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We prove a Wegner estimate for a large class of multi-particle Anderson

Hamiltonians on the lattice. These estimates will allow us to prove Anderson

localization for such systems. A detailed proof of localization will be given

in a subsequent paper.
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1. Introduction

Wegner estimates originate in the famous paper [10]. There, Wegner proved

among other things that the integrated density of states for the Anderson Hamil-

tonian has a bounded density provided the probability distribution of the random

potential itself has a bounded density. This implies in particular an upper bound

on the probability that an Anderson Hamiltonian on a �nite box has eigenvalues

close to a given energy E.

Wegner's estimates play a key role in the multiscale method to prove Anderson

localization (see, e.g. [5] or [4]). Only recently Bourgain and Kenig [1] proved

Anderson localization for a Bernoulli model without an a priori Wegner estimate;

they prove a Wegner-type estimate inductively within the multiscale scheme.

Wegner's original work was restricted to lattice models. However, the estimate

was also proven for the continuum (see [3] for a recent rather optimal result and

[9] for a review on this subject).

In this note we prove a Wegner estimate for a multi-particle Anderson model.

In a subsequent paper we will also do multiscale analysis for this model. The �rst
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Wegner estimate for a multi-particle random Hamiltonian was proved by Zenk [11].

Chulaevsky and Suhov [2] develope a multiscale analysis for certain (1-d) two-body

Hamiltonians. In this paper the Wegner estimate requires strong conditions on

the probability density of the random potential (e.g. analyticity). It was one of

the motivations of the present note to avoid these strong assumptions.

The method of proof applied here is close to Wegner's original idea and was

developed from the paper [6]. Note that there is a re�nement of this method by

Stollmann [8] which is likely to work in the multi-particle case as well.

We note that the method presented in this paper will also work for alloy-type

models in the continuous case. The necessary changes can be read o� from the

paper [6]. However, in the continuous case we get the volume factor of the bound

with an exponent 2. This su�ces to do a multiscale analysis, but it gives no result

for the regularity of the integrated density of states.

2. Models and Results

We will deal with a system of N interacting particles on a lattice Zd. We con-

sider these particles on the full Hilbert space, disregarding Fermionic or Bosonic

symmetry. Physically speaking we deal with distinguishable particles. Since the

full Hilbert space is a direct sum of the irreducible subspaces with respect to SN -

symmetry (including the totally symmetric and the totally antisymmetric sub-

spaces) the Wegner estimates for Fermions and Bosons follow immediately from

the result on the full space.

The one-particle Hilbert space we consider is `2(Zd) and the Hilbert space for

N (distinguishable) particles is consequently `2(ZNd). Any (bounded) operator A

on these Hilbert spaces is uniquely de�ned through its matrix elements A(x; y) =

(Æx; A Æy); where Æz is the vector in `2 with component 1 at lattice site z and 0

otherwise.

We write the lattice site x 2 Z
Nd as x = (x1; : : : ; xN ), where xi 2 Z

d denotes

the coordinates of the ith particle.

Each particle (with coordinates �) is the subject to a random potential v!(�)

which is the same for all particles. The random potential v!(�) consists of in-

dependent identically distributed random variables. Throughout we assume that

the distribution of the v(�) has a bounded density �(v). We denote the underlying

probability measure by P and the expectation with respect to P by E .

The kinetic energy operator for one particle is given by

h0 u(�) =
X

jnj=1; n2Zd

u(� + n); � 2 Z
d; (2.1)

the single particle Hamiltonian is consequently

h! = h0 + v!: (2.2)
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If h is a one-particle operator acting in `2(Zd); we denote by h(i) the corre-

sponding operator on `2(ZNd) acting on the ith particle only, more precisely: if h

has matrix elements h(�; �); then

h(i) u(x1; : : : ; xn) =
X
�2Zd

h(xi; �)u(x1; : : : ; xi�1; �; xi+1; : : : ; xN ): (2.3)

In other words,

h(i) = 1`2(Zd) 
 : : :
 1`2(Zd)| {z }
i�1 times


 h 
 1`2(Zd) 
 : : : 
 1`2(Zd)| {z }
n�i�1 times

: (2.4)

The N-particle Hamiltonian without interaction is de�ned by

H!; 0 =

NX
i=1

h(i): (2.5)

The interaction term U can be a rather general function on ZNd. We assume it

to be bounded for simplicity. We also suppose that U is a deterministic function,

it would be su�cient for our purpose to have U independent of v!. In most cases

U is a pair potential of the form U(x) =
P

i6=j u(xi � xj).

The N-particle Hamiltonian with interaction U is then given by

H!;U = H!; 0 + U: (2.6)

We will deal with this operator restricted to a bounded (hence �nite) do-

main �. The number of elements of � will be denoted by j� j.

We call a subset R of Zd a rectangle if

R = f� 2 Z
d
j L� � �� �M� for � = 1 : : : N g: (2.7)

A rectangular domain in ZNd is a set � of the form

� = �1 � �2 � : : :� �N ; (2.8)

where the �i are rectangles in Z
d. We use the notation �i(�) = �i. We call

a rectangular domain � regular if for all i; j = 1; : : : ; N either �i \ �j = ; or

�i = �j.

For any subset � of ZNd we de�ne the operator H� = H�
!;U by its matrix

elements

H� (x; y) = H!;U (x; y) for x; y 2 �: (2.9)

The main result of this note is the following Wegner estimate for multi-particle

operators:
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Theorem 2.1. If � is a regular rectangular domain, then

P

�
dist

�
�
�
H�

�
; E

�
< �

�
� C jj � jj1 j� j �: (2.10)

The assumption of regularity of the set � can be avoided. However, the proof

is more transparent with this assumption. The proof of Anderson localization by

multiscale analysis, which we will present in a forthcoming paper, will deal with

regular domains only.

The proof of Theorem 2.1 implies also that the integrated density of states

has a bounded density. This result can also be read o� from the explicitly known

form of the integrated density of states (see [7]).

3. Proof

We prove Theorem 2.1. Let � = �1 � �2 � � � � �N . We may assume that

�1 = �2 = � � � = �K (3.1)

and �1 \ �i = ; for all i > K: (3.2)

We denote the eigenvalues of H� by En = En(H
�). We order them so that

E1 � E2 � : : : and repeat any eigenvalue according to its multiplicity. The

eigenvalue counting function is denoted by

N(H�; E) = #fEn(H
�) � Eg: (3.3)

We will need the following Lemma:

Lemma 3.1. Suppose (3.1) and (3.2) hold. Denote by v(�) the value of the

random potential v! evaluated at the lattice site � 2 Z
d
. Then

X
�2�1

@En(H
�)

@v(�)
= K: (3.4)

P r o o f. Set V (x) =
PN

i=1 v(xi) Then for � 2 �1:

@V

@v(�)
(x1; : : : ; xN ) =

KX
i=1

Æ� xi : (3.5)

Hence for each (x1; : : : ; xN ) 2 � we have

X
�2�1

@V

@v(�)
(x1; : : : ; xN ) =

X
�2�1

KX
i=1

Æ� xi = K: (3.6)
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Let us denote by  n the normalized eigenfunction of H� for the eigenvalue

En = En(H
�). The Feynman�Hellman theorem tells us that

@En

@v(�)
= h n;

@V

@v(�)
 n i =

X
x2�

j n(x) j
2 @V

@v(�)
: (3.7)

Thus from (3.6) we obtain

X
�2�1

@En

@v(�)
=

X
x2�

j n(x) j
2
� X
�2�1

@V (x)

@v(�)

�
(3.8)

= K
X
x2�

j n(x) j
2 = K (3.9)

since  n is normalized.

Let ' be an increasing C1�function on R, 0 � ' � 1 with ' = 1 on (�;1) and

' = 0 on (�1;��).

Then:

P

�
dist

�
�
�
H�

�
; E

�
< �

�
(3.10)

� E

�
N(H�; E + �) � N(H�; E � �)

�
(3.11)

= E

�
tr
�
�(E��;E+�](H

�)
� �

(3.12)

� E

�
tr
�
'(H�

�E + 2�) � ' (H�
�E � 2�

��
(3.13)

� E

� Z 2�

�2�
tr
�
'0(H�

�E + t)
�
dt

�
(3.14)

by Lemma 3.1:

�
1

K

X
n

2�Z
�2�

E

�
'0
�
En(H

�) �E + t
� X

�2�1

@En(H
�)

@v(�)

�
dt (3.15)

�
X
n

2�Z
�2�

X
�2�1

E

� @ '
�
En(H

�) �E + t
�

@v(�)

�
dt: (3.16)

Since E is a product measure, we can split it into an integration over v(�) which

we write as
R
� �(v) dv and the expectation with respect to the other random

variables, which expectation we denote as E�
v(�)

.
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With this notation (3.16) equals

X
n

2�Z
�2�

dt
X
�2�1

E
�
v(�)

� Z @'(Em(H
� �E + t)

@v(�)
�
�
v(�)

�
dv(�)

�
(3.17)

� jj � jj
X
n

2�Z
�2�

dt
X
�2�1

E
�
v(�)

� Z @'(Em(H
� �E + t)

@v(�)
dv(�)

�
: (3.18)

By the fundamental theorem of calculus we have

Z
@'

�
En(H

�)�E + t
�

@v(�)
dv(�) (3.19)

= '
�
En(H

�
v(�)=max)�E + t

�
� '

�
En(H

�
v(�)=min)�E + t

�
; (3.20)

where H�
v(�)=max

(resp. H�
v(�)=min

) denotes the operator H� with the potential

v(�) set to its maximal (resp. minimal) value, i.e. with v(�) = sup (supp(�))

or v(�) = inf (supp(�)). Note that we include the cases sup (supp(�)) = 1 and

inf (supp(�)) = �1.

Changing v(�) from its minimal to its maximal value is a (positive) perturba-

tion of rank at most M = K
j�j
j�1j

. Thus

En(H
�
v(�)=min) � En(H

�
v(�)=max) � En+M (H�

v(�)=min): (3.21)

To estimate (3.18) we use the following simple Lemma:

Lemma 3.2. Let ' be a nondecreasing function on R with 0 � ' � 1. If an
and bn are nondecreasing sequences satisfying an � bn � an+M for all n, thenX

n

�
'(bn)� '(an)

�
� M: (3.22)

Combining the above estimates we get

P

�
dist

�
�
�
H�

�
; E

�
< �

�
(3.23)

� jj � jj
X
n

2�Z
�2�

dt
X
�2�1

E
�
v(�)

� Z @'(Em(H
� �E + t)

@v(�)
dv(�)

�
(3.24)

� jj � jj

2�Z
�2�

dt
X
�2�1

E
�
v(�)

X
n

�
'(En(H

�
v(�)=max)� '(En(H

�
v(�)=min)

�

� jj � jj 4� j�j: (3.25)
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