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1. Introduction and Main Rezult

In this paper we consider the ensembles of n x n real symmetric matrices M
with the probability distribution

Py (M)dM = Z, exp{—%T‘rV(M)}dM, (1.1)

where Z, g is the normalization constant, V' : R — R, is a Hoélder function
satisfying the condition

[V(A)] > 2(1 +¢€)log(l + |\ (1.2)

and dM means the Lebesgue measure on the algebraically independent entries
of M. In the case of real symmetric matrices § = 1. But since it is interesting to
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compare the results with the case of Hermitian matrix models, where 8 = 2, we
keep the parameter § in (1.1).

Let {\;}/~, be the eigenvalues of M. Then it is well known (see [9]) that the
joint distribution of {\;}7_; has the density

PO ) = Qb en =S VO T - M ()
j=1

1<j<k<n

where @), g is the normalizing constant.
The Normalized Counting Measure (NCM) of eigenvalues for any interval A C
R is defined as
No(A) = #{\ € A}/, (1.4)

It is known [3, 8] that for any 8 N, (A) converges weakly in probability to a non-
random measure N(A), and the limiting measure N can be found as a unique
minimum of some functional on the set of nonnegative unit measures. The ex-
tremum point equation for this functional in the case of Holder V' gives us

V'(\) :2/%“_)62”, A€o, (1.5)

a

where p is the density of N and o is the support of N.
For all ¢ : R — R consider a linear statistics

Nofe] = o(A1) + -+ @(An).
It follows from the results of [3, 8] that if V' is a Holder function, then

n—0o0

lim n 'N,[p] = /go()\)N(d)\).
Consider the fluctuation of linear eigenvalue statistics

Nulgp] = Nulg] — E{Nu[¢]}. (1.6)

For polynomial V' it was proved by Johansson [8] that if the limiting spectrum
o = [~2,2], then for any 8 and any ¢ € Ci[—d — 2,2 4 d] N,[g] converges in
distribution, as n — 00, to a Gaussian random variable. The limiting variance is
the limit, as n — oo, of

Var,[p; V] = E{N2[¢]} = n(n — 1) /d>\1d)\2p%(>\1, dA2)0(A1)p(A2)
2
+n / ")) (M) —n2( / dhpfg(mso(h))

%

e [ 00 (575) s
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Here and below we denote by pl("ﬁ) the Ith marginal density

pl(,%)()‘laakl) :/d>‘l+1d)\npn()\1,,>\n) (17)

For Hermitian matrix models these results can be easily generalized on non-
analytic V under conditions that o = [~2,2] and V¥ € Ly[-2 —,2 +¢]. A key
role in the proof of CLT as well as in the most studies of Hermitian matrix models
belongs to the orthogonal polynomials technics which allows to write all marginal
densities as

n n—1[)!
Py N) = % det{ K (A, M) H g (1.8)
where
n—1
Kas V) = 3 o (V™ () (19)
1=0
is a reproducing kernel of the orthonormal system,
# ) = w2 M), 1=0,. (1.10)
pgn), I = 0,... are orthogonal polynomials on R associated with the weight

wp(A) = eV

/ P P (A)wn (WA = 5y m.

In the Hermitian case it can be proved that

2

d -
5 log E{™ 1} = Var{N,[p; V + to/n]}

- / dperdpin (o) — () 2K (1, i V + tip/n). (1.11)

Hence, to prove CLT we are to study the last integral or to prove that K, does not
depend on the "small perturbation" ty/n in the limit n — oco. For unitary matrix
models it is true only in the case (see [8]) when the support of N ( limiting NCM)
consists of one interval. If the limiting support consists of two or more intervals,
then the r.h.s. of (1.11) has no limit, as n — oo (see [11]).

In the case of real symmetric matrix models the situation is more complicated.
According to the result of [18], to study the marginal densities we need to study
a matrix kernel of the form

o= (S S0).
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where )
Sn(hp) == 3 M ) (MO (nep™) (), (1.13)
i,j=0
with
MO = (M 3 My = n(", ™). (1.14)
Here and below we denote
1.
() = gsign(); e () = [ €= (. (1.15)

If we know I/(\'n()\,u), then

(n—1)! o'
n! Op(A1)...00(N)
where @ is the operator of multiplication by ¢ and I/(\'nA: Ly[R] @ Ly [R] — Lo[R]

Ls[R] is an integral operator with the matrix kernel K, (A, u).
In particular,

PV, N) = det'?{I + K, &},

n 1 e

pg,l)(k) = %TI'K”(A,A),

n 1 = = = =
IO = gy (TR TR ) = 20K (0, 10 K1, )|

(1.16)
Below there will also be used the following representation of the variance
Var{N,[¢1;V]}:

Proposition 1.

Var{N,[p1]; V} = i/dmdm(wl(m) — 1 (p2))tr (I?n(m,uz)f?n(uz,m))-
(1.17)

The structure of the matrix kernel I/(\'n is studied only for a few particular
ensembles. GOE was considered in [18]. The case V(\) = A?™ for natural m was

studied in [6]. Ensembles with V(A) = X" — 2A? were studied in [17].

Let us set our main conditions.

C1: V(X) satisfies (1.2) and is an even analytic function in

Qd,d] ={z: —2—-2d <Rz <2+2d, |Sz| <dy}, dydy>0. (118)

C2: The support o of IDS of the ensemble consists of a single interval:

o=[-2,2].
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C3: DOS p(N) is strictly positive in the internal points X € (—2,2) and p(A) ~
IANTF 2|2, as A ~ 2.

C4: The function
u(h =2 [ logl = Mp(u)du — V(N (1.19)
achieves its maximum if and only if A € o.

It is proved in [2] that these conditions imply that

p(N) = %P(A)\/él——ﬂlg, (1.20)
where
1 [V =VQ) A1 [V'(z) = V'(2cosy)
P(z)—%f =0 (-0 2 P Yo dy. (1.21)

-7
Here the contour £ C Q[d,d;], and L contains inside the interval (—2,2). It is
evident that P is an analytic function in ©[2d/3,2d; /3] and P(A\) > > 0, A € 0.

Under these conditions it was proved in [16] that there exists an n-independent
C such that for even n ||(M©™)=1|| < C and

where
vy =n > AR eyl (), (1.23)
[K].lj]<21og® n
n—1
~ —clog?n
Fap) = 30 E et (), IERI < el (1.24)
J,k=0
Here and below we denote by ¢, C, Cy,Cy, ... positive n-independent constants
(different in different formulas).
Besides,
I,000) = [ €= M) Ka(Nop)dX + Tra 0o +IRaO0p), (125)
where

Iryp (M @) :/E(A—X)rn()\',u)d)\', It (X, 1) :/E(A—X)fn()\',u)d)\', (1.26)

and

0 0 J .

The main result of the present paper is
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Theorem 1. Consider the orthogonally invariant ensemble of random matrices
defined by (1.1)—(1.3) with V satisfying conditions C1-Cj. Then for any ¢ €
Ci[—2 — ¢,2 + €], growing not faster than polynomial at infinity, fluctuations of
linear statistics (1.6) converge in distribution, as n — oo, to a Gaussian random
variable with zero mean and the variance Var[y; V], where

Var[p; V] = le Var,,[¢; V]. (1.28)
2. Proof of the Main Results

Proof of Proposition 1. By definition and (1.16) we have

Var, p; V] = n(n - 1) / A p) O 1) o (N) (1)
n / AP (Vg2 (N) - n? / iy p™ NP (1) (Vo ()

=3 / e (B0 m)Ba(n, ) oNpl00) + 4 / dxtr Bo(0, N (V).
(2.1)

But since
/dupﬁl)(u) =1, /dupgll)(/\,u) =p{"(\),

we obtain
1 . . . ~
5//dAtrKn(A,A) ~1, /dkdutr (KH(A,N)KH(N,A)) — tr Kn(M\, ).

Using this expression in (2.1) we get (1.17). ]
The proof of Theorem 1 is based on the following lemma:

Lemma 1. Let for any ¢ € Ci[oy], where o4 = [—d — 2,2 + d]
Var,[¢; V] < C max |¢'|?, (2.2)
04
and for any polynomial ¢ and any |t| < A
E{eith[np]} N e—t2Var[Lp;V}/2. (2.3)

Then for any ¢ € Cy[og] the limit in (1.28) exists and (2.3) is valid.
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Proof. Since ¢ € Ci[og], for any € > 0 there exist ¢; and @2, such
that ¢ = @1 + @2, ¢1 is a polynomial and |ph| < ¢, it follows from (2.2) and the
Schwarz inequality that there exists C' > 0 that is independent of €, n and

|Var,,[p; V] — Var,[p1; V]| < Ce.
Besides, for any other choice ¢1 and @9 such that p = @1 + P9, [Ph] < €1, we have
|Var, [p1; V] — Var,[p1; V]| < C(e + £1).

Hence, for any choice of polynomials {¢,}22 such that max|¢’ — ]| — 0, as
n — oo, the sequence Vary,[p1 ,; V] is fundamental and has a limit independent
of the choice of ¢; 5. This implies the existence of the limit in (1.28) and that for

any @1, 2 € Cilog]

[Var(pi; V] = Var[ps; V]| < Cmax ey — ). (24)

To prove (2.3) for any ¢ we fix any € > 0, choose ¢ and 9 as in the case above
by the final increments formula and the Schwarz inequality and write

(BN ool — Bt} < (1] B{Ny [po)ei o1 10e])
< AVar!/?[py; V] < CAe.

Hence, taking the limit n — oo, we get

e~ VarlenVl/2 _ 0 Ae < lim infE{eitN”[‘p]} < lim sup E{eitN” [l
n—oo

n—0o0

< efngVar[nm;V]/2 + CAe

Thus, using (2.4) we get (2.3) for any ¢ € C1[o4]. ]

The next lemma will help us to prove (2.3) for polynomial .

Lemma 2. Let {¢n(t)}02, be a sequence of analytic uniformly bounded func-
tions in the circle By = {t : |t| < A}. Assume also that ¢n(t) — @(t) for any real
t, and ¢(t) is also analytic function in By. Then ¢, (t) — ¢(t) for all t € By.

Proof. The proof of the lemma is very simple. According to the Arcella
theorem, the sequence {¢, ()} is weakly compact in B4. But according to the
uniqueness theorem, the limit of any convergent in B4 subsequence {¢y,, (t)} must
coincide with ¢(t). Hence we obtain the assertion of the lemma. ]
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Proof of Theorem 1. According to the results of [2] and [13],
if we restrict the integration in (1.3) by |A\;] < 2 + d, consider the polynomials

{pgcn,d)}zio to be orthogonal on the interval o4 = [-2 — d, 2 + d] with the weight
eV and set @b,(cn’d) = e‘”V/ngcn’d), then for k£ < n(1 + ¢) with some ¢ > 0

sup [P (0) — M) < e, sup ()] < e O (2.5)
AEay IN|>2+d/2

Hence, if Mglo’n) and Sy, 4 are constructed as in (1.14) and (1.13) for o4, then

M = MOD| < e €, max| S a(hm) = Sua(Ap)] < e .

Therefore from the very beginning we can take all integrals in (1.3), (1.7), (1.17),

(1.15) and (1.14) over the interval o4 and then we can study Mfio’n) and Sy, (A, 1)
instead of MO and S, (X, ;). But to simplify notations we omit below the
index d. Besides, everywhere below the integrals without limits mean the integrals
in o4 and the symbols (.,.)2 and ||.||]2 mean the standard scalar product in Ly[og]
and the correspondent norm.

We use Lemma 2 to prove that for polynomial ¢
du(t) = B{e! ) VoV oo,

where Var[p; V] is defined in (1.28).
It is evident that

|60 (D] < [P (2] + |¢n(=[2])]-

Hence to obtain the uniform bound for {¢y(¢)}5%, for t € B4 we are just to find
the uniform bound for {¢, (#)}52, with ¢ € [-A, A]. And to find the last bound
and also to prove the convergence of {¢,(¢)}>2, for real ¢ it is enough to prove
that the sequence {¢!(£)}>, is uniformly bounded for ¢t € [~ A, A] and that

lim ¢/ (t) = Var[p; V], te€[—A, Al (2.6)

n—o0

But it is easy to see that
"(t) = Var,[p; V + to/n)]. (2.7)

In other words, for our purpose it is enough to prove that under conditions of
Theorem 1
lim Var,[p; V + t@/n] = Var,[p; V]. (2.8)
n—o00
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First, let us to transform the expression for Var,[f;V + ty/n] given by Proposi-
tion 1. Using (1.22)-(1.27) and integrating by parts in terms, containing

LRty

2Var,[f;V + tp/n]

= [ xS 10500 NAF = [ s 5SS 3) = el = )]
= Z/dkdu Ky (A pn)A%F + 3/d>\d,u K (A )7 (18, N AG

+ [ xdura Oy n 83 — [ dxd %rn(A, W) (T (11, ) — (i — ) A2
- [ dxd %rn(A,u)Irn(u,A)A?« —2 [ dadp Ko (1) (K 1,

- E(N - A))Affl(ﬂ) - 2/d>‘d:u* Kn(>‘a :U*)Irrn(ﬂa )\)Affl(u) + O(max |f|267010g2n)
=201 +3L + 13— Iy — Is — 21 — 217 + O(max |f|6_010g2n), (29)

where

Ap=fA) = f(n), (2.10)
and O(max|f|26_01°g2") is a contribution of the terms containing integrals of
Tn(p, A) of (1.24). Note that all integrated terms here contain w,(cn)(:lﬁ +d) =
O(e™") (see (2.5)). Hence their contribution is O(e™"¢).

To proceed further let us recall that, by standard arguments, {z/)l(”)} satisfy
the recursion formula

X () = I ) + e ) + I 0), 1=0,1,... T =o.
(2.11)
The Jacobi matrix J ) defined by this recursion plays an important role in our
proof.

Lemma 3. Consider I/JJ(n) and J](n),q](n) defined by (2.11) for the potential
V + teo/n. Under conditions of Theorem 1 there exists € > 0, such that for all
j] < én

(L ; (0) -2
() _q CtHT ) ) T (0) (@) oIy -4/3)
ok VG T i T apoy T 0 I 1S Ot @ =00,
(2.12)
for |j] < n'/®
i)y — el =T Y R e gl <n7 (213)

k>0
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where
Z]l'dx

; 2.14
Ry = 27r P 2cosx ( )

and the function P is defined in (1.21). Moreover, there exists My, such
that for any |j|, |k| < n'/®

* — % ]- :
My jnk=My_j, r+0(n 19y, n—jm—k = Mg—j+1 — 5(1 + (=1 )M_
(2.15)
with - -
My=(1+ (D)"Y R;, M_o=2> R, (2.16)
=k j=—00

The proof of the lemma is given in the next section.

On the basis of the lemma we can prove now that the last two integrals in the
r.h.s. of (2.9) (I and I7) disappear in the limit n — co. Using the Christoffel-
Darboux formula it is sufficient to prove that for any polynomial f,g and any
151, k] < log®n

Jadi (94 002 ) = 90 ) ) (TR (1, 0) = €3 = ) £ Ngl) >0
n / dxdp (9 P (1) = 5 () () ) e (e () f (Vg () — 0.

(2.17)

We use that -
TKn (1, A) —eh — ) = S et ()™ (M) (2.18)

k=n

in the weak sense. Besides, using the recursion formula (2.11), we obtain easily
that for polynomial f of the degree [

j=n—+a+l
N = Y facag ), a=0,1, (2.19)
k=n+a—I

where, according to (2.12), the coefficients fy44,; have finite limits, as n — oo.
Using (2.18) and (2.19) in the first integral of (2.17) and integrating with respect
to A, we obtain that the first integral is equal to a finite sum of the terms

[ dneds gt (220)
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But using the representation of the type of (2.19) for the polynomial g we obtain
easily that every term of the type of (2.20) is equal to a finite sum of the terms

[ enlz s 0 = 0 M (2.21)

Since by (2.15) My ji n+; have finite limits as n — oo, we obtain the first line of
(2.17).

To prove that the second integral in (2.17) tends to zero, we also use (2.19)
and its analog for g. Then we obtain that the second integral is a finite sum with
the convergent coefficients of the terms

n / ddp ey (B Vel () (1) = 07 My kM jrne-

Similarly to the above we conclude that all these terms tend to zero and so the
second integral in (2.17) tends to zero.

Lemma 4. Consider the coefficients Agﬁg from (1.23) defined for the potential

V + tp/n. Under conditions of Theorem 1 for any |j|,|k| < log?n there exists
A; 1 independent of t and such that

AV) — Ajy] < On 1. (2.22)
Moreover, there ezist n-independent c,C such that
|A; | < CemelilFkD, (2.23)

We prove this lemma in the next section.

According to the above arguments it is clear now that to prove Theorem 1 it
is enough to prove that for any polynomial f there exist limits for all integral I,
(¢ =1,...,5) from (2.9). The existence of the limit of I; follows from the result
of [8]. Using representation (1.23) and the Christoffel-Darboux formula it is easy
to see that Is can be represented as a sum of the terms

A2

Ty 1= [ dxdie (92 O () =500 ) 940, e ) =L
(2.24)
It is evident that if f is a polynomial of the [th degree, then
A .
;o .
m = Z fp(N)q(p),

pl,lg|<21-1

where pr and g, are some fixed polynomial of the degree less than 2/. Since we
have the bound (2.23), it is sufficient to prove that the limit exists for any fixed
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j, k, as n — oo. But using for (2.19) for fp and g, and integrating with respect
to A, we reduce the existence of the limit of T5(j, k) to the existence of the limits
of M,,_j» nii for any fixed j', k, which follows from Lemma 3.

The existence of the limits of I3 and I5 can be obtained in the same way.
To find the limit of Iy we use first the relation (2.18), then (2.19) for f and
observe that after integration with respect to A only the finite number of & in the
r.h.s. of (2.18) gives us a nonzero contribution. Hence, as above, we reduce the
problem to the existence of the limits M,,_; 1, which follows from Lemma 3.

To complete the proof of the theorem we are left to prove the estimate (2.2).
It is clear that for this goal it is enough to prove similar estimates for all terms
I, a=1,...,7in (2.9). For I; we have by the Christoffel-Darboux formula

[ i EEOu A} < el PP dhdp KEO WO = 0 = 2077 e

To prove the estimates for other I, first we prove the following auxiliary statement:

Proposition 2. For any g with g' bounded in o4 and any |j|,|k| < 2log®n

o [ a2 002,00 < Clonax o+ maxll).— (225)

Proof of Proposition 2. We start with a simple relation, which
follows from the definition of the operator € (see 1.15). For any integrable f,g

[ DFNeN) = Loy Dl — 5 [ drdulr = ulf Vg (226)

od

In particular, using a simple observation that $|A — u| = (A — p)e(A — p) and then
the definition (1.14), we get

1

/ drepl™ (Ve (A) = Z(lad,wﬁ"))z(ladawzﬁn)h

]' n n n n
- (J§+)1Mj+1,k + I Mg = T Mg = )Mj,k—l) - (2:27)
Since for odd k& (1gd,1/)3(-n))2 = 0, this relation and (2.15) gives us immediately

that for odd |k| < n'/5
C

[ inenoe < . (2.28)

For even k the same relation can be obtained if we apply the analog of (2.27)

to FON) = 2l (0 = It ) + I (V) and then use (2.13).

Note also that since (2.5) yields

e @+ 0) — e, 24+ d/2)| < e, dj2< A< d,
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by (2.28), we have

n(eyh @+ d)Pa/2 <n [ du(@l W7 +om<c. (229)

The last bound and (2.28) imply one more useful estimate that is valid for any f
with the bounded derivative

[x (eruom)” < S max 1]+ max] )2 (2.30)

Indeed, using the fact that @bgjr)k = (ez/)fﬁ)k)’ and integrating by parts (12.30), it is
easy to obtain

n n 1
e(flh) = FVel) = 3

1 n ! n
—SF2 =y (-2 —d) — e (v, )

FE+ a2+ d)

Now, taking the square of the r.h.s. and using (2.29) and (2.28), we obtain (2.30).
To prove Proposition 2 we consider three cases:
(a) j — k is even;

(b) k is even and j is odd;

(c) k is odd and j is even.

(a) Using (2.13), it is easy to get that

n / dug(u)w,(ffj(u)ewfﬁﬁk(u) -n / dp g ()" (el (n)
< Clk — j|max |g(})].

Then, integrating by parts the second integral, we obtain

n [ d g s
o o , 2+d

-5 [ dng e

_9_

Relation (2.25) follows now from (2.29) and (2.28).

(b) Since for even k ez/)gjr)k(O) = 0, using the result of [4] on the asymptotic of
orthogonal polynomials, it is easy to get that for any |pu| <1

C

n .

™) ()] =

m
/ wé’?k(x)dx‘ <
0
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Hence, if we define

9(n) = g™ Vo + 5 D1+ ) +g(~1) (1= )] T,

so that g(1) = () for |u] > 1, then

n

[ dngwuwenlin - [ au ug(uwé’fﬁj(u)eng’"ﬁk(m\ < Cmax]gl.

(2.31)
It is evident that |§'(u)] < |¢'(w)| + |g(w)|. Thus, using the recursion relations
(2.11), we replace the last integral by

[ i) (S )+ IS0 ) bl

Hence, we obtain again the case (a).
(c) Integrating by parts, we get

n [ g2 n)en s ) = ngl)ed' T n)en's )

—2—d

“n / s g (et (e () — m / dpe g ()™ (™ ().

The bounds for first two terms in the r.h.s. were found before, and the last integral
corresponds to the case (b). Thus we have proved (2.25).

To find the bound for I in (2.9) we use the Christoffel-Darboux formula.
Then we are faced with the problem to find the bounds for the terms T} of
(2.24). But since the function A%()\ — )~ ! for any A has a derivative, bounded
uniformly with respect to A, u, we can apply the bound (2.25) for any fixed .
We get

Ty < Canax | £ [ A )67, )] < € max P,
where the last bound is valid because of the Schwarz inequality.
The estimates for I3 and I5 follow directly from (2.25) and (2.23). For I we

use the Christoffel-Darboux formula and then the Schwarz inequality. Thus we
get

n—1
6 < Ol [ e, +.0).
k=0

Here the sum with respect to k appears due to integration with respect to A of
IK?(p,)\) and C appears due to integration of €2(x — A). But from (2.27) it is
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easy to see that

n—1 n—1
[n Y ) = 5 3 Mt~ [ N KO8 = p)elr = ).
k=0 k=0

It follows from the Bessel inequality that the sum in the r.h.s. is bounded by
(15,,15,). In the second integral we apply the Christoffel-Darboux formula and
then (2.15).

For I7 we apply Christoffel-Darboux formula and then the Schwarz inequality.
We obtain

|I7] < nCmax |f')?
0d
1/2

0 AppAiw [ e 0 ey (e ()

Jk445"k He n+j € n+k' € n+k H)€ n+k' H
j’k’jl’k/

< max|f')?, (2.32)
od

where the last inequality follows from (2.28).

Now we are left to prove the bound for Iy (see (2.9)). Note that because of
(2.5) and (1.12)—(1.16) the integrals in [2 4+ d/2,2 +d] and [-2 —d,—2 — d/2] in
(2.9) give us O(e™"¢) terms. Hence, without loss of generality, we can replace the
function f in these intervals by a linear one in order to have a new function being
continuous with a bounded derivative and such that f(2+d) = f(-2—d) = 0.
Then, integrating by parts with respect to p, we need to control only the terms
which do not contain f(u). But for odd k ezp,(cn)(:lzZ +d) =0, and if j and k are
even, then egb,(e") (,u)egb](-") (u) is an even function and so egb,(e") (,u)egb](-") () iid =0.
Hence, integrating by parts in Iy, we obtain that all integrated terms disappear.
Thus,

Ij= I +2 / dAdp (A 1) (T (1, ) — €l — M) (0)Ap = Iy + 2141

The bound for I was found before. Hence, we need to find the bound for Iy ;.
From definitions (1.14) it is evident that M;; = —M}, ; and therefore from (1.13)
we derive

IS (A p) = =ISn (1, A) & TKn(p, A) = —IKn (A, ) — Irp(A, 1) — Irn(p, A).

Now, if we replace I K, (1, A) by the above expression, then the terms containing
Iry (A, ) and Iy (s, A) can be easily estimated by using (2.25) and (2.23). Hence
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we are left to prove the bound for
[ i, O TR N i)

=N

n—1
S A4 S Fel ™) Genl, w}"))‘
4.k =0
<Y Al - ey lalldedy Ly ll2 < Clmax| | +max |f']) - max|g],
3k

where the last bound follows from (2.28), (2.30 and (2.22)—(2.23). The term with
€(A—p) can be estimated in a similar way. This completes the proof of Theorem 1.

3. Auxiliary Results

Proof of Lemm a3. Itis proved in [16] that for ¢ = 0 representation
(2.12) implies (2.13) and (2.15). If we know (2.12) for ¢ # 0, then the proofs of
(2.13) and (2.15) coincide with that one of [16]. Hence we need only to prove
(2.12).

The idea is to use the perturbation expansion of the string equations:

V/(T™), =0, _ 1)
n n + -
IVHT s = =

Here and below in the proof of Lemma 3 we denote V; = V + tp and by J™
a semi-infinite Jacobi matrix, defined in (2.11). Relations (3.1) can be easily
obtained from the identity

/ (efnvt(x) (pén)(k)y)’ dr=0,

!
/ (efnv'f(A)PzEﬁl(A)Pé )(A)> A =0.

We consider (3.1) as a system of nonlinear equations with respect to the coef-

ficients J,E"),q,(cn). To have zero order expression for J (n)

nir We use the following
lemma, proven in [15]:

Lemma 5. Under conditions CI1-C38 for small enough & uniformly in
k: k| <én

qgl)k

)

JT(LZ),C - 1‘ <C (n_1/4 log'/?n + (|k|/n)1/2) . (3.2)
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Denote J(© an infinite Jacobi matrix with constant coefficients
0 _ L0  _ (0) _
Tgsr = Tptaipe =L Tpp =0 (3.3)

and for any positive n'/3 << N < n define an infinite Jacobi matrix J(N) with
the entries

~ (n) -1 N (n) N

I S e (3.4)
0, otherwise. 0, otherwise.

Define a periodic function 04(A) = 94(A+4+ 2d) with 6£4) € Ls[og], and such that

o(X) = V'(A) for |A| <2+ d/2. Consider the standard Fourier expansion for the

function o,
o0

~ iq ™
0 = 37 v’ m= o (3.5)

j==00

The first step in the proof of (2.12) is the lemma

Lemma 6. If V satisfies conditions C2-C3 and VY € Ly[og], then for any
n'/? << N <n and any |k| < N/2
t IO ~ _
VAT )bk = E‘P(j(o))k,k +) Pt + 7O+ 0(|71/n) + O(NT/2),

.t S
V(T pikmksr =1 — J + E‘P(j(o))k,lwrl + Zpk*l(t)‘]l + Ti(cl)
+O(|| T /n) + O(N~7/2),

(3.6)
where for a = 0,1
= 3 vylige)?
Jj=—00
1 1—s1 (37)
% /d31 / dss (eijnslj(o)jeijnsﬂ(o)jeijn(1—sl—sz)(J(°)+j)>
Ekto
0 0
with v;, d defined in (3.5), and
17 .
Pi(t) = — /(P(2 cos(x/2)) + t@(2cos(x/2))/n)e® d, (3.8)
e

—T

with P defined in (1.21) and @-some polynomial with the coefficients depending
on .
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Proof of Lemmaé6. By Proposition 1 of [16] it is enough to obtain
(3.6) for ﬁt(j(o) + I )ntkn+kta- Using the spectral theorem, we have

(T O+ Do = > (vtjeij’“”"(J(O)Jrj))

_ Ek4o
j=—o0

Applying the Duhamel formula two times we get for &« =0, 1

o (j + j)k ko = (j(o))k,k+oc
- 1
£ Y glign) [ ds (BT FATT) ) (30)

k.k+a
J=—0 0

To find the the first term in (3.9) we use the relation, which follows from coinci-
dence 9(A) = V'(N), A € [-2,2] and (1.5)

- 1 -
Ut(j(o))n+k,n+k+a = on /%(2 cos ) cos” z dz
—T
71'

1
=5 (V'(2cos z) + t¢' (2 cos x) /n) cos® z dx
T

-7

™

2 m
1 A)dA t tc(®)
:—/d$/cosa$ ) + /w'(Qcosx)/n)cosaxdx:a—i— <
7r

2cosx — A 2mn n
—r ) -
(3.10)
Besides, since by the spectral theorem
™
g 1 g )
(emnsj(O))k,l _ % / 6z]nscosxez(kfl)xdl, _ Jk—l(j’fs)a (3_11)

—T

where Jg(s) is the Bessel function, and since V' is an odd function, we get for
any [ and an integer «

1

UO] ijk /ds z]nsj(O)
j=—o00 0

(eijn(lfs)j(o))

k,l [+a,k+1—a

m™ T

_ 1 //dxdyV'@cosx)—V’(2c0sy) cos ((k — 1)(z — )

2cosx — 2cosy

—nT—T

+(a(lF1)+1)y) =0.
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Hence, the linear terms with respect to .J; in the first equation of (3.6) and the
linear terms with respect to gy in the second equation give us only the contribution
of the order tn~!||J||. Besides, we derive from (3.9) that the operator P from
the second line of (3.6) can be represented in the form

o0
.. i (0) iir(1— (0)
Pr-1(t) = Ok + /ds Z v (ijk) <€Z]HSJ EmHD etin(1=9)7 )k,k+1 :
j=—00
where we denote by E() a matrix with the entries

[
El(cjn = 5k,l5m,l+1 + 5k,l+15m,l-

It is easy to see that P(t) is a Toeplitz matrix, so its entries can be represented
in the form

Pl,k(t) = Plfk(t) = L /eilIF(xat)dxv F((L‘,t) = Z,Pl(t)eilx'

L
-7

Thus, we obtain

1 T T
1 B .
F(z,1) =1+ Z(ijn)vtj /d31 Z yo //ezl(—fv1+:v2+x)(1 + e—l($1+$2))
j ) .

—T—T

x exp{2ijk[s1 cosxi + (1 — s1) cos xo] tdz1dzs

™
14 1 vi(2cosxy) — vy (2cos(zy — x))
B 27 cos 1 — cos(x; — x)
-

(1 + cos(2z1 — x))dxq

2T

-

™
1 1 2z — 1 2
4L vt(2cosx1)< + cos(2z; — x) N + cos(2z1 + ) )>dx1

cosxy —cos(xy —xz) cosxy — cos(zy + x
= P(2cos(z/2)) + P(—2cos(z/2)) + tp(2 cos(z/2))/n,
(3.12)

where in the last line (3.10) and (1.21) are used. For the linear operator in the
first line of (3.6) the calculations are similar. Lemma 6 is proved. ]

Let us use (3.6) in (3.1). We obtain for k¥ < N/2

-t ) . 7
2 Pe-it)qr = ——— =7, + O(l|T|/n) + O(NT'F),
- k41 ot N
5 Peiid = T = o =)+ OGI 1) + OV )
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where ¢(®) and ¢(!) are defined in (3.10). We would like to consider this system of
equations as two linear equations in ly. For this we set for |k| > N/2

=3 Pr_i(t)aq, .
- + -
=:§:¢%—Kt%ﬁ-—7;—-—J}

It follows from (3.8) that the operator P has a bounded inverse operator whose
entries can be represented in the form

™

(PN = o (P(2cos(z/2)) + t@(2cos(x/2))/n) L't D7dy.  (3.13)

-7

0)
——ZPZ;<0>(t L O(ITN/n) + 7 + O(N- 7/?))

) o (3.14)
Bi= P04 7= 01l — e O ).

Moreover, since by assumption v’ has the fourth derivative from Lo[—2,2], P also
does (see [10]). Therefore, using a standard bound for the tails of the Fourier
expansion of the function f with f®) € Ly[—m, ]

1/2
Yol < Mp“”(Z |fk|2k2”) < CM P2 (3.15)
i>M
we have for any M
YoPH MR NP < MR NIRRT < MR
>m > | >M

(3.16)
Besides, since Plfl = P:ll, we have

k k+1 I + 1 _ 1 I+1

L 1

E P E P . 1
=k n O =k 2P(2) n (3.17)

Using a trivial bound

‘(6”“”(” eI U gz UORD) <IFIP (31
kk+1
and (3.2), first we obtain a rather crude bound
|F](ca)| <C (|k|/n +n~ Y2 og? n) ., a=0,1. (3.19)
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This bound combined with (3.14) and (3.15) gives us
Gel, 176 < € (Ikl/n+n~" 2 10g?n + N7T/2) (3.20)

Now we use the bound, valid for any Jacobi matrix J with coefficients Jj 41 =
Jet1e = ar € R, |ag] < A. Then there exist positive constants Cjy, Ci,Co,
depending on A, such that the matrix elements of e??J satisfy the inequalities:

(e ). < Coe~ Crik=il+Cat, (3.21)

This bound follows from the representation

(e M)k,j =5 7{6 t Ry j(2)dz
l

where R = (J — z)~!, and from the Comb-Thomas type bound on the resolvent
of the Jacobi matrix (see [14])

2 1| Cx ; 1 |1Cx
[Reg ()] < pge A 4 e RO, (3.22)
Let us choose o
M = 40;711/3, (3.23)

where C; and Cy are the constants from (3.21) and & = m(2 + ¢)~!. Then (3.21)
guarantees that for any I,1' : [l — 1’| > n'/3 and any 5 : 5] < M, |t| < 1

|(eitdjj(0))l,l,|’ |(eitdj(.7(0)+j)l,l,| < CedC2M—Crli-1'| < CeC1n'/3[3,~Cali-']/3

3.24
Now we split the sum in (3.7) in two parts |j| < M and |j| > M. 24
0 1 1—s1
F,(Ca) = Z vj(ijm)ZZ/dsl / dss
j=—00 li,l2 0
% (eijnslj(o) j) <eijnszj(0)) (jeijn(l—sl—sz)(J(o)-i-j))
kl A I k+1

= >+ > . (3.25)

lil<M lj|=M

Then (3.24) allows us to write

k+ n1/3 1 1—s1
N
Z = Z v (ijK) /d31 /
l7l<M  |jl<M 11,12: —[n1/3]0 0
(eijnslj(o)j> (eijnsz](o)) ( z]n (1—s1— s2)(~7(0)+7)) +O(670n1/3/3).
k7l1 ll)l2 l2)k+1
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Hence using (3.18) we obtain now

Y o|l<Cc  max ] (3.26)
<M l:|l—k—n|<nt/3

For 37,1~ we use (3.18) combined with (3.20) and (3.15) for the function V.
Then we get

S | <om e ((N/n)2 +nLlog! n) < On~Y2(N/n)? (3.27)
l71>M

and therefore

2
7)) < C<<(|k| +n1/3)/n) +ntogtn+ N7/2 4 n1/2 (N/n)2>- (3.28)

Using this bound in (3.14) we obtain (2.12), but the bound for r,(ca) now has
the form

|T]E:o¢)| <C ((k/n)2 + n—l 10g4 n+ ]\/'—7/2 4 n_1/2 (N/n)2> . (329)

Now, using (2.12) with (3.29) in (3.26) and setting N = 2[n'/?], we obtain the
bound from (2.12) for |k| < n'/2. Then, setting N = 2[n?/4] and again using
(2.12) with (3.29) in (3.26), we obtain the bound from (2.12) for n'/? < k < n3/%,
And finally setting N = 2[£n], we obtain the bound from (2.12) for n%/* < k < én.

[

Proof of Lemmad4. The relation (2.22) is proved in [16]. To prove (2.23)
we need some extra definitions. We denote by H = lo(—o00, 00) a Hilbert space of

all infinite sequences {z;}>° _ with a standard scalar product (.,.) and a norm
II.|]. Let also {e;}32_. be a standard basis in H and I{=°") be an orthogonal

projection operator defined as

(—oon),. — €i, 1< n,
! “ { 0, otherwise. (3.30)

For any infinite matrix A = {A4; ;} we will denote by
Aloomn) — p(oon) gy(—oon)

—1
(AL-2om) 1 = J(-oom) <[_ [(oom) 4 A(oo,n)> ey (3.31)

so that (A(-°°™))~1 is a block operator which is inverse to A(~°*™) in the space
I(=0M)3{ and zero on the (I — I(=°%M))H.
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Besides, we will say that the matrix A(=°°") s of the exponential type, if there
exist constants C' and ¢, such that

|Ap_jni] < CeclilFIkD, (3.32)
Define the infinite Toeplitz matrices P and V* by their entries

1 o ign(k — j ro
F)jk = — ez(]—k)xde(Z COS 1‘)1 V'*k = w /eZ(J_k)xdeI(Z cos £E),
’ 27 I 27

(3.33)
and let the entries R be defined in (2.14). Then as it was proved in [16] that for
71, |k < 2log*n,

(MO (R IDEOm), G k4 bnjank +O(n /1), (3.34)

n—j,n—k =

where
ap = ((R(’n))ilen—l)k, bj — ((R(*oo,n))fl,r,*)j,

and the vector r* € Z(O™% has components rt =Ry (i =2,4,...) with R;

defined by (2.14) Let us prove that
]_—(700,77,) — (R(foo,n))flp(foo,n) - V*(foo,n) (335)

is of the first type. It is proved in [16] (see Prop. 1) that

R, il < CemeliH
|(R(_Ooﬁn))r_bi] ek = RT_Li] n—k:| S len{e_cb‘, e_c|k‘} S Ce_c(|]‘+|k‘)/2
(3.36)
Hence,

0 < |5 PucsaPu s Vi | 0 Y et

>1 >1

< | S P |+ e D2 < et
>0

Besides, (3.36) implies
lag,| < Ce @kl |b;] < el (3.37)

It is easy to see that

1
n n'J

1 n n n 1 n
—5 Ve = (e = ",
k
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where we denote V; ; = sign(k — j)V'(J™),, and that for j,k > 2log”n

(M(*oo,n))fl Vn—j,n—k + O(efclog2 n)

n—j,n—=k =

Hence, if we denote

Agnk) = (Meom)) ot Vijmts  Ajr=TFO)njn g+ b jn_t,

n—jn—k

then S, is indeed represented in the form (1.22),(2.22) is valid because of (2.12)
and (3.34), and (2.23) is valid because we have proved that F(®") is of the first
type and because of (3.37). [ |
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