
0 (x1; 0; t) + h2(0) @x2v

2;�
0 (x1; 0; t)

; (x1; t) 2 I0 � (0; T ):

3.3. Existence and Uniqueness of the Solution to the Limit Problem.

Using the �rst terms v+0 , v
1;�
0 v

2;�
0 of asymptotic expansions (10) and (11), we

de�ne the following vector function

v0(x; t) =

8><>:
v
+
0 (x; t); (x; t) 2 
0 � (0; T );

v
1;�
0 (x; t); (x; t) 2 D1 � (0; T );

v
2;�
0 (x; t); (x; t) 2 D2 � (0; T ):

(32)
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As it follows from the foregoing, the components of this vector function must

satisfy the relations

@tv
+
0 (x; t) = �x v

+
0 (x; t) + f0(x; t); (x; t) 2 
0 � (0; T );

@
p
x1v

+
0 (0; x2) = @

p
x1v

+
0 (a; x2); p = 0; 1; (x2; t) 2 (0; 
0)� (0; T );

@�v
+
0 (x; t) = 0; (x; t) 2 �
 � (0; T );

h1(x2)@tv
1;�
0 (x; t) = @x2

�
h1(x2) @x2v

1;�
0 (x; t)

�
�2k1v

1;�
0 + 2Æ�;1g0(x; t); (x; t) 2 D1 � (0; T );

@x2v
1;�
0 (x1;�d1; t) = k1v

1;�
0 (x1;�d1; t); (x1; t) 2 (0; a) � (0; T );

h2(x2)@tv
2;�
0 (x; t) = @x2

�
h2(x2) @x2v

2;�
0 (x; t)

�
�2k2Æ�;1v

2;�
0 + 2Æ�;1g0(x; t); (x; t) 2 D2 � (0; T );

@x2v
2;�
0 (x1;�d2; t) = 0; (x1; t) 2 (0; a) � (0; T );

v
+
0 (x1; 0; t) = v

1;�
0 (x1; 0; t) = v

2;�
0 (x1; 0; t); (x1; t) 2 (0; a) � (0; T );

@x2v
+
0 (x1; 0; t) = h1(0) @x2v

1;�
0 (x1; 0; t)

+h2(0) @x2v
2;�
0 (x1; 0; t); (x1; t) 2 (0; a) � (0; T );

v0jt=0 = 0:

(33)

These relations form the limit problem for problem (1).

Let us show that there exists a unique weak solution to problem (33). For this

we introduce the following anisotropic Sobolev spaces. Denote by V0 the vector

space L2
(
0)� L

2
(D1)� L

2
(D2) with the following scalar product

�
v;u

�
V0
=

Z

0

u0v0 dx +

2X
i=1

Z
Di

hi(x2)viui dx;

where v = (v0; v1; v2) and u = (u0; u1; u2) belong to V0. We also de�ne the ani-

sotropic Sobolev vector space H0 = fu 2 V0 : u0 2 H
1
(
0), u0(0; x2) = u0(a; x2)

for x2 2 (0; 
0); 9 @x2u1 2 L
2
(D1); 9 @x2u2 2 L

2
(D2); u0(x1; 0) = u1(x1; 0) =

u2(x1; 0), x1 2 I0g with the following scalar product�
v;u

�
H0

=

R

0

rv0 � ru0 dx+
P2

i=1

R
Di

hi(x2)@x2vi @x2ui dx+ 2k1

R
D1

v1u1 dx

+ k1h1(�d1)

aR
0

v1(x1;�d1)u1(x1;�d1) dx1 + 2k2Æ�;1

R
D2

v2u2 dx:

Obviously, the space H0 continuously embeds in V0.

We say that the vector function v0 2 L
2
�
0; T ;H0

�
is a weak solution to the ini-

tial boundary value problem (33) if for any vector function u 2 L
2
�
0; T ;H0

�
,
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@tu 2 L
2
�
0; T ;V0

�
, u(x; T ) = 0, the following integral identity holds:Z

T

0

�
�

�
v0; @tu

�
V0

+

�
v0;u

�
H0

�
dt

=

Z
T

0

 Z

0

f0(x; t)u0(x; t) dx+ 2Æ�;1

2X
i=1

Z
Di

g0(x; t)ui(x; t) dx

!
dt: (34)

Taking into account the properties of the functions h1 and h2, with the help

of the standard scheme (see [31, Sect. 7] or [32, Sect. 3]), it is easy to prove the

existence and uniqueness of a weak solution to problem (33).

Lemma 3.1. There exists a unique weak solution v0 2 H0 to problem (33)

such that

kv0kL2(0;T ;H0) + max
t2[0;T ]

kv0(�; t)kV0 � C1

�
kf0kL2(
0�(0;T ))+Æ�;1kg0kL2(D1�(0;T ))

�
:

4. Approximation and Asymptotic Estimates

Let v0 2 L
2
(0; T ;H0) be a unique weak solution to problem (33). With

the help of v0 and the junction-layer solutions Z1, �1, �2 de�ned in Subsect. 3.2,

we construct the leading terms in (10), (11) and (21). Then matching these

expansions, we de�ne an asymptotic approximation R" belonging to Hilbert space

L
2
�
0; T ;H

1
(
")

�
: It is equal to

R"(x; t) := R
+
" (x; t) = v

+
0 (x; t) + "�0(x2)N

+
�
�; x1; t

�
j�=x

"
; (x; t) 2 
0 � (0; T );

(35)

R" := R
i;�

" = v
i;�

0 (x; t) + "

�
Y1(�1) @x1v

i;�

0 (x; t) + �0(x2)N
�
�
�; x1; t

��
j�=x

"
;

(x; t) 2 G
(i)
" � (0; T ); i = 1; 2: (36)

Here

N
+
= Z1@x1v

+
0 (x1; 0; t)+

�
�(x1; t) �1(�)+(1��(x1; t))

�
�2(�)��2

�
@x2v

+
0 (x1; 0; t);

N
�
(�; x1; t) =

�
Z1(�)� Y1(�1)

�
@x1v

+
0 (x1; 0; t)

+

�
�(x1; t) �1(�) + (1� �(x1; t)) �2(�) � Y2(�2; x1; t)

�
@x2v

+
0 (x1; 0; t);

where Y1 and Y2 are 1-periodic functions with respect to �1 and on the corre-

sponding cells of periodicity they are equal to

Y1 =

(
��1 + b1 + �

(1)
3 ; �1 2 [0; Æ0);

��1 + b2 + �
(2)
3 ; �1 2 [Æ0; 1);

Y2 =

�
�(x1; t)h

�1
1 (0)�2; � 2 �

�

h1
;

(1� �(x1; t))h
�1
2 (0)�2; � 2 �

�

h2
;
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the function �0 is a smooth cuto� function such that �0(x2) = 1 for jx2j � �0=2;

and �0(x2) = 1 for jx2j � �0; where �0 was de�ned in Sect. 1.

Theorem 4.1. Suppose that functions f0(x; t), (x; t) 2 
0 � [0;+1), and

g0(x; t), (x; t) 2 D1 � [0;+1), are smooth; the support of f0 with respect to x is

concentrated in 
0 for any t � 0; f(x; 0) = 0 for any x 2 
0; g0 and @x2g0 vanish

on I0 for any t � 0 and g0(x; 0) = 0 for any x 2 D1.

Then for any T > 0, � � 1, � � 1 and � 2 (0; 1) there exist positive constants

C0; "0 such that for all values " 2 (0; "0) the di�erence between the solution u" to

problem (1) and the approximation function R" de�ned by (35) and (36) satis�es

the following estimate

ku" �R"kL2(0;T ;H1(
")) + max
t2[0;T ]

ku"(�; t)�R"(�; t)kL2(
")

� C0

�
"+ "

1��
+ "

Æ�;1(2��)+��1
+ "

Æ�;1(2��)+��1
kg0 � g"k

Æ�;1

L2(D1�(0;T ))

�
: (37)

P r o o f. Discrepancies in the domain 
0: Taking into account the pro-

perties of functions Z1, �1, �2 and v+0 , we conclude that R+
" is a-periodic with

respect to x1 and satis�es all boundary conditions on @
0 \ @
" for problem (2).

Putting R+
" into the corresponding equation of problem (1), we get

@tR
+
" (x; t)��xR

+
" (x; t)� f0(x; t) = "�0(x2)@tN

+
(�; x1; t)

��
0

0(x2)
�
@�2N

+
(�; x1; t)

�
j�=x="

��0(x2)
�
@
2
x1�1

N
+
(�; x1; t)

�
j�=x=" � "@x2

�
�
0

0(x2)N
+
(x="; x1; t)

�
� "�0(x2)@x1

��
@x1N

+
(�; x1; t)

�
j�=x="

�
; x 2 
0: (38)

Further, the arguments of functions involved in calculations are indicated only

if their absence may cause confusion. We multiply (38) by a test function  2

H
1
�

" � (0; T )

�
such that  (0; x2; t) =  (a; x2; t) (x2; t) 2 (0; 
0) � (0; T ); and

 (x; T ) = 0 x 2 
"; and integrate by parts in 
0 � (0; T ):Z
T

0

�
�

Z

0

R
+
" @t dx�

Z
�
(0)
"

@x2R
+
" (x1; 0) dx1 +

Z

0

rxR
+
" � rx dx

�

Z

0

f0 dx

�
dt = I

+
0 (";  ) + : : :+ I

+
4 (";  ); (39)

where

I
+
0 (";  ) := "

Z

0�(0;T )

�0(x2)@tN
+
(�; x1; t) dx dt;
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I
+
1 (";  ) := �

Z

0�(0;T )

�
0

0(x2)
�
@�2N

+
(�; x1; t)

�
j�=x="  dx dt;

I
+
2 (";  ) := �

Z

0�(0;T )

�0(x2)
�
@
2
x1�1

N
+
(�; x1; t)

�
j�=x="  dx dt;

I
+
3 (";  ) := "

Z

0�(0;T )

�
0

0(x2)N
+
(x="; x1; t) @x2 dx dt;

I
+
4 (";  ) := "

Z

0�(0;T )

�0(x2)
�
@x1N

+
(�; x1; t)

�
j�=x="

�
@x1 dx dt:

Discrepancies in the thin rods. It is easy to calculate that @x2R
1;�
" (x1;�d1; t)

= k1R
1;�
" (x1;�d1; t) on �

(1)
" � (0; T ); @x2R

2;�
" (x1;�d2) = 0 on �

(2)
" � (0; T ),

@x2R
i;�

" (x1; 0; t) = "Y1

�x1
"

�
@
2
x2x1

v
i;�

0 (x1; 0; t)+@x2R
+
" (x1; 0; t); x 2 I0\G

(i)
" ; (40)

@�R
i;�

" =
1q

1 +
"2jh0ij

2

4

�
�"
�
Y1(

x1

"
)@

2
x1x1

v
i;�

0 (x; t) + �0(x2)
�
@x1N

�
(�; x1; t)

�
j�=x

"

�
� "2

�1
h
0

i(x2) @x2

�
v
i;�

0 + "Y1(
x1

"
)@x1v

i;�

0

��
; (x; t) 2 �

(i;�)
" ; i = 1; 2: (41)

Putting R
i;�
" into the di�erential equation of problem (1), we obtain

@tR
i;�

" ��xR
i;�

" = "

�
Y1(�1) @

2
x1t
v
i;�

0 (x; t) + �0(x2)@tN
�
�
�; x1; t

��
j�=x

"

��
0

0(x2)
�
@�2N

�
(�; x1; t)

�
j�=x=" � �0(x2)

�
@
2
x1�1

N
�
(�; x1; t)

�
j�=x="

� "@x2

�
�
0

0(x2)N
�
(x="; x1; t)

�
� "�0(x2)@x1

��
@x1N

�
(�; x1; t)

�
j�=x="

�
� "@x1

�
Y1

�x1
"

�
@
2
x1x1

v
i;�

0

�
� "@x2

�
Y1

�x1
"

�
@
2
x2x1

v
i;�

0

�
+ @x2

�
lnhi(x2)

�
@x2v

i;�

0 (x; t) � 2kih
�1
i
(x2)v

i;�

0 (x; t);

(x; t) 2 G
(i)
" � (0; T ); i = 1; 2: (42)

Using (7) and taking into account the boundary values of @�R
i;�
" (see (40), (41)),

we multiply (42) by a test function  2 H
1
�

" � (0; T )

�
such that  (0; x2; t) =

 (a; x2; t) on (0; 
0)� (0; T ),  (x; T ) = 0 and integrate by parts in G
(i)
" � (0; T ),

i = 1; 2. This yieldsZ
T

0

�
�

Z
G
(1)
"

R
1;�
" @t dx+

Z
I0\@G

(1)
"

@x2R
+
" (x1; 0; t) dx1

+

Z
G
(1)
"

rxR
1;�
" � rx dx+ "k1

Z
�
(1;�)
"

R
1;�
"  dlx + k1

Z
�
(1)
"

R
1;�
"  dx1
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� "
�

Z
�
(1;�)
"

g" dlx

�
dt =

7X
j=0

I
1;�
j

(";  ); (43)

Z
T

0

�
�

Z
G
(2)
"

R
2;�
" @t dx+

Z
I0\@G

(2)
"

@x2R
+
" (x1; 0; t) dx1 +

Z
G
(2)
"

rxR
2;�
" �rx dx

+ "
�
k2

Z
�
(2)
"

R
2;�
"  dlx � "

�

Z
�
(2)
"

g" dlx

�
dt =

7X
j=0

I
2;�
j

(";  ); (44)

where

I
i;�

0 (";  ) = "

Z
G
(i)
" �(0;T )

�
Y1(�1) @

2
x1t
v
i;�

0 (x; t) + �0(x2)@tN
�
�
�; x1; t

��
j�=x

"
 dx dt;

I
i;�

1 (";  ) = �

Z
G
(i)
" �(0;T )

�
0

0(x2)
�
@�2N

�
(�; x1; t)

�
j�=x="  dx dt;

I
i;�

2 (";  ) = �

Z
G
(i)
" �(0;T )

�0(x2)
�
@
2
x1�1

N
�
(�; x1; t)

�
j�=x="  dx dt;

I
i;�

3 (";  ) = "

Z
G
(i)
" �(0;T )

�
0

0(x2)N
�
(x="; x1; t) @x2 dx dt;

I
i;�

4 (";  ) = "

Z
G
(i)
" �(0;T )

�0(x2)
�
@x1N

�
(�; x1; t)

�
j�=x="

�
@x1 dx dt;

I
i;�

5 (";  ) = "

Z
G
(i)
" �(0;T )

Y1

�x1
"

��
rx

�
@x1v

i;�

0

�
� rx + @x1

�
 @x2(lnhi) @x2v

i;�

0

��
dx dt;

I
1;�
6 (";  ) = �k1 "

Z
�
(1;�)
" �(0;T )

v
1;�
0  p

1 + "24�1jh01(x2)j
2
dlxdt

+ k1"

Z
�
(1;�)
" �(0;T )

R
1;�
"  dlx dt � 2k1 "

Z
G
(1)
" �(0;T )

Y
�x1
"

� @x1(v1;�0  )

h1(x2)
dx dt;

I
2;�
6 (";  ) = �" Æ�;1k2

Z
�
(2;�)
" �(0;T )

v
2;�
0  p

1 + "24�1jh
0

2(x2)j
2
dlxdt

+ "
�
k2

Z
�
(2)
" �(0;T )

R
2;�
"  dlx dt � 2Æ�;1k2 "

Z
G
(2)
" �(0;T )

Y
�x1
"

� @x1(v2;�0  )

h2(x2)
dx dt;

I
i;�

7 (";  ) = "Æ�;1

Z
�
(i;�)
" �(0;T )

g0  p
1 + "24�1jh0

i
j
2
dlxdt� "

�

Z
�
(i;�)
" �(0;T )

g" dlxdt

� "
�
Æi;2

Z
�
(2)
" �(0;T )

g" dx2 dt ++2"Æ�;1

Z
G
(i)
" �(0;T )

Y
�x1
"

� @x1(g0  )
hi(x2)

dxdt; i = 1; 2:
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Asymptotic estimates. Summing (39), (43) and (44), we see that the function

R" constructed by formulas (35) and (36) satis�es the following integral identity

TZ
0

�
�

Z

"

R" @t dx+

Z

"

rxR" � rx dx + "k1

Z
�
(1;�)
"

R"  dlx + k1

Z
�
(1)
"

R"  dx2

+ "
�
k2

Z
�
(2)
"

R"  dlx �

Z

0

f0  dx � "
�

Z
�
(1;�)
" [�

(2)
"

g"  dlx

�
dt = F"( ) (45)

for any function  2 H1
(
" � (0; T )) ;  (x; T ) = 0: Here F"( ) = I

�

0 (";  )+: : :+

I
�

4 (";  )+I
�

5 (";  )+ : : :+I
�

7 (";  ); I
�

j
(";  ) = I

+
j
(";  )+I

�

j
(";  ); j = 0; : : : ; 4;

I
�

j
(";  ) = I

1;�
j

(";  ) + I
2;�
j

(";  ); j = 0; : : : ; 7:

Subtracting the integral identity (4) from (45), we get

TZ
0

�
�

Z

"

�
R" � u"

�
@t dx+

Z

"

rx

�
R" � u"

�
� rx dx + k1

Z
�
(1)
"

�
R" � u"

�
 dx2

+ "k1

Z
�
(1;�)
"

�
R" � u"

�
 dlx + "

�
k2

Z
�
(2)
"

�
R" � u"

�
 dlx

�
dt = F"( ): (46)

Now we are going to estimate the value F"( ): Using the Cauchy�Schwartz�

Bunyakovskii inequality, it is easy to verify that jI�0 (";  )j � C0"k kL2(0;T ;H1(
")).

The summands I
�

1 ; : : : ; I
�

4 are estimated by using the same technics as

in [29]. As a result, we obtain that jI�1 (";  ) + I
�

3 (";  )j � "C1k kL2(0;T ;H1(
"));

jI
�

2 (";  )j � "
1��

C2k kL2(0;T ;H1(
")); and jI
�

4 (";  )j � "
3=2
C4k kL2(0;T ;H1(
"));

where � is the arbitrary �xed positive number.

R ema r k 2. The constant C0 depends on

k@
2
tx1
v
i;�

0 kL2(Di�(0;T )); i = 1; 2; and sup

(x;t)2I0�(0;T )

��@2txjv+0 (x; t)��; j = 1; 2:

The constant C4 depends on the following quantities sup

(x;t)2I0�(0;T )

��D�
�
v
+
0 (x; t)

���;
j�j = �1 + �2 � 2: Due to the assumptions for f0 and g0 and by virtue of

classical results on the smoothness of solutions to boundary value problems, these

quantities are bounded.

Since @x1g0 2 L
2
(0; T ;H

1
(D1)); jI

i;�

5 (";  )j � "C5k kL2(0;T ;H1(
")):

To estimate I�6 ; we consider more complex summand I
2;�
6 : First, let � = 1: It

is obvious that the third summand in I
2;�
6 is not greater than C"k kL2(0;T ;H1(
")):

The sum of the �rst and second summands is equal to

"
3
4
�1
k2

Z
�
(2;�)
" �(0;T )

jh
0

2j
2
v
2;�
0  �

1 +

p
1 + "24�1jh

0

2j
2 + "24�1jh

0

2j
2
� dlxdt
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+ "
2
k2

Z
�
(2;�)
" �(0;T )

�
Y
�x1
"

�
@x1v

2;�
0 (x; t) + �0(x2)N

�

�
 dlxdt

+ " k2

Z
�
(2)
" �(0;T )

�
v
2;�
0 (x1;�d2; t) + Y1(�1)j�1=

x1
"
@x1v

2;�
0 (x1;�d2; t)

�
 dx1dt

=: J1(";  ) + J2(";  ) + J3(";  ):

With the help of the following inequality u2(0) � 2"
�1
R
"

0
u
2
(t) dt+2"

R
"

0
(u
0
)
2
(t) dt;

we deduce that jJ1(";  ) + J2(";  )j � C"k kL2(0;T ;H1(
")): Taking into account

the boundedness of the trace operator and that g0 2 H
1
(D1); we have

jJ3(";  )j � c1"k k
L2(�

(2)
" �(0;T ))

� c2"k k
L2(0;T ;H1(G

(2)
" ))

:

Thus in this case jI
�

6 (";  )j � "C6 k kH1(L2(0;T ;H1(
")):

If � > 1; then I
2;�
6 (";  ) = "

�
k2

R
�2
"�(0;T )

R
2;�
"  dlx dt; and with the help of

the identity (7) we derive that jI
2;�
6 (";  )j � "

��1
C6k kL2(0;T ;H1(
")):

By the same arguments as for I
2;�
6 ; we can estimate I�7 : But for this we should

use the assumptions for the functions g" and g0: Thus

jI
�

7 (";  )j � C7k kL2(0;T ;H1(
"))

�
"kg0 � g"kL2(D1�(0;T )); if � = 1;

"
��1

; if � > 1:

Regarding to the inequalities obtained above, we conclude that for the right-

hand side in (46) the following inequality holds

jF"( )j �

�
C8"+ "

1��
C2(�) + C6"

Æ�;1(2��)+��1

+ C7"
Æ�;1(2��)+��1

kg0 � g"k
Æ�;1

L2(D1�(0;T ))

�
k kL2(0;T ;H1(
")); (47)

where � is an arbitrary positive �xed number from (0;
1
2
):

Due to Lemma 1.1, we deduce from (46) and (47) with the standard scheme

(see, for example, Ref. [32, Sect. 3]) the asymptotic estimate (37).

Corollary 4.2. From (37) it follows that

ku" � v0kL2(
"�(0;T )) + max
t2[0;T ]

ku"(�; t) � v0(�; t)kL2(
")

� C1

�
"+ "

1��
+ "

Æ�;1(2��)+��1
+ "

Æ�;1(2��)+��1
kg0 � g"k

Æ�;1

L2(D1�(0;T ))

�
;

where v0 coincides with the solution to the limit problem (33) by the following

way: v0 is the restriction of v+0 on 
0, v0 coincides with v
1;�
0 on the thin rods

G
(1)
" and with v

2;�
0 on the thin rods G

(2)
" .
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5. Convergence Theorem

As it was shown in [18�22], thick multistructures are not strong or

weak connected domains, i.e., there is not any sequence of extension operators

fP" : H
1
(
") 7! H

1
(R

n
) g">0 whose norms are uniformly bounded in ". This

fact creates one of the main di�culties in the proofs of convergence theorems.

There are di�erent methods to prove such convergence theorems. The �rst con-

vergence theorems for the solutions to boundary value problems in thick junctions

of di�erent types were proved in [18�20], where there were used special extension

operators whose H1-norms were uniformly bounded in " only for the solutions.

This approach allows to prove the convergence theorems if the boundaries of thin

domains of thick junctions are not smooth and rectilinear with respect to some

variables and in the case of di�erent boundary conditions on the boundaries of

thin domains; in the last case the method of special integral identities is used in

addition (see [22, 35, 27]).

Later, in [24], where a homogeneous Neumann boundary value problem was

studied in a thick junction, it was shown that if the boundaries of thin rods were

rectilinear, then the solution could be extended by zero. This is explained by

the fact that this extension preserves the generalized derivative with respect to

x2 due to the rectilinearity of the boundaries of the rods along the Ox2-axis.

This approach was used to prove the convergence theorem for nonlinear problems

in [25]. Also, in [24], the homogeneous Neumann problem was considered in a

bounded plane domain whose boundary was waved by the function x2 = h(x1=");

where h had to be a continuously di�erentiable periodic function, and the recip-

rocal functions of h on some intervals had to exist for a special extension operator

to be constructed. But this extension does not preserve the space class of the

solution (only in H1
loc
(


+
1 ); where 


+
1 � R

2 is a domain that is �lled up by the

oscillating boundary in the limit) and this extension was constructed under the

assumption that the right-hand side f 2 H
1
: In this section we prove the con-

vergence theorem for the solution to problem (1) with minimal conditions for the

functions f0 and g":

In addition to the assumptions made in Sect. 1, we suppose that for any T > 0

there exist positive constants C1, "0 such that for the whole value " 2 (0; "0)Z
T

0

Z

0

f
2
" (x; t) dxdt � C1; f"(x; t) = "

�1
( f0(x1 + "; x2; t)� f0(x; t) ): (48)

We regard that f0 and g" are a�periodic with respect to x1: In fact, every function

from the space L2
(
0 � (0; T )) is continuous with respect to the L2-norm, but in

(48) we need little more.

Theorem 5.1. If the conditions (2), (3) and (48) hold, then for any T > 0

there exist extension operators P
(1)
" : L

2
�
0; T ;H

1
(
0[G

(1)
" )

�
7! L

2
�
0; T ;H

1
(
1)

�
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and P
(2)
" : L

2
�
0; T ;H

1
(
0[G

(2)
" )

�
7! L

2
�
0; T ;H

1
(
2)

�
such that for the solution

u" to problem (1) we have

k P
(1)
" u" kL2(0;T ;H1(
1)) + k P

(2)
" u" kL2(0;T ;H1(
2))� C2: (49)

P r o o f. From the beginning we show that the scattering of values of solu-

tion u" on thin rods is small in a sense.

Here, for simplicity we assume that 
 � const: In general case we should

use the procedure from the proof of Th. 4.1 ([19]). Thus, the problem (1) is

invariant under "-shift along the axis x1: This means that the function U"(x; t) =

"
�1
(u"(x + "e1; t) � u"(x; t)) (e1 = (1; 0)) is a�periodic in x1 solution to the

following problem:

@tU" = �xU" + F"; (x; t) 2 
0 � (0; T );

@tU" = �xU"; (x; t) 2 G" � (0; T );

@�U" + "k1U" = "
�
G"; (x; t) 2 �

(1;�)
" � (0; T );

@�U" + "
�
k2U" = "

�
G"; (x; t) 2 �

(2)
" � (0; T );

@�U" + k1U" = 0; (x; t) 2 �
(1)
" � (0; T );

@�U" = 0; (x; t) 2 �" � (0; T );

U"(x; 0) = 0; x 2 
" � ft = 0g;

(50)

whereG"(x; t) = "
�1
(g"(x+"e1; t)�g"(x; t)): By virtue of condition (2), Lem. 1.1,

identity (7) and (48), we get the following estimate kU"kL2(0;T ;H1(
")) � C3:

We extend the solution u" by using the "linear matching"

bP (i)
" (u") =

(
u"; in (
0 [G

(i)
" )� (0; T );

B
"
j;i

+ S
"
j;i

�
x1 � "

�
j + bi +

hi(x2)
2

��
; in eQ(i)

j
(") � (0; T );

(51)

in domain 
0 [G
(i)
" [ eQ(i)

" : Here

B
"

j;i(x2; t) = u"

�
"(j + bi + 2

�1
hi(x2)); x2; t

�
;

S
"

j;i(x2; t) =
1

"(1 � hi(x2))

�
u"

�
"(j + 1 + bi � 2

�1
hi(x2)); x2; t

�
�B

"

j (x2; t)

�
;

eQ(i)
" =

N[
j=�1

eQ(i)
j

(") ;

where

eQ(i)
j
(") =

�
x : x2 2 (�di;�"); x1 2

�
"
j + bi + hi(x2)

2
; "
j + 1 + bi � hi(x2)

2

��
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is between two rods G
(i)
j
(") and G

(i)
j+1("); recall that index i 2 f1; 2g is �xed.

In the case of extreme rods we perform the a�periodic extension of problem (1)

with respect to the axis Ox1:

After that, repeating word for word the steps from the proof of

Th. 3.1 ([27]) and using the estimates (2) and (9), we obtain that the norms

k bP (i)
" (u") k

L2
�
0;T ;H1(
0[G

(i)
" [ eQ

(i)
" )
�, i = 1; 2, are bounded with respect to ".

Now it remains to extend bP (i)
" (u") into each domain

T
(i)
j
(") =

�
x : x2 2 (�"; 0); x1 2

�
"
j + bi + hi(x2)

2
; "
j + 1 + bi � hi(x2)

2

��
;

j = �1; 0; 1; : : : ; N . Since the domains T
(i)
j

("), j = �1; 0; 1; : : : ; N , are equal

(each of this domain can be obtained from T
(i)
0 (") by parallel shift along the axis

Ox1), we use the results on the extension operators in perforated domains [6].

It follows from these results that there exists a uniformly bounded in " extension

operator P
(i)
" : L

2
�
0; T ;H

1
�
G
(i)
(") [ eQ(i)

(")
��
7! L

2
�
0; T ;H

1
(
i)

�
, i = 1; 2.

Thus, the extension operators P
(i)
" := P

(i)
" Æ bP (i)

" ; i = 1; 2; are constructed and

(49) holds.

Theorem 5.2. If (48) and assumptions made for f0; g" in Sect. 1 hold, then�
u"

�
j
0

! v
+
0 ;

�
P
(1)
" u"

�
jD1

! v
1;�
0 ;

�
P
(2)
" u"

�
jD2

! v
2;�
0 (52)

weakly in L
2
�
0; T ; H

1
(
0)

�
; L

2
�
0; T ; H

1
(D1)

�
; L

2
�
0; T ; H

1
(D2)

�
; respectively,

as "! 0; where the vector function v0(x; t) =
�
v
+
0 ; v

1;�
0 ; v

2;�
0

�
is the unique weak

solution to the limit problem (33).

P r o o f. We carry out the proof in a more di�cult case when � = � = 1:

To prove this theorem we should pass to the limit in the integral identity (4).

For this we use the identity (7), the extension operators constructed in Th. 2

and the characteristic function �
(i)
" (x) := �

(i)
�
x1

"
; x2

�
of the set G

(i)
" , i = 1; 2.

We "-periodically extend these functions with respect to x1: In the same way as

in Sect. 4 [35], we can prove that �
(i)
" ! hi weakly in L2(Di) as "! 0, i = 1; 2.

Also, it is easy to verify that �
(i)
" jx2=% ! hi(%) weakly in L2(0; a) as "! 0.

In view of inequality (49) and Lem. 3 in [36, Ch. 6], for any � 2 L2(0; T ) we

can choose a subsequence f"0g (we denote it again by f"g) such that if " ! 0;

then the limits (52) hold and, in addition,Z
T

0

u"(�; t) �(t) dt!

Z
T

0

v
+
0 (�; t) �(t) dt;
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Z
T

0

�
P
(i)
" u"

�
jDi

�(t) dt!

Z
T

0

v
i;�

0 (�; t) �(t) dt; (53)

weakly in H1
(
0), H

1
(Di), and strongly in L2

(
0), L
2
(Di), i = 1; 2, respectively,

and

@xq

Z
T

0

u"(x; t) �(t) dt =

Z
T

0

@xqu"(x; t) �(t) dt! @xq

TZ
0

v
+
0 � dt

=

Z
T

0

@xq

�
v
+
0

�
� dt; (54)

@xq

Z
T

0

�
P
(i)
" u"

�
jDi

�(t) dt =

Z
T

0

@xq

�
P
(i)
" u"

�
jDi
� dt! @xq

Z
T

0

v
i;�

0 � dt

=

Z
T

0

@xq

�
v
i;�

0

�
� dt; q = 1; 2; (55)

weakly in L2
(
0), L

2
(Di), i = 1; 2, respectively.

Consider a set of the following test vector functions C = f�(t)�(x) : � 2

C
1
([0; T ]), �(T ) = 0, �(x) =

�
'0(x), x 2 
0; '1(x), x 2 D1; '2(x), x 2 D2

�
,

'0 2 C
1
(
0), '0(0; x2) = '0(a; x2), x2 2 (0; 
0), 'i 2 C

1
(Di), i = 1; 2, '0jI0 =

'1jI0 = '2jI0g. The set of these functions is dense in L2
(0; T ;H0) and the set of

their restrictions f�(t)
�
'0; '1j

G
(1)
"
; '2j

G
(2)
"

�
g is dense in L2

(0; T ;H").

By using the extension operators P
(i)
" , the functions �

(i)
" , i = 1; 2, and equality

(7), we rewrite the identity (4) with any of the test functions mentioned above in

the form

�

Z

0

�Z
T

0

u"(x; t) @t�(t) dt

�
'0 dx�

2X
i=1

Z
Di

�
(i)
"

�Z
T

0

�
P
(i)
" u"

�
@t�(t) dt

�
'i dx

+

Z

0

rx

�Z
T

0

u" � dt

�
�rx'0 dx+

2X
i=1

�Z
Di

�
(i)
" rx

�Z
T

0

�
P
(i)
" u"

�
� dt

�
� rx'i dx

+2ki

Z
Di

p
1 + "24�1jh0

i
(x2)j

2

hi(x2)
�
(i)
" (x)

�Z
T

0

�
P
(i)
" u")(x; t)�(t) dt

�
'i(x) dx

�2"ki

Z
T

0

Z
G
(i)
"

Y
�x1
"

�p1 + "24�1jh0
i
(x2)j

2

hi(x2)
@x1

�
u" 'i

�
�(t) dx dt

+"
i�1

ki

Z
a

0

�
(i)
"

Z
T

0

�
P
(i)
" u"

�
jx2=�di� dt 'i(x1;�di) dx1

�
=

Z
T

0

Z

0

f0 � '0 dx dt

+2

2X
i=1

Z
T

0

Z
Di

p
1 + "24�1jh0

i
(x2)j

2

hi(x2)
�
(i)
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�2"

2X
i=1

Z
T

0

Z
G
(i)
"

Y
�x1
"

�p1 + "24�1jh
0

i
j
2

hi(x2)
@x1

�
g" 'i

�
�(t) dx dt

+"

Z
T

0

Z
�
(2)
"

g" '2 � dx2 dt: (56)

Let us pass to the limit in (56). First, we note that the traces of the limit

functions are equal, i.e., v+0 (x1; 0; t) = v
1;�
0 (x1; 0; t) = v

2;�
0 (x1; 0; t), (x1; t) 2

I0 � (0; T ), since
�
u"

�
j I0 =

�
P
(1)
" u"

�
j I0 =

�
P
(2)
" u"

�
j I0 a.e. in (0; T ). Because of

(49), the sequences

�
(i)
" @xq

�Z
T

0

�
P
(i)
" u"

�
(x; t)�(t)

�
dt; q = 1; 2; (57)

are bounded in L2(Di), i = 1; 2. Therefore, we can choose a subsequence of f"g

(still denoted by f"g) and �nd the weak limits �
(i)
q of these sequences in L2(Di),

i = 1; 2, as " ! 0. Taking into account all these facts, (53)�(55), (2), (3), in

the limit passage we obtain

�
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v
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Z
Di
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�Z
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T
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Di
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Z
Di

Z
T

0

v
i;�

0 � dt 'i dx+ k1

Z
a

0

Z
T

0

h(�d1) v
1;�
0 (x1;�d1; t) � dt '1 dx1

=

Z
T

0

Z

0

f0(x; t) �(t)'0(x) dx dt + 2

2X
i=1

Z
T

0

Z
Di

g0(x; t)�(t)'i(x) dx dt: (58)

Next, we should �nd �
(i)
q , q = 1; 2, i = 1; 2. In order to determine �

(i)
1 ; i = 1; 2;

we consider the integral identity (4) with the following test functions:

 1 =

8><>:
0; in 
0 � [0; T ];

"Y (
x1

"
)�1 �; in G

(1)
" � [0; T ];

0; in G
(2)
" � [0; T ];

 2 =

8><>:
0; in 
0 � [0; T ];

0; in G
(1)
" � [0; T ];

"Y (
x1

"
)�2 �; in G

(2)
" � [0; T ];

where �1 and �2 are arbitrary functions from C
1

0 (D1) and C
1

0 (D2) respectively,

� 2 C
1
([0; T ]); �(T ) = 0: It is obvious that  1;  2 belong to L2

�
0; T ;H"

�
. As

a result, we getZ
Di

�
(i)
" @x1

�Z
T

0

�
P
(i)
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�
(x; t)�(t)

�
dt �i(x) dx = O("); "! 0; i = 1; 2;
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whence �
(1)
1 � 0 and �

(2)
1 � 0.

Then let us de�ne �
(1)
2 . Take the arbitrary functions � 2 C

1

0 (D1), � 2

C
1
([0; T ]), �(T ) = 0, and perform the following calculationsZ
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T

0
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=
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0
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Z 0
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h
0
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j=0

�
u"�
�
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�

Z
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(1)
" (x)

Z
T

0

�
P
(1)
" u"

�
(x; t) �(t) dt @x2�dx =: B1(") +B2("): (59)

Here �
(1)
2 (x2; ") = �"h

0

1(x2)

�
2

p
1 + "24�1(h01(x2))

2
�
�1

is the second coordinate

of the outward normal �
(1)
�

(see (6)) to the lateral surfaces �
(1;�)
j

(") of the thin

rod G
(1)
j
("): Thanks to (53)

lim
"!0

B2(") = �

Z
D1

h1(x2)

Z
T

0

v
1;�
0 (x; t) �(t) dt @x2�(x) dx: (60)

To �nd the limit of B1(") we rewrite this value in the following way:

B1(") = �

Z
T

0
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0
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(61)

The �rst term in (61) is bounded by "ku"k
L2(0;T ;H1(G

(1)
" )
k�kH1(D1): Due to the es-

timate u2(0) � 2"
�1
R
"

0
u
2
(t) dt+2"

R
"

0
(u
0
(t))

2
dt holding for every u 2 H1

([0; "]) ;
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the second term in (61) is estimated by the value

c1

�
kP

(1)
" u"�v

1;�
0 k

L2(G
(1)
" �(0;T ))

+ "
2
k@x1(P

(1)
" u"�v

1;�
0 )k

L2(G
(1)
" �(0;T ))

�
k�kH1(D1):

(62)

Since for almost all points x2 2 (�d1; 0) the function
R
T

0
v
1;�
0 �(t) dt 2 H

1
(0; a);

the inner sum of the third term in (61) is the Riemann sum for the integralR
a

0

R
T

0
v
1;�
0 �(t) dt � dx1. Then, in view of Lebesgue's and Fubini's theorems,

the limit of the third term is equal to

�

Z
D1

h
0

1(x2)

Z
T

0

v
1;�
0 (x; t) �(t) dt �(x) dx: (63)

Passing to the limit in (59) and taking into account (60)-(63), we get

�
(1)
2 (x) = h1(x2)

Z
T

0

@x2v
1;�
0 (x; t) �(t) dt; x 2 D1:

Similarly, we deduce that �
(2)
2 (x) = h2(x2)

R
T

0
@x2v

2;�
0 (x; t) �(t) dt; x 2 D2:

Thus, the vector function v0 =
�
v
+
0 ; v

1;�
0 ; v

2;�
0

�
satis�es the following integral

identityZ
T

0

�
�

�
v0;� @t�

�
V0

+

�
v0;� �

�
H0

�
dt

=

Z

0�(0;T )

f0 '0 � dx dt + 2

2X
i=1

Z
Di�(0;T )

g0 'i � dxdt; 8 �� 2 C;

which means that v0 is a weak solution to the limit problem (33).

Due to the uniqueness of the weak solution of problem (33), the above argu-

ments hold for any subsequence of f"g chosen at the beginning of the proof.

Conclusion

As it was stated in [37], the multiscale modelling and computation are rapidly

evolving areas of research that will have a fundamental impact on computational

science and applied mathematics. They are connected with the prospect of de-

velopment of more e�cient methods that should be symbiosis of a new class of

numerical and analytical modelling techniques. One class of multiscale problems

is the boundary value problems in perturbed domains. In our paper we pre-

sented two asymptotic methods (the asymptotic approximation and the conver-

gence theorem) for the solution to the parabolic problem (1) in the thick multilevel
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junction 
". An important problem for the existing multiscale methods is their

stability and accuracy. The proof of the error estimate between the constructed

approximation and the exact solution is a general principle applied to the analysis

of the e�ciency of the multiscale method (see [37]). We proved these estimates

in Th. 4.1 and Cor. 4.2. It follows from the results that for the applied problems

or for numerical calculations in thick multilevel junctions we can use the corre-

sponding limit problem, which is simpler, instead of the initial problem with the

su�cient validity. Due to Th. 5.2 we can use the limit problem (33) with minimal

conditions for the right-hand sides of problem (1).

The limit problem (33) possesses a new qualitative property. We see that

the local properties of heat conductivity in two levels of 
" are di�erent. But

the thin rods from each level are connected through the junction's body and

alternate along the joint zone. As a result, the global heat �ow described by the

limit problem behaves as a "two-phase system" in the region which is �lled up

by the thin rods from each level in the limit passage as the parameter " ! 0:

Due to our main results, we can state that the initial problem possesses a similar

property for the su�ciently small ":

We considered the perturbed Fourier boundary conditions on the boundaries

of thin rods. These conditions mean that there is a �ux of heat through these sides.

At �rst sight it seems that there is no di�erence between these inhomogeneous

Fourier conditions and the homogeneous Neumann conditions. As it follows from

our results, it is true only if � > 1; � > 1: If � > 1 and � = 1; then these

conditions are transformed as "! 0 in the special "waving" summands 2g0(x; t)

of the right-hand side in the corresponding homogenized di�erential equation in

Di � (0; T ); i = 1; 2: If � = 1; then we get the zeroth-order term 2kiv
i;�

0 in the

corresponding homogenized di�erential equation inDi�(0; T ); this term describes

the local quantity exhaustion. Thus radiators in the form of thick junctions are

better than simple waving radiators (see the beginning of Introduction).
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