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We prove that if u is a subharmonic function in D = fjzj < 1g, then
there exists an absolute constant C and an analytic function f in D such

that
R
D
ju(z)� log jf(z)jj dm(z) < C, where m denotes the plane Lebesgue

measure. We also (following the arguments of Lyubarskii and Malinnikova)

answer Sodin's question, namely, we show that the logarithmic potential of

measure � supported in a square Q, with �(Q) being an integer N , admits

approximations by the subharmonic function log jP (z)j, where P is a poly-

nomial with
R
Q
jU�(z) � log jP (z)jjdxdy = O(1), independent of N and �.

We also consider uniform approximations.
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1. Introduction

We use the standard notions of subharmonic function theory [1]. Let U(E; t) =

f� 2 C : dist (�; E) < tg, E � C , t > 0, where dist (z;E)
def
= inf�2E jz � �j, and

U(z; t) � U(fzg; t) for z 2 C . A class of subharmonic functions in a domain

G � C is denoted by SH(G). For a subharmonic function u 2 SH(U(0; R)),
0 < R � +1, we write B(r; u) = maxfu(z) : jzj = rg, 0 < r < R and de-

�ne the order �[u] by �[u] = lim sup
r!+1

logB(r; u)= log r if R = 1 and by �[u] =

lim sup
r!R

logB(r; u)= log 1
R�r if R <1.

Let also �u denote the Riesz measure associated with the subharmonic func-

tion u, n(r; u) = �u(U(0; r)), let m be the planar Lebesgue measure and l be

the Lebesgue measure on the positive ray. For an analytic function f in D we

write Zf = fz 2 D : f(z) = 0g. The symbol C(�) with indices stands for some
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positive constants depending only on the values in brackets. We write a � b

if C1a � b � C2a for some positive constants C1 and C2, and a(r) � b(r) if

limr!R a(r)=b(r) = 1.
An important result was proved by R.S. Yulmukhametov [2]. For any function

u 2 SH(C ) of order � 2 (0;+1), and � > �, there exists an entire function f and

a set E� � C such that

��u(z) � log jf(z)j�� � C(�) log jzj; z !1; z 62 E�; (1.1)

and E� can be covered by a family of disks U(zj ; tj), j 2 N, with
P

jzjj>R tj =

O(R���), (R! +1).
If u 2 SH(D ), a counterpart of (1.1) holds with log 1

1�jzj instead of log jzj and
an appropriate choice of E�.

From the recent result by Yu. Lyubarskii and Eu. Malinnikova [3] it follows

that for L1 approximation relative to planar measure, we may drop the assumption

that u has a �nite order of growth and obtain sharp estimates.

Theorem A ([3]). Let u 2 SH(C ). Then, for each q > 1=2, there exists

R0 > 0 and an entire function f such that

1

�R2

Z
jzj<R

��u(z) � log jf(z)j
��dm(z) < q logR; R > R0: (1.2)

An example constructed in [3] shows that we cannot take q < 1=2 in estimate

(1.2). The case q = 1=2 remains open.

The following theorem complements this result.

Let � be a class of slowly growing functions  : [1;+1) ! (1;+1) (in par-

ticular,  (2r) �  (r) as r ! +1).

Theorem B ([4]). Let u 2 SH(C ), � = �u. If for some  2 � there exists a

constant R1 satisfying the condition

(8R > R1) : �(fz : R < jzj � R (R)g) > 1; (1.3)

then there exists an entire function f such that (R � R1)Z
jzj<R

��u(z)� log jf(z)j�� dm(z) = O(R2 log (R)): (1.4)

R e m a r k 1.1. In the case  (r) � q > 1 we obtain Th. 1 [3].

The following example and Th. C show (see [4] for details) that estimate (1.4)

is sharp in the class of subharmonic functions satisfying (1.3).
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For ' 2 �, let

u(z) = u'(z) =
1

2

+1X
k=1

log
���1� z

rk

���;
where r0 = 2, rk+1 = rk'(rk), k 2 N [ f0g. Thus, �u satis�es condition (1.3)

with  (x) = '3(x).

Theorem C. Let  2 � be such that  (r) ! +1 (r ! +1). There exists

no entire function f for whichZ
jzj<R

��u (z) � log jf(z)j�� dm(z) = o(R2 log (R)); R!1:

A further question arises naturally: Are there the counterparts of Ths. A and

B for subharmonic functions in the unit disk? We have the following theorem.

Theorem 1. Let u 2 SH(D ). There exists an absolute constant C and an

analytic function f in D such thatZ
D

��u(z)� log jf(z)j�� dm(z) < C: (1.5)

For a measurable set E � [0; 1) we de�ne the density

D1E = lim
R"1

l(E \ [R; 1))

1�R
:

Corollary 1. Let u 2 SH(D ), " > 0. There exists an analytic function f in D

and E � [0; 1), D1E < ", such that

2�Z
0

��u(rei�)� log jf(rei�)j��d� = O
� 1

1� r

�
; r " 1; r 62 E: (1.6)

The relationship (1.6) is equivalent to the condition

T (r; u) � T (r; log jf j) = O((1� r)�1); r " 1; r 62 E;
where T (r; v) is the Nevanlinna characteristic of a subharmonic function v. The

author does not know whether (1.6) is the best possible.

R e m a r k 1.2. No restrictions on the Riesz measure �u or the growth of u

are required in Th. 1.

R e m a r k 1.3. It is clear that (1.5) is sharp in the class SH(D ), but can be

improved under growth restrictions.
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Theorem D (M.O. Hirnyk [5]). Let u 2 SH(D ), �[u] < +1. Then there

exists an analytic function f in D such that

2�Z
0

��u(rei�)� log jf(rei�)j��d� = O
�
log2

1

1� r

�
; r " 1:

Theorem 1 does not allow to conclude that

u(z)� log jf(z)j = O(1); z 2 D nE (1.7)

for any �small� set E.

Su�cient conditions for (1.7) in the complex plane were obtained in [3] by

using the so-called notion of a locally regular measure admitting a partition of

slow variation.

We also prove a counterpart of Th. 30 of [3] using a similar concept. The cor-

responding Th. 3 will be formulated in Sect. 3. Here we formulate an application

of Th. 3.

Theorem 2. Let 
j = (z = zj(t) : t 2 [0; 1]), 1 � j � m, be the smooth

Jordan curves in U(0; 1) such that arg zj(t) = �j(jzj(t)j) � �j(r), jzj(1)j = 1,
j�0j(r)j � K for r0 � r < 1 and some constants r0 2 (0; 1), K > 0, 1 � j � m.

Let u 2 SH(D ), supp�u �
Sm
j=1[
j ], �u([
j ] \ [
k]) = 0, j 6= k, and

�u

���
[
j ]

(U(0; r)) =
�j

(1� r)�(r)
;

where �j is a positive constant, �(r) = �
�

1
1�r

�
, �(R) is a proximate order [7],

�(R)! � > 0 as R! +1.

Then there exists an analytic function f such that for all " > 0

log jf(z)j � u(z) = O(1); (1.8)

z 62 E" = f� 2 D : dist (�; Zf ) � "(1 � j�j)1+�(r)g, where

log jf(z)j � u(z) � C; (1.9)

for some C > 0 and all z 2 D . Moreover,

Zf �
[

�2Sj [
j ]

U(�; 2(1� j�j)1+�(r));

and

T (r; u)� T (r; f) = O(1); r " 1: (1.10)
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R e m a r k 1.4. Obviously, we cannot obtain a lower estimate for the

left-hand side of (1.9) for all z, because it equals �1 on Zf .

The theorems similar to Th. 2 are proved in [6, Ch.10, Ths. 10.16, 10.20]. The

di�erence is that in [6] only the weaker estimates are obtained for approximation

in a more general settings.

2. Proof of Theorem 1

2.1. Preliminaries

Let u 2 SH(D ). Then the Riesz measure �u is �nite on the compact subsets

of D . In order to apply a partition theorem (Th. E) we have to modify the

Riesz measure. By subtracting an integer-valued discrete measure ~� from �u
we may arrange that �(fpg) = (�u � ~�)(fpg) < 1 for any point p 2 D . The

measure ~� corresponds to the zeros of an entire function g. Thus we can consider

~u = u � log jgj, �~u = �. According to Lem. 1 [4], in any neighborhood of the

origin there exists a point z0 with the following properties:

a) on each line L� going through z0 there is at most one point �� such that

�(f��g) > 0, while �(L� n f��g) = 0;

b) on each circle K� with center z0 there exists at most one point �� such that

�(f��g) > 0, while �(K� n f��g) = 0.

As it follows from the proof of Lem. 1 [4], the set of points z0 not satisfying

conditions a) and b) has a planar measure zero. A similar assertion holds for

the polar set u(z0) = �1 [1, Ch.5.9, Th. 5.32]. Therefore, we can assume that

properties a), b) hold, and u(z0) 6= �1.

Then consider the subharmonic function u0(z) = u
�
z0�z
1�z�z0

�
� u(w(z)), u0(0) =

u(z0). Since jw0(z)j = 1�jz0j2
j1�z�z0j2 , we have jjw0(z)j � 1j � 3jz0j for jz0j � 1=2.

The Jacobian of the transformation w(z) is jw0(z)j2, consequently, this change
of variables does not change relation (1.5).

Let

u3(z) =

Z
U(0;1=2)

log jz � �j d�u(�): (2.1)

The subharmonic function u(z)� u3(z) is harmonic in U(0; 1=2).
Let q 2 (0; 1) be such that

12X
j=1

qj > 11: (2.2)
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We de�ne (n 2 f0; 1; : : : g)

Rn = 1� qn=2; An = f� : Rn � j�j < Rn+1g; Mn =Mn(q) =
h 2�

log Rn+1

Rn

i
;

An;m =
n
� 2 An :

2�m

Mn
� arg0 � <

2�(m+ 1)

Mn

o
; 0 � m �Mn � 1:

Represent �u

���
An;m

= �
(1)
n;m + �

(2)
n;m such that:

i) supp�
(j)
n;m � An;m, j 2 f1; 2g;

ii) �
(1)
n;m(An;m) 2 2Z+, 0 � �

(2)
n;m(An;m) < 2.

Let

�(j)n =

Mn�1X
m=0

�(j)n;m; ~�(j) =
X
n

�(j)n ; j 2 f1; 2g:

Property ii) implies

�(2)n (An) � 13

(1� q)(1�Rn)
; n! +1; (2.3)

as follows from the asymptotic equality

log
Rn+1

Rn
� (1� q)(1�Rn); n! +1; (2.4)

and the de�nition of Mn.

Let

u2(z) =

Z
D

log
���E�1� j�j2

1� ��z
; 1
����d~�(2)(�); (2.5)

where E(w; p) = (1 � w) expfw + w2=2 + � � � + wp=pg, p 2 N is the Weierstrass

primary factor.

Lemma 1. Let u2 2 SH(D ), and

T (r; u2) = O
�
log2

1

1� r

�
; r " 1;

Z
D

ju2(z)j dm(z) < C1(q):

216 Journal of Mathematical Physics, Analysis, Geometry, 2008, vol. 4, No. 2



Approximation of Subharmonic Functions in the Unit Disk

P r o o f o f L e m m a 1. The following estimates for log jE(w; p)j are well
known (cf. [7, Ch.1, �4, Lem. 2], [1, Ch.4.1, Lem. 4.2]):

j logE(w; 1)j � jwj2
2(1� jwj) ; jwj < 1;

log jE(w; 1)j � 6ejwj2; w 2 C :

(2.6)

First we prove the convergence of integral in (2.5). For �xed Rn let jzj � Rn. We

choose p such that qp < 1=4. Then for j�j � Rn+p we have

1� j�j2
j1� ��zj �

2(1 � j�j)
1� jzj � 2(1�Rn+p)

1�Rn
<

1

2
:

Hence, using the �rst estimate in (2.6), (2.3) and the de�nition of Rn, we obtain

Z
j�j�Rn+p

���log
���E�1� j�j2

1� ��z
; 1
����
��� d~�(2)(�) �

Z
j�j�Rn+p

�2(1� j�j)
1� jzj

�2
d~�(2)(�)

� 4

(1� jzj)2
1X

k=n+p

(1�Rk)
2

Z
�Ak

d~�(2)(�) � 52

(1� q)(1� jzj)2
1X

k=n+p

(1�Rk)

=
52(1 �Rn+p)

(1� q)2(1� jzj)2 �
C2(q)

1�Rn
:

Thus, u2 is represented by the integral of subharmonic function log jEj of z, and
the integral converges uniformly on compact subsets in D , and so u2 2 SH(D ).
Since 1� j�j2 � 3=4 for � 2 supp ~�(2), using (2.6) and (2.3) we have

ju2(0)j �
Z
D

j log jE(1 � j�j2; 1)jj d~�(2)(�) �
Z
D

2(1 � j�j2)2d~�(2)(�)

� 8

1X
k=0

Z
�Ak

(1� j�j)2d~�(2)(�) � 104

1� q

1X
k=0

(1�Rk) = C3(q): (2.7)

Let us estimate T (r; u2)
def
= 1

2�

R 2�
0
u+2 (re

i�) d� for r � Rn, where u
+ = maxfu; 0g.

Note that for j�j � Rn+2, jzj � Rn we have
1�j�j2
j1���zj � 2. Thus

log
���E�1� j�j2

1� ��z
; 1)
���� 12e

1 � j�j2
j1 � ��zj
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in this case. Using the latter estimate, (2.6), (2.3), and the lemma [10, Ch. 5.10,

p. 226], we get

T (r; u2) � 1

2�

2�Z
0

�n+1X
k=0

Z
�Ak

12e
1� j�j2
j1 � ��rei�j d�

(2)
k (�)

�
d�

+
1

2�

2�Z
0

� 1X
k=n+2

Z
�Ak

6e
(1� j�j2)2
j1� ��rei�j2 d�

(2)
k (�)

�
d�e

� C4(q)

�n+1X
k=0

Z
�Ak

(1� j�j2) log 1

1� r
d�

(2)
k (�) +

1X
k=n+2

Z
�Ak

(1� j�j2)2
1� r

d�
(2)
k (�)

�

� C5(q)

�n+1X
k=0

log
1

1� r
+

1X
k=n+2

1�Rk

1� r

�

� C6(q)n log
1

1� r
� C7(q) log

2 1

1� r
:

Finally, by the First main theorem for subharmonic functions [1, Ch. 3.9]

m(r; u2)
def
=

1

2�

2�Z
0

u�2 (re
i�)d�

= T (r; u2)�
rZ

0

n(t; u2)

t
dt� u2(0) � T (r; u2) + C3(q):

Therefore
R 2�
0
ju2(rei�)jd� � 4�T (r; u2) + C8(q):

Consequently,

Z
jzj�1

ju2(z)j dm(z) � 4�

1Z
0

T (r; u2) dr + C8(q)

� C9(q)

1Z
0

log2
1

1� r
dr � C10(q):

Lemma 1 is proved.

2.2. Approximation of ~�1

The following theorem plays a key role in approximation of u.
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Theorem E. Let � be a measure in R2 with compact support, supp� � �, and

�(�) 2 N, where � is a rectangle with the ratio of side lengths l0 � 1. Suppose,

in addition, that for any line L, parallel to a side of �, there is at most one point

p 2 L such that

0 < �(fpg)(< 1) while always �(L n fpg) = 0; (2.8)

Then there exists a system of rectangles �k � � with sides parallel to the sides of

�, and measures �k with the following properties:

1) supp�k � �k;

2) �k(�k) = 1,
P

k �k = �;

3) the interiors of the convex hulls of the supports of �k are pairwise disjoint;

4) the ratio of the side lengths of rectangles �k lies in the interval [1=l; l], where
l = maxfl0; 3g;

5) each point of the plane belongs to the interiors of at most 4 rectangles �k.

Theorem E was proved by R.S. Yulmukhametov [2, Th. 1] for absolutely con-

tinuous measures (i.e., � such that m(E) = 0 ) �(E) = 0) and l0 = 1. In this

case condition (2.8) is ful�lled automatically. In [8, Th. 2.1] D. Drasin showed

that Yulmukhametov's proof works if the condition of continuity is replaced by

condition (2.8). We can drop condition (2.8) rotating the initial square [8]. One

can also consider Th. E as a formal consequence of Th. 3 [4]. Here l0 plays role

for a �nite set of rectangles corresponding to small k's, but in [4] it plays the

principal role in the proof.

R e m a r k 2.1. In the proof of Th. E [8] the rectangles �k are obtained by

splitting the given rectangles, starting with �, into smaller ones in the following

way. The length of the smaller side of initial rectangle coincides with that of the

side of the rectangle obtained in the �rst generation, and the length of the other

side of new rectangle is between one third and two thirds of the length of the

other side of initial rectangle. Thus we can start with a rectangle instead of a

square and l = maxfl0; 3g.
Let u1(z) = u(z) � u2(z) � u3(z). Then �u1 = ~�(1), �

(1)
n;m( �An;m) 2 2Z+,

n 2 Z+, 0 � m �Mn � 1.
Let

Pn;m = logAn;m

=
n
s = � + it : logRn � � � logRn+1;

2�m

Mn
� t � 2�(m+ 1)

Mn

o
:
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According to (2.4) the ratio of the sides of Pn;m is

log Rn+1

Rn

2�=[ 2�
(1�q)(1�Rn) ]

! 1; n!1: (2.9)

Let d�n;m(s)
def
= d�

(1)
n;m(es), s 2 Pn;m, (i. e., �n;m(S) = �

(1)
n;m(expS) for every

Borel set S � C ). By our assumptions the conditions of Th. E are satis�ed for

� = Pn;m and � = �n;m=2, and all admissible n;m. By Theorem E there exists a

system (Pnkm, �nmk) of rectangles and measures, k � Nnm, 0 � m �Mn�1 with
the properties: 1) �nmk(Pnmk) = 1; 2) supp �nmk � Pnmk; 3) 2

P
k �nmk = �n;m;

4) every point s such that Re s < 0, 0 � Im s < 2� belongs to the interiors of at

most four rectangles Pnmk; 5) the ratio of the side lengths lies between two positive

constants. Indexing the new system (Pnmk; 2�nmk) with the natural numbers, we

obtain a system (P (l); �(l)) with �(l)(P (l)) = 2, supp �(l) � P (l), etc.

Let the measure �(l) de�ned on D be such that d�(l)(es)
def
= d�(l)(s), Re s < 0,

0 � Im s < 2�, Q(l) = expP (l). Let

�l
def
=

1

2

Z

Q(l)

�d�(l)(�) (2.10)

be the center of mass of Q(l), l 2 N.

We de�ne �
(1)
l , �

(2)
l as solutions of the system8>>>>><
>>>>>:

�
(1)
l + �

(2)
l =

Z

Q(l)

�d�(l)(�);

(�
(1)
l )2 + (�

(2)
l )2 =

Z

Q(l)

�2d�(l)(�):

(2.11)

From (2.11) and (2.10) it follows that (see [3, 4] or Lem. 3 below)

j�(j)l � �lj � diamQ(l) � dl; j 2 f1; 2g:
Consequently, we obtain

max
�2Q(l)

j� � �
(j)
l j � 2dl; j 2 f1; 2g; sup

�2Q(l)

j� � �lj � dl: (2.12)

We write

�l(z)
def
=

Z

Q(l)

�
log
��� z � �

1� z��

���� 1

2
log
��� z � �

(1)
l

1� z��
(1)
l

���� 1

2
log
��� z � �

(2)
l

1� z��
(2)
l

���� d�(l)(�);

V (z)
def
=
X
l

�l(z):
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Fix a su�ciently large m (in particular, m � 13) and z 2 Am. Let L+ be the

set of l's such that Q(l) � U(0; Rm�13), and L� the set of l's with Q(l) � f� :
Rm+13 � j�j < 1g, L0 = N n (L� [ L+).

Lemma 2. There exists l� 2 N such that �1, �2 2 U(Q(l); 2dl), l 2 L+ [ L�,
l > l� imply

1

16
jz � �2j � jz � �1j � 16jz � �2j:

P r o o f o f L e m m a 2. First, let l 2 L+, i.e., z 2 Am, Q
(l) � Ap,

p � m� 13. In view of (2.9), Q(l) = expP (l) is �almost a square�. More precisely,

there exists l� 2 N such that for all l > l�

diamQ(l) = dl <
3

2
(Rp+1 �Rp); Q(l) � Ap:

Since �1, �2 2 U(Q(l); 2dl), we have

Rp � 3(Rp+1 �Rp) � j�2j � Rp+1 + 3(Rp+1 �Rp); (2.13)

jz � �1j � jz � �2j � j�2 � �1j � jz � �2j � 5dl � jz � �2j � 15

2
(Rp+1 �Rp):

(2.14)

On the other hand, by the choice of q (see (2.2)) and (2.13)

jz � �2j � Rm �Rp+1 � Rp+13 �Rp+1 � 3(Rp+1 �Rp)

=
12X
s=1

(Rp+s+1 �Rp+s)� 3(Rp+1 �Rp)

=
� 12X
s=1

qs � 3
�
(Rp+1 �Rp) > 8(Rp+1 �Rp):

The latter inequality and (2.14) yield

jz � �1j � jz � �2j � 15

2
(Rp+1 �Rp) > jz � �2j � 15

16
jz � �2j = 1

16
jz � �2j:

For l 2 L�, Q(l) � fRm+13 � j�j < 1g we have p � m+13, and the inequality

(2.14) still holds.

Similarly, by the choice of q and (2.13)

jz � �2j � Rp�3 �Rm+1 � Rp�3 �Rp�12 � 9q4(Rp+1 �Rp) > 8(Rp+1 �Rp);

that together with (2.14) implies the required inequality in this case. Lemma 2 is

proved.
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Let l 2 L� [ L+. For � 2 Q(l), we de�ne L(�) = Ll(�) = log
�
z��
1��z�

�
, where

logw is an arbitrary branch of Logw in w(Q(l)), w(�) = z��
1��z� . Then L(�) is

analytic in Q(l). We will use the following identities:

L(�)� L(�
(1)
l ) =

�Z

�
(1)

l

L0(s) ds = L0(�(1)l )(� � �
(1)
l ) +

�Z

�
(1)

l

L00(s)(� � s) ds

= L0(�(1)l )(� � �
(1)
l ) +

1

2
L00(�(1)l )(� � �

(1)
l )2 +

1

2

�Z

�
(1)

l

L000(s)(� � s)2 ds: (2.15)

Elementary geometric arguments show that j1
�z
� �j�1 � jz� �j�1 for z; � 2 D .

Since L0(�) = 1
��z +

�z
1��z�

, we have

jL0(�)j � 2

j� � zj ; jL00(�)j � 2

j� � zj2 ; jL000(�)j � 4

j� � zj3 : (2.16)

Now we estimate j�l(z)j for l 2 L+ [ L�. By the de�nitions of L(�), �l(z),
(2.15) and (2.11) we have

j�l(z)j =
���Re

Z

Q(l)

�
L(�)� L(�

(1)
l )� 1

2
(L(�

(2)
l )� L(�

(1)
l )

�
d�(l)(�)

���

=
���Re

Z

Q(l)

�
L0(�(1)l )

�
� � 1

2
(�

(1)
l + �

(2)
l )

�

+

�Z

�
(1)

l

L00(s)(� � s)ds� 1

2

�
(2)

lZ

�
(1)

l

L00(s)(�(2)l � s)ds

�
d�(l)(�)

���

=
���Re

Z

Q(l)

� �Z

�
(1)

l

L00(s)(� � s)ds� 1

2

�
(2)

lZ

�
(1)

l

L00(s)(�(2)l � s)ds

�
d�(l)(�)

���: (2.17)

Using (2.17), (2.16) and (2.12), we obtain

j�l(z)j �
Z

Q(l)

�Z

�
(1)

l

2j� � sj
js� zj2 jdsj d�

(l)(�) +
1

2

Z

Q(l)

�
(2)

lZ

�
(1)

l

2j�(2)l � sjjdsj
js� zj2 d�(l)(�)

� 12d2l max
s2Bl

1

js� zj2 ; (2.18)
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where Bl = U(Q(l); 2dl). Applying Lem. 2, we have (z 2 �Am)

X
l2L�

j�l(z)j � 12
X
l2L�

d2l max
s2Bl

1

js� zj2 � C11

X
l2L�

Z

Q(l)

dm(z)

jz � �j2

� 4C11

Z
Rm+13�j�j<1

dm(z)

jz � �j2 � C12

1Z
Rm+13

d�

�� jzj � C13(q): (2.19)

Similarly,

X
l2L+

j�l(z)j � 12
X
l2L+

d2l max
s2Bl

1

js� zj2 � 4C11

X
l2L+

Z
j�j�Rm�13

dm(z)

jz � �j2

� C12

Rm�13Z
0

d�

jzj � �
� C14(q) log

1

1� jzj : (2.20)

Hence Z
jzj�Rn

X
l2L+[L�

j�l(z)j dm(z) < C15(q): (2.21)

It remains to estimate
R
jzj�Rn

P
l2L0 j�l(z)j dm(z). Here we follow the ar-

guments from [3, e.-g.]. If dist (z;Q(l)) > 10dl, similarly to (2.17), from (2.15),

(2.11), (2.16) and (2.12) we deduce

j�l(z)j =
���Re

Z

Q(l)

�
L0(�(1)l )

�
� � 1

2
(�

(1)
l + �

(2)
l )

�

+
L00(�(1)l )

2

�
�2 � (�

(1)
l )2 + (�

(2)
l )2

2
+ �

(1)
l (�

(1)
l + �

(2)
l � 2�)

�

+
1

2

�Z

�
(1)

l

L000(s)(� � s)2ds� 1

4

�
(2)

lZ

�
(1)

l

L000(s)(�(2)l � s)2ds

�
d�(l)(�)

���

=

����Re
Z

Q(l)

�
1

2

�Z

�
(1)

l

L000(s)(� � s)2 ds� 1

4

�
(2)

lZ

�
(1)

l

L000(s)(� � s)2 ds

�
d�(l)(�)

����

� 6d3l max
s2Bl

1

js� zj3 �
6d3l

j�(1)l � zj3
max
s2Bl

�
1 +

j�(1)l � sj
js� zj

�3
� 26d3l

j�(1)l � zj3
: (2.22)
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Since L0 depends only on m when z 2 Am, we have
Z

Am

X
l2L0

j�l(z)j dm(z) �
X
l2L0

� Z

AmnU(�(1)l
;10dl)

+

Z

U(�
(1)

l
;10dl)

�
j�l(z)j dm(z)

�
X
l2L0

� Z

AmnU(�(1)l
;10dl)

26d3l

jz � �
(1)
l j3

dm(z) +

Z

U(�
(1)

l
;10dl)

j�l(z)j dm(z)

�
: (2.23)

For the �rst sum we obtain

X
l2L0

26d3l

Z

AmnU(�(1)l
;10dl)

1

jz � �
(1)
l j3

dm(z) �
X
l2L0

52�d3l

2Z
10dl

tdt

t3

� 6�
X
l2L0

d2l � C16

X
l2L0

m(Q(l)): (2.24)

We now estimate the second sum. By the de�nition of �l(z)

�l(z) =

Z

Q(l)

�
log
���z � �

10dl

���� 1

2
log
���z � �

(1)
l

10dl

���� 1

2
log
���z � �

(2)
l

10dl

���� d�(l)(�)

�
Z

Q(l)

�
log j1� z�j � 1

2
log j1� z�

(1)
l j � 1

2
log j1� z�

(2)
l j
�
d�(l)(�) � I1 + I2:

The integral
R jI1j dm(z) is estimated in [3, g.], [4, p. 232]. We have

Z

U(�
(1)

l
;10dl)

jI1j dm(z) � C17m(Q(l)): (2.25)

To estimate jI2j we note that for l su�ciently large, jz � �j � 15dl, � 2
U(Q(l); 2dl), z 2 D , we have j arg z � arg �j � 16dl � 16(1 � jzj)j by the choice

of q. Hence,

j1
z
� ��j � 1

jzj � 1 + 1� j�j+ j�jj1� ei(arg ��arg z)j � C 0
17(1� jzj):

Thus, j1=z � ��j � 1� jzj. Therefore

jI2j �
Z

Q(l)

1

2

��� log j1z � ��j2
j1z � �

(1)
l jj1z � �

(2)
l j

���d�(l)(�) � C18:
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Thus, Z

U(�
(1)

l
;10dl)

jI2j dm(z) � C19(q)m(Q(l)): (2.26)

Finally, using (2.24)�(2.26) we deduce

Z
�Am

X
l2L0

j�l(z)j dm(z)

� C20

X
l2L0

m(Q(l)) � 4�C20(R
2
m+13 �R2

m�13) � C21(q)(Rm+1 �Rm):

Hence,
R
jzj�Rn

P
l2L0 j�l(z)jdm(z) � C20(q), and this with (2.21) yields that

Z
jzj�Rn

jV (z)jdm(z) � C22(q); n! +1: (2.27)

Now we construct the function f1 approximating u1.

Let Kn(z) = u1(z) �
P

Q(l)�U(0;Rn)�l(z); K(z) = u1(z) � V (z). By the

de�nition of �l(z), Kn 2 SH(D ) and

�Kn

��
U(0;Rn)

(z) =

nX
l=1

�
Æ(z � �

(1)
l ) + Æ(z � �

(2)
l )

�
;

where Æ(�) is the unit mass supported at u = 0. For jzj � Rn, j � N � n+14 as

in (2.19) we have

jKj(z)�K(z)j �
X

Q(l)�fj�j�RN+1g
j�l(z)j

� C23

Z
RN+1�j�j<1

dm(z)

jz � �j2 � C24
1�RN+1

RN+1 � jzj ! 0; N ! +1:

Therefore Kn(z) � K(z) on the compact sets in D as n ! +1, and �K

���
D

=P
l(Æ(z � �(1)l ) + Æ(z � �(2)l ). Hence, K(z) = log jf1(z)j, where f1 is analytic in D .

2.3. Approximation of u3

Let u3 be de�ned by (2.1),

N = 2
�
n(1=2; u3)=2

�
; �0 = inffr � 0 : n(r; u3) � Ng:
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We represent �u3 = �1 + �2, where �1 and �2 are measures such that

supp�1 � U(0; �0); supp�2 � U
�
0;

1

2

�
n U(0; �0);

�1
�
U
�
0;

1

2

��
= N; 0 � �2

�
U
�
0;

1

2

��
< 2:

Let v2(z) =
R

U(0; 1
2
)

log jz � �j d�2(�). Then, using the last estimate,

Z
D

jv2(z)j dm(z) �
Z

U(0;1=2)

Z
D

j log jz � �jj dm(z) d�2(�)

�
Z

U(0;1=2)

Z
U(�;2)

j log jz � �jj dm(z) d�2(�) � C25n
�1
2
; v2

�
� 2C25:

If N = 0, there remains nothing to prove. Otherwise, we have to approximate

v1(z) = u3(z)� v2(z) =

Z

U(0;�0)

log jz � �j d�1(�): (2.28)

In this connection we recall the question of Sodin (Question 2 in [9, p. 315]).

Given a Borel measure � we de�ne the logarithmic potential of � by the

equality

U�(z) =
Z

log jz � �j d�(�):

Question. Let � be a probability measure supported by the square Q = fz =
x + iy : jxj � 1

2 ; jyj � 1
2g. Is it possible to �nd a sequence of polynomials Pn,

degPn = n, such thatZZ
jxj�1
jyj�1

jnU�(z) � log jPn(z)jj dxdy = O(1) (n! +1)?

We should say that the solution is given essentially in [3], but not asserted.

Hence we prove the following

Proposition. Let � be a measure supported by the square Q, and �(Q) =
N 2 N. Then there is an absolute constant C and a polynomial PN such thatZZ

�

jU�(z) � log jPN (z)jj dxdy < C;

where � = fz = x+ iy : jxj � 1; jyj � 1g.
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P r o o f o f t h e p r o p o s i t i o n. As in the proof of Th. 1, if there

are points p 2 Q such that �(fpg) � 1, we represent � = � + ~� where for any

p 2 Q we have �(fpg) < 1, and ~� is a �nite (at most N summand) sum of the

Dirac measures. Then U~� = log
Q
k jz � pkj, so it remains to approximate U� .

By Lemma 2.4 [8] there exists a rotation to the system of orthogonal coordinates

such that if L is any line parallel to either of the coordinate axes, there is at most

one point p 2 L with �(fpg) > 0, while always �(L n fpg) = 0. After rotation the

support of new measure, which is still denoted by �, is contained in
p
2Q.

If ! is a probability measure supported on Q, then RR� jU!(z)jdm(z) is uni-
formly bounded. Therefore we can assume that N 2 2N.

By Theorem E, there exists a system (Pl; �l) of rectangles and measures 1 �
l �M� with the properties: 1) �l(Pl) = 2; 2) supp �l � Pl; 3)

P
l �l = �; 4) every

point s 2 Q belongs to the interiors of at most four rectangles Pl; 5) the ratio of

side lengths lays between 1/3 and 3.

Let

�l =
1

2

Z
Pl

�d�l(�) (2.29)

be the center of mass of Pl, 1 � l �M� .

We de�ne �
(1)
l , �

(2)
l as solutions of the system

8>>>>><
>>>>>:

�
(1)
l + �

(2)
l =

Z
Pl

�d�l(�);

(�
(1)
l )2 + (�

(2)
l )2 =

Z
Pl

�2d�l(�):

We have

j�(j)l � �lj � diamPl � Dl; j 2 f1; 2g;

max
�2Pl

j� � �
(j)
l j � 2Dl; j 2 f1; 2g; sup

�2Pl
j� � �lj � Dl: (2.30)

We write


(z) =
X
l

Z
Pl

�
log
���z � �

���� 1

2
log
���z � �

(1)
l

���� 1

2
log
���z � �

(2)
l

���� d�l(�)

�
X
l

Æl(z): (2.31)

Since we have rotated the system of coordinate, it is su�cient to prove thatR
U(0;

p
2)
j
(z)j dm(z) is bounded by an absolute constant.
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For � 2 Pl, z 62 Pl we de�ne �(�) = �l(�) = log
�
z � �

�
, where log(z � �) is an

arbitrary branch of Log(z � �) in z � Pl. Then �(�) is analytic in Pl.
We have

j�000(�)j � 2

j� � zj3 : (2.32)

As in subsection 2.2, we have

jÆl(z)j �
���Re

Z
Pl

�
�(�)� �(�

(1)
l )� 1

2
(�(�

(2)
l )� �(�

(1)
l )

�
d�l(�)

���

�
����Re

Z
Pl

�
1

2

�Z

�
(1)

l

�000(s)(� � s)2 ds� 1

4

�
(2)

lZ

�
(1)

l

�000(s)(� � s)2 ds

�
d�l(�)

����: (2.33)

If dist (z; Pl) > 10Dl, the last estimate and (2.32) yield

jÆl(z)j � 24D3
l max
s2El

1

js� zj3 �
24D3

l

j�(1)l � zj3
max
s2El

�
1 +

j�(1)l � sj
js� zj

�
� 103D3

l

j�(1)l � zj3
;

where El = U(Pl; 2Dl).
Then

Z

U(0;
p
2)nU(�(1)

l
;10Dl)

103D3
l

jz � �
(1)
l j3

dm(z) � 206�D3
l

2Z
10Dl

tdt

t3

� 21�D2
l � C26m(Pl):

On the other hand, by the de�nition of Æl(z)Z

U(�
(1)

l
;10Dl)

Æl(z)dm(z) =

Z

U(�
(1)

l
;10Dl)

Z
Pl

�
log
���z � �

10Dl

���

�1

2
log
���z � �

(1)
l

10Dl

���� 1

2
log
���z � �

(2)
l

10Dl

���� d�l(�)dm(z) � C27m(Pl):

From (2.31) and the latter estimates, it follows thatZ

U(0;
p
2)

j
(z)jdm(z) �
X
l

Z

U(0;
p
2)

Æl(z)dm(z)

� C28

X
l

m(Pl) � 4C28m(
p
2Q) = C29: (2.34)
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Thus, P(z) =Q
l(z � �(1)l )(z � �(2)l ) is a required polynomial. This completes the

proof of the proposition.

Finally, let f = f1P. By Lemma 1, (2.27), and (2.34) we have (n! +1)

Z
jzj�Rn

j log jf(z)j � u(z)jj dm(z) �
Z

jzj�Rn

(jK(z)� u1(z)jj+ ju2(z)j

+j log jPj � u3(z)j) dm(z) �
Z

jzj�Rn

(jV (z)j + j
(z)j) dm(z) + C10(q) � C30(q):

Fixing any q satisfying (2.2) we �nish the proof of Th. 1.

3. Uniform Approximation

In this section we prove some counterparts of results due to Yu. Lyubarskii

and Eu. Malinnikova [3]. We start with the counterparts of notions introduced in

[3], which re�ect regularity properties of measures.

De�nition 1. Let b : [0; 1)! (0;+1) be such that b(r) � 1� r,

b(r1) � b(r2) as 1� r1 � 1� r2; r1 " 1: (3.1)

A measure � on D admits a partition of slow variation with the function b if

there exist the integers N , p and the sequences (Q(l)) of subsets of D and (�(l)) of
measures with the following properties:

i) supp�(l) � Q(l), �(l)(Q(l)) = p;

ii) supp (��Pl �
(l)) � D , (��Pl �

(l))(D ) < +1;

iii) 1 � dist (0; Q(l)) � K(p) diamQ(l), and each z 2 D belongs to at most N

various Q(l)'s;

iv) for each l the set logQ(l) is a rectangle with the sides parallel to coordi-

nate axes, and the ratio of sides lengths lies between two positive constants

independent of l;

v) diamQ(l) � b(dist (Q(l); 0)).

R e ma r k 3.1. This is similar to [3], except we have introduced the parameter

p (p = 2 in [3]). Property iii) is adapted for D .
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De�nition 2. Given a function b satisfying (3.1), we say that a measure �

is locally regular with respect to (w.r.t.) b if

b(jzj)Z
0

�(U(z; t))

t
dt = O(1); r0 < jzj < 1;

for some constant r0 2 (0; 1).

Theorem 3. Let u 2 SH(D), b : [0; 1)! (0;+1) satisfy (3.1). Let �u admits

a partition of slow variation, assume that �u is locally regular w.r.t. b, and, with

p from above, that
1Z

0

bp�1(t)
(1� t)p

dt < +1: (3.2)

Then there exists an analytic function f in D such that 8" > 0 9r1 2 (0; 1)

log jf(z)j � u(z) = O(1); r1 < jzj < 1; z 62 E";

where E" = fz 2 D : dist (z; Zf ) � "b(jzj)g, and for some constant C > 0

log jf(z)j � u(z) < C; z 2 D : (3.3)

Moreover, Zf � U(supp�u;K1(p)b(jzj)), K1(p) is a positive constant, and

T (r; u) � T (r; log jf j) = O(1); r " 1: (3.4)

R e m a r k 3.2. The author does not know whether condition (3.2) is

necessary. But if b(t) = O((1 � t) log��(1 � t), � > 0, t " 1 (3.2) holds for

su�ciently large p. On the other hand, in view of v) the condition b(t) = O(1� t)
as t " 1 is natural.

P r o o f o f T h e o r e m 3. We follow [3] and also use the arguments and

notation from the proof of Th. 1.

Let ~� = �u�
P

l �
(l). Since

��� z��
1���z

���! 1 as jzj " 1 for �xed � 2 D , ~�(D ) < +1,

~u1(z) =

Z
D

log
��� z � �

1� ��z

��� d~�(�)

is a subharmonic function in D and j~u1(z)j < C for r1 < jzj < 1, r1 2 (0; 1). So

we can assume that �u =
P

l �
(l), where �(l) are from Def. 1.
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Fix a partition of slow variation. Instead of points �
(1)
l and �

(2)
l satisfying

(2.11) we de�ne �
(l)
1 , . . . , �

(l)
p from the system

8>>>><
>>>>:

�1 + � � �+ �p =
R
Q(l) �d�

(l)(�);

�21 + � � � + �2p =
R
Q(l) �

2d�(l)(�);
...

�
p
1 + � � �+ �

p
p =

R
Q(l) �

pd�(l)(�):

(3.5)

Lemma 3 is a modi�cation of the estimates in(2.12).

Lemma 3. Let � be a set in C , � is a measure on �, �(�) = p 2 N, diam� =
d. Then for any solution (�1; : : : ; �p) of (3.5) we have j�j � �0j � K1(p)d, where
K1(p) is a constant, �0 is the center of mass of �.

P r o o f o f L e m m a 3. Let �0 =
1
p

R
�
�d�(�) be the center of mass of �.

By induction, it is easy to prove that (3.5) is equivalent to the system

8>>>><
>>>>:

w1+ � � �+ wp = 0;

w2
1+ � � �+ w2

p = J2;
...

w
p
1+ � � �+ w

p
p = Jp;

(3.6)

where wk = �k � �0, Jk =
R
�
(� � �0)

k d�(�), 1 � k � p. Note that

jJkj �
Z
�

j� � �0jk d�(�) � pdk:

From algebra it is well known that the symmetric polynomials

X
1�i1<���<ik�m

wi1 � � �wik ;

1 � k � m, can be obtained from the polynomials
Pm

j=1w
k
j using only �nite

number of operations of addition and multiplication. Therefore (3.6) yields

8>>>>><
>>>>>:

w1 + � � �+ wp = 0;P
1�i1<i2�p

wi1wi2 = b2;

...

w1 � � �wp = bp;
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where bk =
P

l alk(J1)
s
(k)

1l � � � (Jm)s
(k)

ml , alk = alk(p), s
(k)
jl are nonnegative integers,

and
Pp

j=1 s
(k)
jl j = k. The last equality follows from homogeneousity. Hence, there

exists a constant K1(p) � 2 such that jbkj � K1(p)d
k, 1 � k � p. By Vieta's

formulas ([11, ��51, 52]) wj , 1 � j � p, satisfy the equation

wp + b2w
p�2 � b3w

p�3 + � � �+ (�1)pbp = 0: (3.7)

For jwj = K1(p)d we have

jwp + b2w
p�2 � b3w

p�3 + � � �+ (�1)pbpj � K1(p)(d
2jwjp�2 + � � � + dp)

= K1(p)d
p(Kp�2

1 +K
p�1
1 + � � �+ 1) < 2Kp�1

1 (p)dp � K
p
1 (p)d

p = jwjp:
By Rouch�e's theorem all p roots of (3.7) lay in the disk jwj � K1(p)d, i.e., j�j �
�0j � K1(p)d. Consequently, dist (�j ;�) � K1(p)d.

Applying Lem. 3 to Q(l) we obtain that j�(j)l ��lj � K1(p)dl, 1 � j � p, where

�l =
1
p

R
Q(l) �d�

(l)(�):
Consider

V (z) =
X
l

jl(z)
def
=
X
l

Z

Q(l)

�
log
��� z � �

1� �z�

���� 1

p

pX
j=1

log
��� z � �

(j)
l

1� �z�
(j)
l

����d�(l)(�):

For Rn = 1� 2�n, z 2 Am, m is �xed, we de�ne the sets of indices L+, L� and

L0 as in the proof of Th. 1.

The estimate of
P
l2L�

jl(z) repeats that of
P
l2L�

�l(z), so

X
l2L�

jjl(z)j � C31: (3.8)

Following [3], we estimate
P

l2L0 jl(z). Let bm = b(Rm). Note that dl � bm for

l 2 L0 by condition v). As in (2.18), we have

jjl(z)j � C32d
3
l max
s2U(Q(l);K1(p)dl)

js� zj�3 � C 0
32

d3l

j�(1)l � zj3
; (3.9)

provided that dist (z;Q(l)) � 3K1(p)dl. Then����
X
l2L0

Q(l)\U(z;3K1(p)dl)=?

jl(z)

���� � C32

X
l2L0

d3l

j�(1)l � zj3

� C33bm

Z
jz��j>C34bm

dm(�)

jz � �j3 � C35
bm

bm
= C35: (3.10)

232 Journal of Mathematical Physics, Analysis, Geometry, 2008, vol. 4, No. 2



Approximation of Subharmonic Functions in the Unit Disk

Let now l be such that Q(l) \ U(z; 3K1(p)dl) 6= ?. Since dl � bm, the number of

these l is bounded uniformly in l. For z 62 E" we have (1 � k � p)

log jz � �
(k)
l j = log bm + log

jz � �
(k)
l j

bm
= log b(jzj) +O(1): (3.11)

Therefore

jl(z) =

Z

Q(l)

�
log jz � �j � 1

p

pX
k=1

log jz � �
(k)
l j
�
d�(l)(�)

�1

p

Z

Q(l)

log
j1� �z�jpQp

k=1 j1� �z�
(k)
l j

d�(l)(�) = J3 + J4:

As in the proof of the proposition (see the estimate of I2), one can show that

j1�z � �j � 1� jzj � j1�z � �
(j)
l j. Hence, we have J4 = O(1).

Let �z(t) = �(U(z; t)). Further, using (3.11),

J3 =

Z

Q(l)nU(z;b(jzj))

log jz � �jd�(l)(�) +
Z

U(z;b(jzj))

log jz � �j d�(l)(�)

�p log b(jzj) +O(1) = �(l)(Q(l) n U(z; b(jzj)) log b(jzj) +O(1)

+

b(jzj)Z
0

log t d�(l)z (t)� p log b(jzj) = �(l)(Q(l) n U(z; b(jzj)) log b(jzj)

+O(1) + �(l)(U(z; b(jzj)) log b(jzj)�
b(jzj)Z
0

�
(l)
z (t)

t
dt

�p log b(jzj) = �
b(jzj)Z
0

�
(l)
z (t)

t
dt+O(1) = O(1) (3.12)

by the regularity of �u w.r.t b(t). Together with (3.10) it yields

X
l2L0

jjl(z)j = O(1); z 62 E": (3.13)

Now we estimate
P

l2L+ jl(z). Integration by parts gives us

L(�)�L(�(1)l ) =
mX
k=1

1

k!
L(k)(�

(1)
l )(���(1)l )k+

1

m!

�Z

�
(1)

l

L(m+1)(s)(��s)m ds; (3.14)
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where L(�) = log z��
1��z�

,

jL(k)(�)j � 2(k � 1)!

jz � �jk : (3.15)

The de�nition of �
(k)
l , 1 � k � p, allows us to cancel the �rst p moments. There-

fore, similarly to (2.18) and (2.22), we have

jjl(z)j � C28d
p+1
l max

s2U(Q(l);K1(p)dl)

js� zj�p�1: (3.16)

Then (z 2 Am)
X
l2L+

jjl(z)j � C28

X
l2L+

d
p+1
l

jz � �
(1)
l jp+1

� C29

X
l2L+

d
p�1
l

Z

Q(l)

dm(z)

jz � �jp+1

� C30(N; p; q)
X

n�m�12
bp�1(Rn)

Z
�An

dm(z)

jz � �jp+1
� C31

Z
j�j�Rm�12

bp�1(j�j)dm(�)

jz � �jp+1

� C32

Rm�12Z
0

bp�1(�)
(jzj � �)p

d� � C33

1Z
0

b(�)p�1

(1� �)p
d� < +1:

Using the latter inequality, (3.13) and (3.8) we obtain jV (z)j = O(1) for z 62 E".
The construction of f is similar to that of Th. 1. It remains to prove (3.3) for

z 2 E".
By (3.10) it is su�cient to consider l with Q(l) \ U(z; 3K1(p)dl) 6= ?. For all

su�ciently large l 2 L0 we have

���
Z

Q(l)

log jz � �jd�(l)(�)
��� �

Z
U(z;4K1(p)dl)

log
1

jz � �jd�
(l)(�)

�
4K1(p)dlZ

0

log
1

t
d�(l)z (t) = log

1

4K1(p)dl
�(l)z (4K1(p)dl) +

4K1(p)dlZ
0

�
(l)
z (t)

t
dt = O(1):

(3.17)

Then we have

log jf(z)j � u(z) = O(1) +
X
l2L0

� pX
k=1

log jz � �
(k)
l j �

Z
Q(l)

log jz � �jd�(l)(�)
�
< C;

because jz � �
(j)
l j = O(b(jzj)) < 1 for l � l0 and (3.3) is proved.
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Finally, in order to prove (3.4) we note that for z 2 E", in view of (3.8), (3.10),

(3.17), we have

log jf(z)j � u(z) =

mX
j=1

log jz � �j j+O(1);

where �j 2 Zf , and m are uniformly bounded. Then T (r; u� log jf j) is bounded,
and consequently

T (r; u) = T (r; log jf j) + T (r; u� log jf j) +O(1) = T (r; log jf j) +O(1):

P r o o f o f T h e o r e m 2. Let �j = �u

���
[
j ]

. By the assumptions of the

theorem we have �u =
Pm

j=1 �j . We can write u =
Pm

j=1 uj, where uj 2 SH(D ),
and �uj = �j . Therefore, it is su�cient to approximate each uj, 1 � j � m,

separately.

We write R(r) = (1�r)�1 andW (R) = R�(R). Then �j(U(0; r)) = �jW (R(r)).
Put b(t) = (1 � t)=W (R(r)). Then condition (3.2) is satis�ed. We are going to

prove that �j admits a partition of slow variation and is locally regular w.r.t. b(t).
We de�ne a sequence (rn) from the relation �jW (R(rn)) = 2n, n 2 N. Then,

using the theorem on the inverse function and the properties of proximate order

[7, Ch. 1, �12], we have (r0 2 (rn; rn+1))

rn+1 � rn =
2(1 � r0)2

�jW 0(R(r0))
=

(2 + o(1))R(r0)(1 � r)02

�j�W (R(r0))
=

2 + o(1)

�j�
b(r0) � b(rn):

Let Q(n) = fz : rn � jzj � rn+1; '
�
n � � � '+

n g, where '�n = �j(rn) �K(rn+1 �
rn), '

+
n = �j(rn) +K(rn+1 � rn). Since j�0j(t)j � K, we have �j(r) 2 ['�n ; '

+
n ],

rn � r � rn+1. Let �
(n) = �j

���
Q(n)

. Then, by the de�nition of rn, �
(n)(Q(n)) = 2.

Therefore conditions i) and iv) in the de�nition of partition of slow growth are

satis�ed. Condition ii) is trivial. Since diamQ(n) � b(rn) � (1�rn)1+�(rn), � > 0,
conditions iii) and v) are valid. Therefore, � admits a partition of slow growth

w.r.t. b, N = p = 2.
Finally, we check the local regularity of �j w.r.t. b(t). For jzj = r, � � b(r)

we have

�j(U(z; �)) � �jW (R(r + �))��jW (R(r � �)) =W 0(R(r�))
2��j

(1 � r�)2

= (2 + o(1))�j��
W (R(r�))
1� r�

� 3���j

b(r)
:

Then
R b(r)
0

�(U(z;�))
� d� � 3��j , as required.
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Applying Th. 3 we obtain (1.8), (1.9), and (1.10) for some analytic function

fj in D .

Finally, we de�ne f =
Qm
j=1 fj.

The theorem is proved.
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