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1. Introduction

H.A. Schwarz proved stability of a minimal surface in 3-dimensional Euclidean

space E3, when this minimal surface could be included in a regular family of

minimal surfaces [1]. It follows from this theorem that every compact domain on

a minimal surface z = z(x1; x2) is stable.

Notice, that the question of minimal surface stability was considered in [3�9].

The existence and applications of stable minimal surfaces were given in [10�16].

Here we give the generalizations of this theorem for the cases of minimal hy-

persurfaces in a Riemannian space and for 2-dimensional surfaces in 4-dimensional

Riemannian space.

Let F n be a minimal submanifold with boundary � in a Riemannian manifold

V N . We consider some submanifold �n with the same boundary �, which is close

to F n in the class C1.
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We say that a compact domain D with nonempty boundary � on a minimal

submanifold F n is stable, if for all submanifolds �n with the same boundary �,

close to D in the class C1 but di�erent from D, the volume V ol(�n) is grater

than the volume of D

V ol(�n) > V ol(D):

Theorem 1. If a simple connected compact domain D on an orientable

minimal hypersurface F n in the Riemannian manifold V n+1 can be included in

a regular family of minimal hypersurfaces, then this domain D is stable.

Theorem 2. Let F 2 be an orientable minimal surface in 4-dimensional

Riemannian manifold. Let a simple connected compact domain D on F 2 can

be included in a 2-parametric regular family of minimal surfaces with integrable

distribution of normal planes. Then this domain D is stable.

Later we construct a 2-parametric family of stable minimal surfaces

in Euclidean space E4 with nonintegrable distribution of normal planes. From

another side, there exists a nonstable minimal surface in the Euclidean space E4,

which can be included in the regular family of minimal surfaces. In this case the

distribution of normal planes is nonintegrable, too. This example shows that the

second condition in Th. 2 is essential.

2. Minimal Hypersurface

Later under F n we understand the simple connected compact domain D.

Let F n be included in the regular family of minimal hypersurfaces F n(t) such

that F n(0) = F n. We introduce on F n a coordinate system with the coordi-

nates y1; : : : ; yn. With the help of orthogonal trajectories to the family F n(t) we

construct a coordinate system with the coordinates y1; : : : ; yn+1 in some neighbor-

hood of F n. Every F n(t) corresponds to the equation yn+1 = const. The metric

of the space V n+1 takes the following form:

ds2 =

nX
i=1

aijdy
idyj + an+1;n+1(dy

n+1)2; (1)

where all coe�cients depend on all coordinates as regular functions of the class

C1. Later 1 � i; j � n. Denote an+1;n+1 = h; yn+1 = t.

Lemma 1. The coe�cients Lij of the second quadratic form of F n(t) have the

following form:

Lij = �
1

2h

@aij

@t
; i; j = 1; : : : ; n: (2)
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This lemma is well known (see, for example, [2]).

Denote a = jaij j.

Lemma 2. If every F n(t) is a minimal hypersurface, then

@a

@t
= 0: (3)

For a minimal hypersurface the mean curvature H is equal to zero, and we

have

H =
1

n
Lija

ij = 0;

where aij are the elements of the inverse matrix to jjaij jj. As a consequence of

(2) and (3), we obtain

aij
@aij

@t
= 0:

For simplicity we denote
@aij

@t
= a

0

ij
. Introduce also the following vectors:

li = (a1i; : : : ; ani); l
0

i = (a
0

1i; : : : ; a
0

ni):

Later we write these vectors in the form of columns and denote the determinant

by [ ]. We have evidently

@a

@t
= [l

0

1; l2; : : : ; ln] + � � �+ [l1; : : : ; l
0

n
] = a

nX
i;j

aij
@aij

@t
= 0:

Let �n be some hypersurface, which is close to F n in the class C1. In this case

�n has one-to-one projection on F n and in the correspondent points its tangent

spaces are close. We can write the representation of �n in the evident form:

yn+1 = f(y1; : : : ; yn)

with the condition f j� = 0. Denote later @f

@yi
= fi. The �rst quadratic form

dl2 = bijdy
idyj of �n can be calculated with the help of metric form of V n+1

dl2 =

nX
i;j

(aijdy
idyj + h2fifjdy

idyj):

Hence

bij = aij + h2fifj:

Introduce the vectors

ai = (a1i; : : : ; ani); m = (f1; : : : ; fn):
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Later these vectors are written in the form of columns. We have

jbij j = [a1+h2f1m;a2+h2f2m; : : : ; an+h2fnm] = a+h2
nX
i

[a1; : : : ;m; : : : ; an]fi;

where in sum the vector m stays on the i-th place. Taking the decomposition of

every determinant in sum, we obtain

jbijj = a(1 + h2
nX

i;j=1

fifja
ij):

But the matrix aij is positively determined, so

nX
i;j=1

fifja
ij � 0; (4)

and the equality can be only in the case when all fi = 0. Therefore, f = const.

But f j� = 0. Hence, f = 0. If we put a condition that �n is di�erent from F n,

then there exists some subset, where in (4) we have strong inequality. Denote by

G the domain of the coordinates y1; : : : ; yn. Now we can calculate the volume of

�n and compare it with the volume of F n

V ol(�n) =

Z

G

q
jbij(y1; : : : ; f)jdy

1 : : : dyn >

Z

G

p
a(y1; : : : ; f)dy1 : : : dyn

=

Z

G

p
a(y1; : : : ; 0)dy1 : : : dyn = V ol(F n):

Hence, F n is the stable minimal hypersurface.

The reviewer remarked that in the paper by H. Rosenberg [17] there were

some statements close to the ones of Th. 1. But in the paper there was indicated

only a weak stability. Besides, the consideration was too short and therefore not

clear enough.

3. Minimal Surface in a 4-Dimensional Riemannian Space

Let F 2 be a minimal surface in the Riemannian 4-dimensional space V 4. We

suppose that F 2 is included in a 2-parametric regular family of minimal surfaces

F 2(t; �) in some neighborhood D such that F 2(0; 0) = F 2. We say that it is the

�rst family. Through every point in the neighborhood D of F 2 there goes one

and only one surface from this family. Therefore, at this point the normal plane

is determined, and we have a distribution of normal planes.
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By the conditions of Th. 2, the distribution of these normal planes is integrable.

So, there exists the second family of the surfaces which are orthogonal to the

surfaces from the �rst family. With the help of these two families, in the same

way we can construct the coordinates in the considered neighborhood. We take

the coordinate system y1; y2 on the surface F 2 and take the surface N0 from

the second family, which goes through some point p0 2 F 2. We introduce the

coordinates y3; y4 on the surface N0. So, if a point p 2 D, then through this point

p there goes one surface from the second family, which intersects with F 2 at the

point with coordinates y1; y2 as well as one surface from the �rst family, which

intersects with N0 at the point with coordinates y3; y4. Hence the point p has

coordinates y1; : : : ; y4.

Later the Latin indexes have the value 1 or 2, and the Greek ones 3 or 4,

respectively. Then the �rst quadratic form of V 4 will be

ds2 =

2X
i;j=1

aijdy
idyj +

4X
�;�=3

a��dy
�dy� ;

where all coe�cients depend on y1; : : : ; y4.

Now let some surface �2 be close to F 2 and have the same boundary. We can

represent �2 in the following form

y� = f�(y1; y2); � = 3; 4;

and f� = 0 on the boundary. Denoting the metric of �2 by dl2 = bijdy
idyj

we obtain

bij = aij + a��y
�

;iy
�

;j
;

where y�
;i
are the derivatives with respect to coordinate yi. Let F n(t; �) be a mi-

nimal surface, which goes through the point with coordinates y1; y2; y3; y4 on the

surface �2.

Lemma 3. Determinant a of the �rst quadratic form of F 2(t; �) does not

depend on y3 and y4

@a

@y3
=

@a

@y4
= 0:

Let �k = f��
k
g; k = 1; 2, be an orthogonal basis of normal plane of F 2(t; �)

and Lk

ij
be the coe�cients of the second quadratic forms of F 2(t; �) with respect

to this basis. Following the de�nition of the second quadratic forms (see [2]), we

have two equations for � = 3; 4

y�;ij +
�����y

�

;i
y�:j = Lk

ij�
�

k
;
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where ���
��

are the Christo�el symbols of the metric of V 4. Here y�
;ij

are the second

covariant derivatives of the function y� with respect to the metric of F 2(t; �).

We notice that every surface of this kind has the representation

y3 = const; y4 = const:

Hence

y�
;i
= 0; y�

;ij
=

@2y�

@yi@yj
� �k

ij
y�
;k
= 0; � = 3; 4;

where �k
ij
are the Christo�el symbols of the metric of F n(t; �).

Besides, yi
;j
= 0. So we have

���ij = Lk

ij�
�

k
:

From the expressions of the Christo�el symbols we obtain

1

2
a��(

@a�i

@yj
+
@a�j

@yi
�
@aij

@y�
) = Lk

ij�
�

k
:

But a�i = 0. Therefore

�
1

2
a��

@aij

@y�
= Lk

ij
��
k
:

For a minimal surface we have

Lk

ij
aij = 0; k = 1; 2:

Therefore, we have the system of equations

@a

@y3
a33 +

@a

@y4
a34 = 0;

@a

@y3
a34 +

@a

@y4
a44 = 0:

From here Lemma 3 follows.

Now we have

jbij j =

�����
a11 + a��y

�

;1y
�

;1
; a12 + a
�y




;1
y�
;2

a21 + a��y
�

;2y
�

;1
; a22 + a
�y




;2
y�
;2

����� :

Denote by y�ji = y
�

;k
aki and

p�� =

�����
y�
;1; y

�

;1

y�
;2; y

�

;2

����� :
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Then the expression of jbij j can be transformed to the following one:

jbij j = a(1 + a��(y
�j2y�;2 + y�;1y

�j1) +
1

2a
a��a
�p

�
p��):

Denote by grady� the gradient of the function y� with respect to coordinates

y1; y2 and the metric of F 2(t; �). So we obtain

jbij j = a[1 + a��(grady
�; grady�) +

1

2a
(a33a44 � (a34)

2)(p34)2]:

Here the brackets () at the second member in the right side denote the scalar

product in the metric aijdy
idyj at a point of F 2(t; �). It is clear that the third

term is nonnegative. Let us denote

A = (grady3)2; B = (grady3; grady4); C = (grady4)2:

The second term in the expression of jbij j has the form

a(Aa33 + 2Ba34 + Ca44):

We have evidently

AC �B2 � 0; a33a44 � (a34)
2 � 0:

Under these conditions the expression T = Aa33 + 2Ba34 + Ca44 � 0.

Hence jbij j � a. If there is an equality here, then p34 = 0. In this case there

exist some functions �(y1; y2) and ��(�) such that

y� = ��(�); � = 3; 4:

Under this condition the expression T has the form

T = jgrad�j2����a��:

So, from T = 0 we conclude that y� = const; � = 3; 4: But �2 is di�erent from

F 2. Therefore, we have some subset, where jbij j > a.

But a depends neither on y3, nor on y4. Therefore V ol(�2) > V ol(F 2).

Theorem 2 is proved.

4. One Example

Now we construct a 2-parametric family of minimal surfaces in E4 with the

nonintegrable distribution of normal planes.
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Denote by xk the coordinates in E4 and z1 = x1 + ix2, z2 = x3 + ix4:

Consider the family of minimal surfaces in E4 , which are given as level surfaces

of an analytical function of two complex variables

f(z1; z2) = c1 + ic2:

We have two real equations

�1 = Ref(z1; z2) = c1;

�2 = Imf(z1; z2) = c2:

It is a well-known fact that this surface is minimal and it is a holomorphic curve

in E4. Every compact domain is an absolutely minimized area. Normal plane is

determined by the following vectors:

Xi = grad�i; i = 1; 2:

Then the condition of integrability of distribution of normal planes has

the following form

rX2
X1 �rX1

X2 = �1X1 + �2X2 (5)

with some coe�cients �k. We take the particular example

f = z1z2 + z21 + z22 :

Then evidently we obtain

�1 = x1x3 � x2x4 + x21 � x22 + x23 � x24;

�2 = x2x3 + x1x4 + 2x1x2 + 2x3x4:

Consequently,

grad�1 = (x3 + 2x1;�x4 � 2x2; x1 + 2x3;�x2 � 2x4);

grad�2 = (x4 + 2x2; x3 + 2x1; x2 + 2x4; x1 + 2x3): (6)

For the simplicity of notation denote �1 = �; �2 = 	. By calculation we obtain

the matrices of the second derivatives for the functions � and 	

jj
@2�

@xi@xj
jj =

0
BB@

2; 0; 1; 0

0; �2; 0; �1

1; 0; 2; 0

0; �1; 0; �2

1
CCA ; jj

@2	

@xi@xj
jj =

0
BB@

0; 2; 0; 1

2; 0; 1; 0

0; 1; 0; 2

1; 0; 2; 0

1
CCA : (7)
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Let us denote the second derivatives of functions, for example, �, by �ij. Intro-

duce the notation

ri =
X
j

(�ij	j �	ij�j): (8)

With the help of (5) - (8) we obtain the system of equations for �i

r1 = 10x2 + 8x4 = �1(x3 + 2x1) + �2(x4 + 2x2);

r2 = �10x1 � 8x3 = �1(�x4 � 2x2) + �2(x3 + 2x1);

r3 = 8x2 + 10x4 = �1(x1 + 2x3) + �2(x2 + 2x4);

r4 = �8x1 � 10x3 = �1(�x2 � 2x4) + �2(x1 + 2x3):

From the �rst two equations we have

�1 = �
80(x2x3 � x1x4)

(x1 + 2x3)2 + (x2 + 2x4)2
:

From the last two equations we �nd

�1 = �
80(x2x3 � x1x4)

(2x1 + x3)2 + (2x2 + x4)2
:

These expressions are di�erent, so the system does not have any solution.

Hence, the distribution of normal planes is nonintegrable.

5. Minimal Surfaces in E4 with Nonparametric Representation

Let the minimal surface F 2 � E4 be given in the form

x3 = u(x1; x2);

x4 = v(x1; x2):

Later we denote derivatives in the form of ui; uij . The functions u and v of

a minimal surface satisfy two di�erential equations (see, for example, [10])

u11(1 + u22 + v22)� 2u12(u1u2 + v1v2) + u22(1 + u21 + v21) = 0;

v11(1 + u22 + v22)� 2v12(u1u2 + v1v2) + v22(1 + u21 + v21) = 0: (9)

It is easy to construct the family of minimal surfaces F 2(c1; c2)

x3 = u+ c1;

x4 = v + c2; ci = const:
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A normal plane is determined by vectors X1; X2

X1 = (u1; u2;�1; 0);

X2 = (v1; v2; 0;�1):

The condition of integrability of the distribution of normal planes is represented

by the following system of equations:

u11v1 + u12v2 � v11u1 � v12u2 = �1u1 + �2v1;

u12v1 + u22v2 � v12u1 � v22u2 = �1u2 + �2v2;

0 = ��1 + 0�2; (10)

0 = 0�1 � �2:

From here we have �1 = �2 = 0. Hence the condition (10) has the form

u11v1 + u12v2 = v11u1 + v12u2;

u12v1 + u22v2 = v12u1 + v22u2: (11)

Therefore, by Theorem 2 the minimal surface in E4 at nonparametric repre-

sentation is strongly stable if it satis�es the system of equations (11).

The reviewer proposed to construct an example of minimal surface which

would satisfy the system (9),(11).

To construct this example we put

u = �(x1) + �(x2); v = �(x1) + �(x2):

Then the system (9),(11) has the following form:

�00(1 + �02 + �02) + �00(1 + �02 + �02) = 0;

�00(1 + �02 + �02) + �00(1 + �02 + �02 = 0;

�00�0 � �00�0 = 0;

�00�0 � �00�0 = 0;

where 0 (prime) denotes the derivatives of function � or �; : : : with respect to their

arguments. From the third and forth equations we obtain

� = C1� + C2; � = C3� + C4;
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where Ci are constants. After substitution � and � into the �rst and the second

equations we conclude that C1 = C3 and the second equation can be rewritten in

the form of equation with separate arguments

�00

1 + �02a2
= �

�00

1 + �02a2
= k;

where k = const; a =
p
1 +C2

1
. By integration we obtain the equation of minimal

surface

u =
p
a2 � 1v; v =

1

ka2
ln

cos(kax2 + d2)

cos(kax1 + d1)
;

where di are constants. It is evidently that the surface is not determined on the

whole plane x1, x2.

In [7] M.J. Micallef proved the following Corollary 5.1 A complete stable

minimal surface in E4, which is an entire graph, is holomorphic. He indicated that

in [10] R. Osserman constructed the examples of entire two-dimensional minimal

graphs in E4, which were not holomorphic with respect to any orthogonal complex

structure on E4. These graphs are unstable by Cor. 5.1. So, on this surface there

exist the unstable domains. One of the Osserman surfaces has the following

representation:

x3 = u =
1

2
cos

x2

2
(ex1 � 3e�x1);

x4 = v = �
1

2
sin

x2

2
(ex1 � 3e�x1):

It is possible to include this surface in the family of minimal surfaces. The dis-

tribution of normal planes is not integrable, because the equations (11) for this

surface are not satis�ed. Therefore, the condition of integrability of the distribu-

tion of normal planes in Th. 2 is essential.

The Authors are thankful to the reviewer for helpful remarks.
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