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We prove that if u is a subharmonic function in D = {|z| < 1}, then
there exists an absolute constant C' and an analytic function f in D such
that [ u(z) —log|f(2)||dm(z) < C, where m denotes the plane Lebesgue
measure. We also (following the arguments of Lyubarskii and Malinnikova)
answer Sodin’s question, namely, we show that the logarithmic potential of
measure p supported in a square @, with u(Q) being an integer N, admits
approximations by the subharmonic function log|P(z)|, where P is a poly-
nomial with fQ Uy (2) — log|P(2)||dedy = O(1), independent of N and p.
We also consider uniform approximations.
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1. Introduction

We use the standard notions of subharmonic function theory [1]. Let U(E,t) =

{¢eC:dist(¢,F) <t}, ECC, t>0, where dist (2, F) def infeep |z — (|, and

U(z,t) = U({z},t) for z € C. A class of subharmonic functions in a domain

G C C is denoted by SH(G). For a subharmonic function v € SH(U(0, R)),

0 < R < 400, we write B(r,u) = max{u(z) : |z| = r}, 0 < r < R and de-

fine the order p[u] by plu] = limsuplog B(r,u)/logr if R = oo and by ofu] =
r—+400

1
R—r

lim sup log B(r, u)/ log if R < oo.

r—R
Let also u, denote the Riesz measure associated with the subharmonic func-

tion u, n(r,u) = pu(U(0,7)), let m be the planar Lebesgue measure and [ be
the Lebesgue measure on the positive ray. For an analytic function f in D we
write Zy = {# € D : f(z) = 0}. The symbol C(-) with indices stands for some
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positive constants depending only on the values in brackets. We write ¢ < b
if Cia < b < Cya for some positive constants C; and Cy, and a(r) ~ b(r) if
lim, ,ga(r)/b(r) = 1.

An important result was proved by R.S. Yulmukhametov [2|. For any function
u € SH(C) of order p € (0,400), and o > p, there exists an entire function f and
a set B, C C such that

|u(z) —log|f(2)|] < Cla)loglz|, 2 — o0, z & Ea, (1.1)

and E, can be covered by a family of disks U(zj,t;), j € N, with Z|zj|>Rtj =
O(RP~®), (R — +00).

If w € SH(ID), a counterpart of (1.1) holds with log 1+‘Z‘ instead of log |z| and
an appropriate choice of E,,.

From the recent result by Yu. Lyubarskii and Eu. Malinnikova [3] it follows
that for L, approximation relative to planar measure, we may drop the assumption
that u has a finite order of growth and obtain sharp estimates.

Theorem A ([3]). Let u € SH(C). Then, for each q > 1/2, there exists
Ry > 0 and an entire function f such that

1

TR2
|z|<R

|u(z) —log | f(2)||dm(z) < qlog R, R > Ry. (1.2)

An example constructed in [3] shows that we cannot take ¢ < 1/2 in estimate
(1.2). The case ¢ = 1/2 remains open.

The following theorem complements this result.

Let ® be a class of slowly growing functions ¢: [1,4+00) — (1, +00) (in par-
ticular, 1(2r) ~ (r) as r — 400).

Theorem B ([4]). Let u € SH(C), u = py. If for some 1p € ® there exists a
constant Ry satisfying the condition

(VR> Ry) : u({z: R < |z| < RY(R)}) > 1, (1.3)
then there exists an entire function f such that (R > Ry)
[ 1)~ 1015 dim(z) = O(R?0g (). (1.4
|z|]<R

Remark 1.1. In the case ¢)(r) = ¢ > 1 we obtain Th. 1 [3].
The following example and Th. C show (see [4] for details) that estimate (1.4)
is sharp in the class of subharmonic functions satisfying (1.3).
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For ¢ € ®, let
u(z) = up(z Zlog‘

where g = 2, 141 = (), K € NU{0}. Thus, p, satisfies condition (1.3)
with 1 (z) = ©3(z).

Theorem C. Let ¢ € ® be such that (r) — +oo (r — +00). There exists
no entire function f for which
|uy(2) —log | f(2)]| dm(z) = o(R?log ¢(R)), R — oo.

|z|<R

A further question arises naturally: Are there the counterparts of Ths. A and
B for subharmonic functions in the unit disk? We have the following theorem.

Theorem 1. Let v € SH(D). There exists an absolute constant C' and an
analytic function f in D such that

/‘u( —log|f(z ‘dm <C. (1.5)
D
For a measurable set E C [0,1) we define the density
I(ENIR,1))
D E = lim ——— 7,
! R11 1—-R

Corollary 1. Let u € SH(D), € > 0. There exists an analytic function f in D
and E C [0,1), D1E < ¢, such that

2w

/‘u( %) —log | f(re®) |do =0 <1%7")’ rtl,r ¢ E. (1.6)
0

The relationship (1.6) is equivalent to the condition
T(Tau) —T(T,10g|f|) :O((l_r)il)a TTLT%E’

where T'(r,v) is the Nevanlinna characteristic of a subharmonic function v. The
author does not know whether (1.6) is the best possible.

Remark 1.2. No restrictions on the Riesz measure p, or the growth of u
are required in Th. 1.

Remark 1.3. Itisclear that (1.5) is sharp in the class SH(D), but can be
improved under growth restrictions.
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Theorem D (M.O. Hirnyk [5]). Let u € SH(D), ofu] < +00. Then there
exists an analytic function f in D such that

/‘ure —log | f(re' Hd@— (log2ﬁ>, rtl.

Theorem 1 does not allow to conclude that

u(z) —log|f(2)]=0(1), zeD\E (1.7)

for any “small” set F.

Sufficient conditions for (1.7) in the complex plane were obtained in [3] by
using the so-called notion of a locally regular measure admitting a partition of
slow variation.

We also prove a counterpart of Th. 3' of [3] using a similar concept. The cor-

responding Th. 3 will be formulated in Sect. 3. Here we formulate an application
of Th. 3.

Theorem 2. Let v; = (z = zj(t) : t € [0,1]), 1 < 5 < m, be the smooth
Jordan curves in U(0,1) such that argz;(t) = 6;(|z;(t)]) = 0;(r), |z;(1)] = 1,
05(r)| < K forro <r <1 and some constants ro € (0, ), > 0 1<j<m.

1
Let u € SH(D), supp pr, C U]:1['Yj]f pa [yl N [v]) =0, 5

A.
ol (U0,r) = —ZL—,
o [w]( 0.m) (1—r)o)

where Aj is a positive constant, o(r) = p(t=), p(R) is a prozimate order [17],
p(R) = o >0 as R — +0oo0.
Then there exists an analytic function f such that for all e >0

log |f(2)] = u(z) = O(1), (1.8)
2 B. ={CeD:dist(¢, Zs) < e(1—|¢])' )}, where
log |f(2)] = u(z) < C, (1.9)

for some C > 0 and all z € D. Moreover,

zZpc |J U201 -1t
¢cel; ]

and

T(r,u)—T(r,f)=0(), r11. (1.10)

214 Journal of Mathematical Physics, Analysis, Geometry, 2008, vol. 4, No. 2



Approximation of Subharmonic Functions in the Unit Disk

Remark 14. Obviously, we cannot obtain a lower estimate for the
left-hand side of (1.9) for all z, because it equals —oco on Z;.

The theorems similar to Th. 2 are proved in [6, Ch.10, Ths. 10.16, 10.20]. The
difference is that in [6] only the weaker estimates are obtained for approximation
in a more general settings.

2. Proof of Theorem 1

2.1. Preliminaries

Let u € SH(D). Then the Riesz measure p,, is finite on the compact subsets
of D. In order to apply a partition theorem (Th. E) we have to modify the
Riesz measure. By subtracting an integer-valued discrete measure f from p,,
we may arrange that v({p}) = (uu — @)({p}) < 1 for any point p € D. The
measure ji corresponds to the zeros of an entire function g. Thus we can consider
@ = u — log|g|, ps = v. According to Lem. 1 [4], in any neighborhood of the
origin there exists a point zy with the following properties:

a) on each line L, going through zy there is at most one point (, such that

v({¢a}) >0, while v(Ly \ {¢a}) = 0;

b) on each circle K, with center 2y there exists at most one point ¢, such that
v({¢p}) > 0, while v(K, \ {¢,}) = 0.

As it follows from the proof of Lem. 1 [4], the set of points zy not satisfying
conditions a) and b) has a planar measure zero. A similar assertion holds for
the polar set u(zp) = —oo [1, Ch.5.9, Th. 5.32]. Therefore, we can assume that
properties a), b) hold, and u(zy) # —oc.

Then consider the subharmonic function ug(z) = u ( 12325()) = u(w(z)), up(0) =

) _ 2
u(zp). Since |w'(2)] = ﬁ—‘zZ;JIQ’

we have [|Jw'(z)| — 1| < 3|zo] for |z] < 1/2.
The Jacobian of the transformation w(z) is |w'(2)|?,
of variables does not change relation (1.5).

Let

consequently, this change

w() = [ logl =m0 (2.1)
U(0,1/2)

The subharmonic function u(z) — us(z) is harmonic in U(0,1/2).
Let ¢ € (0,1) be such that

12 ‘
> ¢ > 1L (2.2)
7j=1
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We define (n € {0,1,...})

n 2w
Bo=1="/2 An={C: Ru <[¢ < Rus1}, M= Malg) = [Tﬂ]
log =%
2m 2n(m + 1)
= : < _ < < — 1.
Anm &eAn_Mz_m%<< i } 0<m< M, —1

= ,un}n + u% 277. such that:

Represent N

1) Supp,Uzgzj,)m C Zn,ma JE {172}7

i) i (Apm) € 274, 0 < pi2h (A m) < 2.

Let
M,—1 ‘
ud =" pwdh, => u), je{1,2}
m=0 n
Property ii) implies
— 13
(2)(4,) < . n— +o0, 2.3
as follows from the asymptotic equality
Rn+1
log ~(1-¢)(1—=R,), n— +oo, (2.4)
and the definition of M,,.
Let )
1—
us(z) :/ ‘E( |C| )‘d (2.5)

D

where E(w,p) = (1 — w)exp{w + w?/2 +--- +w?/p}, p € N is the Weierstrass
primary factor.

Lemma 1. Let up € SH(D), and

T(r,uz) = O(log2 1—:), 1, /|u2(z)| dm(z) < Ci(q).
D
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Proof of Lemmal. The following estimates for log |E(w, p)| are well
known (cf. [7, Ch.1, §4, Lem. 2|, [1, Ch.4.1, Lem. 4.2|):

2(1 = fwl)’ ’ (2.6)
)|

First we prove the convergence of integral in (2.5). For fixed Ry, let |z| < R,,. We
choose p such that ¢” < 1/4. Then for |(| > Ry, we have

L= [¢l* 20 -1¢) _ 201~ Rusp) _ 1
1—Cz| — 1-1]2| = 1-Ry, 2"

Hence, using the first estimate in (2.6), (2.3) and the definition of R,,, we obtain

[ le(Elmeoz [ (e

‘C‘>Rn+p ‘C‘ZRTH—?
52 >
~(2
<= S (- Ry [0 < g 3 (1R
k=n+p T q z k=n+p
Ay

__52(1-Ruy) _ Oa)
(= @?(—|2)? = T- Ry

Thus, ug is represented by the integral of subharmonic function log|E| of z, and
the integral converges uniformly on compact subsets in D, and so us € SH(D).
Since 1 — |¢|> < 3/4 for ¢ € supp i), using (2.6) and (2.3) we have

|u(0)] < / log |[E(1 — [¢|% DI da® (¢) < / 2(1 —[¢1%)2da? ()

D
> 2 1~ (2) 104
<8 [ (1= [E)*da?(¢) < 1—2(1_Rk) = C3(q). (2.7)
k
Let us estimate T'(r, u2) def = 027r uy (re??) dd for r < Ry, where u* = max{u, 0}.
Note that for |(| < Ry,42, |2| < R, we have hﬂg; < 2. Thus

1 — 2 1 — 2
log‘E( ¢l ,1)‘3 12¢ L= 1<
1—(z 11— (2|
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in this case. Using the latter estimate, (2.6), (2.3), and the lemma [10, Ch. 5.10,
p. 226|, we get

T(r,us) < —/(%/12 |1_C|flw| dp (<)>d9
( Z / |1_§|flze|2 dp (C))dee
(ni/ a0 3 o)

kn+2
n+1 00
1—-R
< Cs(q (Zlogl_ + Z 1_:)

k=n+2

1 1
< Cs(q)nlog T < Cy(q) log? —

1
Finally, by the First main theorem for subharmonic functions |1, Ch. 3.9]

= T(r, u2) - / (t U2)dt - (0) < T(’f’, U2) + 03(q).

Therefore f027r lug(re??)|df < 4nT(r,us) + Cs(q).
Consequently,

/ jun(2)] dim(z) < 4 / T(r, us) dr + Cs(q)

Lemma 1 is proved. [

2.2. Approximation of ji;

The following theorem plays a key role in approximation of w.
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Theorem E. Let i1 be a measure in R? with compact support, supp i C I, and
u(IT) € N, where I1 is a rectangle with the ratio of side lengths ly > 1. Suppose,
in addition, that for any line L, parallel to a side of 11, there is at most one point
p € L such that

0 < u({p})(< 1) while always u(L\ {p}) =0, (2.8)

Then there exists a system of rectangles Iy C II with sides parallel to the sides of
I1, and measures py with the following properties:

1) supp p C I;
3) the interiors of the convex hulls of the supports of uy are pairwise disjoint;

4) the ratio of the side lengths of rectangles 11y lies in the interval [1/1,1], where
I = max{ly, 3};

5) each point of the plane belongs to the interiors of at most 4 rectangles 1.

Theorem E was proved by R.S. Yulmukhametov |2, Th. 1| for absolutely con-
tinuous measures (i.e., v such that m(F) = 0 = v(E) = 0) and lp = 1. In this
case condition (2.8) is fulfilled automatically. In [8, Th. 2.1] D. Drasin showed
that Yulmukhametov’s proof works if the condition of continuity is replaced by
condition (2.8). We can drop condition (2.8) rotating the initial square [8]. One
can also consider Th. E as a formal consequence of Th. 3 [4]. Here [y plays role
for a finite set of rectangles corresponding to small k’s, but in [4] it plays the
principal role in the proof.

Remark 2.1. Inthe proof of Th. E [8] the rectangles II; are obtained by
splitting the given rectangles, starting with II, into smaller ones in the following
way. The length of the smaller side of initial rectangle coincides with that of the
side of the rectangle obtained in the first generation, and the length of the other
side of new rectangle is between one third and two thirds of the length of the
other side of initial rectangle. Thus we can start with a rectangle instead of a
square and [ = max{ly, 3}.

Let ui(z) = u(z) — ua(z) — us(2). Then py, = a0, pin(Anm) € 271,

n€Zy, 0<m<I M, —1.
Let

Pn,m = 1ngn,m

. 2mm 2r(m + 1
:{s:a+zt:loanSagloanH, M, <t< (Mn )}
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According to (2.4) the ratio of the sides of P, is

log —% R”“
=1, n— oo (2.9)
%A——Tﬁm]
def (1) s . (1
Let dvpm(s) = dpnm(€®), s € Pym, (i. e, Unm(S) = pn,m(exp S) for every

Borel set S € C). By our assumptions the conditions of Th. E are satisfied for
IT = P, and p = vy /2, and all admissible n,m. By Theorem E there exists a
system (Ppgm, Vnmk) of rectangles and measures, k < Ny, 0 < m < M,, — 1 with
the properties: 1) Vnmk(Pumk) = 1; 2) supp vnmk C Pumi; 3) 2Ek Vnmk = Vn,m;
4) every point s such that Res < 0, 0 < Im s < 27 belongs to the interiors of at
most four rectangles Py,,,x; 5) the ratio of the side lengths lies between two positive
constants. Indexing the new system (Pppk, 2Vpmi) With the natural numbers, we
obtain a system (P, 1)) with v (PV) =2, supp v c PO, etc.

Let the measure u(!) defined on I be such that du()(ef) e g )(s), Res < 0,
0<Ims < 21, QW) = exp PV, Let

le/wu&) (2.10)
QM)

be the center of mass of Q¥ [ € N.
We define Cl(l), Cl(2) as solutions of the system

Cl(l) + Cl(2) = / ¢dp(¢),

QM)
(2.11)
€7+ = [ o)
0
From (2.11) and (2.10) it follows that (see [3, 4] or Lem. 3 below)
(7 =l < diam QU = dy, € {1,2}.
Consequently, we obtain
max | — Cl | <2d;, j€{1,2}, sup | —¢|<d. (2.12)
eQ® e
We write
(1) (2)
) def 1 =G |1 Z—G )
Aulz) / (1og] = zC 2 g‘l —zC}(”‘ R e ) an),
0
2) Y A2)
l
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Fix a sufficiently large m (in particular, m > 13) and z € A,,. Let LT be the
set of I’s such that Q) C U(0, Ryu_13), and £~ the set of I’s with Q) ¢ {¢ :
Rpy13 <[¢] <1}, LY =N\ (L7 UL).

Lemma 2. There exists [* € N such that (1, (s € U(Q(l),2dl), le LTuL,
[ > 1" imply

1
E'Z —Cof <z — (1| < 16|z — (ol

Proof of Lemma?2 First,let [ € LT, ie., z € Ay, QW C A,
p < m—13. In view of (2.9), Q) = exp PU) is “almost a square”. More precisely,
there exists I* € N such that for all [ > [*

3 —
diam QY = d) < S(Rp1 — RBy), QY C 4,
Since (1, (o € U(QW, 2d;), we have
Rp - 3(Rp+1 - Rp) < |C2| < Rp+1 + 3(Rp+1 - Rp)a (2-13)
15
2= Gl 2 |z = Gl =[G = Cil 2 [z = G = 5di 2 |z = o = - (Bpi1 — By).
(2.14)
On the other hand, by the choice of ¢ (see (2.2)) and (2.13)
|2 = Co| 2 Ry — Rp11 > Rpi13 — Ry — 3(Rpy1 — Ry)
12
= Z(Rp+s+1 - RZH‘S) - 3(Rp+1 - Rp)
s=1
12
= (Z q - 3) (Bpt1 — Rp) > 8(Rpy1 — Rp).
s=1
The latter inequality and (2.14) yield
15 15 1
|2 = Gl 2 |z = ol = S (Bpi1 = Bp) > |2 = ol = qele = ol = 2 — Gl

Forl € £7, QW C {Ryi13 < |¢| < 1} we have p > m + 13, and the inequality
(2.14) still holds.
Similarly, by the choice of ¢ and (2.13)

|z — (2 > Ry 3—Rmi1 2 Ry 53— Rp 122> 9q4(Rp+1 - Rp) > S(Rp+1 - Rp)a

that together with (2.14) implies the required inequality in this case. Lemma 2 is
proved. [
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Let [ € L~ U LY. For ¢ € QW, we define L(¢) = L;(¢) =
logw is an arbitrary branch of Logw in w(QW), w(¢) = T—7- Then L(¢) is

analytic in Q). We will use the following identities:

¢ ¢
() - (¢ = / '(s)ds = L'(CV) (¢ — ¢V) + / L (s)(C — s) ds
Cl(l) Cl(l)
1 1 :
R (S R A (e (e R / L()(¢ =)’ ds. (2.15)
Cl(l)

Elementary geometric arguments show that |% —(|I7t < |z =] for z,¢ € D
Since L'({) = é + I_L;g, we have

!/ n 2 lll
01 =g FO1< = IE"Q1< =5

Now we estimate |A;(z)| for [ € LT U L™. By the definitions of L(¢), A;(z),
(2.15) and (2.11) we have

@) = Re [ (20 - 2@ - 5267 - 1) dn (<)
QW

e [ (L’(g‘”)(c—é(q‘”+<§2’))
Q)
¢ ¢ 41(2)
+ [ - sas— 5 [ 10?9 ) an o)

gl(l) Cl(l)

(2.16)

4(2)

¢ !
-|Re / ( / L”(s)((’—s)ds—% / L"(s)(g§2>—s)ds> WO @)
QW ¢ (@
Using (2.17), (2.16) and (2.12), we obtain

|<//2|C | ds| dpuC //QIQ —j||2|d8| D(¢)

QM ¢ Q(l) ¢

1
< 12d? max ——, (2.18)
seB; |s — z|?
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where By = U(Q®,2d,;). Applying Lem. 2, we have (z € A4,,)

dm(z)
< <
Z|Al ) 12Zdlrsréaéx|8_z|2_011z / PEE

leL— ZE‘C'_Q(Z)
1
dm(z d
<4Ch / ﬁ < Ci2 / _p| | < Ci3(q). (2.19)
Ry p13<|¢I<1 Rmt13
Similarly,
Z |Al | <12 Z dl rré%x |S _z|2 <4Ch Z / |Z — C|2
lect ect 1Lt i< s
Ry—13 p )
1)
< Ch2 / —— < Cha(q) log : 2.20
| R =@l 220
Hence
> 1Auz)|dm(z) < Cis(q)- (2.21)

|Z|§Rn lectuL—

It remains to estimate f|z|<Rn Y ieeo |Ai(2)]dm(z). Here we follow the ar-

guments from [3, e-g.]. If dist (z, Q) > 10d;, similarly to (2.17), from (2.15),
(2.11), (2.16) and (2.12) we deduce

IAAAP{R6/<U@fU@—%&f”+d%)

QM
L”(C(l)) (C(l))2+(C(2))2
+ = (¢ - B Y + (P - 20)
¢ 45(2)
1 1
v3 [ 00€ -9t = g [ 26 - 9%as) auo)
gl(l) gl(l)
¢ 51(2)
1 1
“|re [ (5 [ e —sras= 1 [ e -2 ds) o)
Qu c
1 6d} ISR 26d;
<6%”3§w—zP‘|¢”—43%&(1 I&—d) i P
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Since Ly depends only on m when z € A,,, we have

/Zml N <SS ([ [ )iaalan)

leLo leLo
© S AU 0d) U 10d)

gz( / %dm(m [ aElme). e

z2—C
LY A\ 10d) =G (", 10dy)

For the first sum we obtain

2
1 tdt
| 3 t

I YRR Y Cl et aog
<6r Y df <Cig Y m(QY). (2.24)
leco leco

We now estimate the second sum. By the definition of A(z)

(1) (2)
_ C_l At B Y il 0)
Al(z)_/( 2 ‘ 104, ‘ zlog‘ 104, Dd’“‘ (©)
QM)
I -1 —7
— [ (1ol =22 - 510811 27| - J1oglt — 2¢7) au(Q) = 1 + I

0
The integral [|I;|dm(z) is estimated in [3, g.|, [4, p. 232]. We have

/ L] dm(z) < Crrm(QW). (2.25)

UM, 10d;)

To estimate |I3| we note that for [ sufficiently large, |z — (| < 15d;, ¢ €
U(QWY,2d)), z € D, we have |argz — arg (| < 16d; < 16(1 — |z|)| by the choice
of ¢q. Hence,

1 1
- =< —1+1=K+ K- QMBI < O (1 - |2]).

Thus, |1/z — (| < 1 — |2|. Therefore
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Thus,
[ Blant) < Culgm@®) (2.26)
U(¢”,10d;)

Finally, using (2.24)-(2.26) we deduce

/ S 1Au(2) | dim(2)

i 0
i lec

< Coo Y m(QW) < 4rCoo(Rpi13 — Rpy_13) < Co1(q)(Rmt1 — Rin).
leco

Hence, f|z|<Rn Yiero [Ai(z)|dm(z) < Co(q), and this with (2.21) yields that

/ [V (2)|dm(z) < Caa(q),n — +oo. (2.27)

|2|<Rn

Now we construct the function fi; approximating u.
Let Kn(z) = ui(z) — ZQ(’)CW Ai(z), K(z) = ui(z) — V(z). By the
definition of A(z), K, € SH(D) and

n

1 lpom,y () = 2 (002 =) + 62 = ¢)),

=1

where §({) is the unit mass supported at u = 0. For |z2| < R, 7 > N >n+ 14 as
in (2.19) we have

|Kj(z) — K(2)| < > |Au(2)]|
QWC{[¢I>RN41}

1 —RBy41

Ryy1— 2]

dm(z
< Oy / ﬁ < Cyu
Ry+1<[¢I<1

-0, N — 4o0.

Therefore K,(2) = K(z) on the compact sets in D as n — +o0, and ux -
3,602 — (M) +6(2 — ¢P)). Hence, K(z) = log |f1(z)|, where f1 is analytic in D.

2.3. Approximation of ug

Let u3 be defined by (2.1),

N =2[n(1/2,u3)/2], po=inf{r >0:n(r,us) > N}.
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We represent ji,, = ' + p?, where u! and p? are measures such that

__ T
suppp' C U(0,pg), suppp® C U(O, 5) \ U(0, po),

1 1
i (ooz))=m 0<i(vfog)) <2
Let v2(z) = [ logl|z — (| du?(¢). Then, using the last estimate,

U(0,%)

[w@ame < [ /Iloglz—élldm()du()

D U(0,1/2)
/ / |log |z — (|| dm(z) duQ(C) < CQ5TL(§,1)2) < 2C5s.
U(0,1/2) U(¢,2)

If N =0, there remains nothing to prove. Otherwise, we have to approximate

n(e) =z —oa(s) = [ logle = it Q). (2.25)
U(0,00)

In this connection we recall the question of Sodin (Question 2 in [9, p. 315]).
Given a Borel measure p we define the logarithmic potential of p by the
equality

(2) = [ 1o |2 — <[ du(©)

Question. Let w be a probability measure supported by the square Q = {z =
z+iy: |z < 5 |y| < } Is it possible to find a sequence of polynomials Py,
deg P, = n, such that

/ |nl,(z) —log |Pp(2)|| dzdy = O(1) (n — +00)?

] <1
ly|<1

We should say that the solution is given essentially in [3], but not asserted.
Hence we prove the following

Proposition. Let y be a measure supported by the square Q, and u(Q) =
N € N. Then there is an absolute constant C' and a polynomial Py such that

/ Uy (=) — log [Py (2)] dedy < C,

where 2 ={z=z+1iy: |z|] <1,|y| <1}
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Proof of the proposition. Asin the proof of Th. 1, if there
are points p € Q such that u({p}) > 1, we represent u = v + v where for any
p € Q we have v({p}) < 1, and 7 is a finite (at most N summand) sum of the
Dirac measures. Then Uy = log ][], |z — pk|, so it remains to approximate U, .
By Lemma 2.4 [8] there exists a rotation to the system of orthogonal coordinates
such that if L is any line parallel to either of the coordinate axes, there is at most
one point p € L with v({p}) > 0, while always v(L \ {p}) = 0. After rotation the
support of new measure, which is still denoted by v, is contained in v/20.

If w is a probability measure supported on Q, then [z [U,(2)|dm(z) is uni-
formly bounded. Therefore we can assume that N € 2N.

By Theorem E, there exists a system (P}, ;) of rectangles and measures 1 <
| < M, with the properties: 1) v(P) = 2; 2) suppy; C P;; 3) Y., v = v; 4) every
point s € Q belongs to the interiors of at most four rectangles Fj; 5) the ratio of
side lengths lays between 1/3 and 3.

Let

= [ can©) (229)
Py
be the center of mass of P, 1 <1 < M,,.
We define 551), fl@) as solutions of the system

) 1 e® / cdu(¢

(€D)2 4 (€72 = / E2du ©).
P

We have

€9 —g| < diam P, = D, j € {1,2},
max | — fl | <2Dy, j€{1,2}, supl|¢—¢| <Dy (2.30)
EeP £EP,

We write

Z/ log‘z—f‘ log‘z—é’l ‘——log‘z—é’l D dvi(§)
= Z(gl(z)_ (2.31)
l

Since we have rotated the system of coordinate, it is sufficient to prove that
fm |2(2)| dm(z) is bounded by an absolute constant.
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For £ € P, z € P, we define A(§) = A(€) = log(z — &), where log(z — &) is an
arbitrary branch of Log(z — ) in z — P;. Then A\(£) is analytic in P,.
We have

2
WO < 2 (2.52)
As in subsection 2.2, we have
1 1 2 1
) <[ Re [ (3@ = 7€) - 506 = 2@ ame)
P
¢ &7
1 1
< ‘Re/<§ / NY(5)(€ — 5)2ds — / A”’(s)({—s)2d3> dyl(g)‘. (2.33)
Pl 51(1) fl(l)
If dist (z, P;) > 10Dy, the last estimate and (2.32) yield
24D} n_ 103D}
16,(2)| < 24D} max ! 5 < —7 L max(l & S|> 0301 ,
sek; |s — 2| |€z( ) _ 2|3 s€EI |s — 2| € 2|3
where El = U(Pl, 2Dl).
Then
103D} [t
tdt
/ ———L_dm(z) <2067 D} / —
Nl v
UOV2\U(E" 10D)) 1P
< 217D} < Cogm(P).
On the other hand, by the definition of §;(2)
5 (10g] 5
/ =) / / % 10Dz
UM 100;) ¢ 10m) T
(1)
1 z—¢& 1 z— f
—21 l ‘ — l ‘ < n).
3108 55|~ 5108 Tgp ) #(©dm(z) < Crm(P)
From (2.31) and the latter estimates, it follows that
[ e@lane <Y [ atdn(e)
U(0,v2) : U(0,v2)
S 028 Zm(ljl) S 4028m(\/§Q) = 029. (2.34)
!
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Thus, P(z) =[];(z — fl(l))(z - 552)) is a required polynomial. This completes the
proof of the proposition. [

Finally, let f = fiP. By Lemma 1, (2.27), and (2.34) we have (n — +00)

/Iloglf(Z)l—U(Z)lldm(Z)S /(IK(z)—U1(Z)|I+IU2(Z)|

|z|<Rn |z|<Rn
+[1og[P| = us(2)]) dm(z) < / (IV(2)] +[2(2)]) dm(2) + Ci0(g) < C30(q)-

|2|<Rn

Fixing any ¢ satisfying (2.2) we finish the proof of Th. 1.

3. Uniform Approximation

In this section we prove some counterparts of results due to Yu. Lyubarskii
and Eu. Malinnikova [3]. We start with the counterparts of notions introduced in
[3], which reflect regularity properties of measures.

Definition 1. Let b: [0,1) — (0,+00) be such that b(r) <1 —r,
b(r1) <b(ra) as 1—ri=<1—ry, 7 11. (3.1)

A measure  on D admits a partition of slow variation with the function b if
there exist the integers N, p and the sequences (QW)) of subsets of D and (1)) of
measures with the following properties:

i) suppp® c QW, QW) = p;
ii) supp (n — S, 1) C D, (=3, uD) (D) < +oo;

ii) 1 — dist(0,QW) > K(p)diam Q®, and each z € D belongs to at most N
various QW) ’s;

iv) for each | the set log QW is a rectangle with the sides parallel to coordi-
nate axes, and the ratio of sides lengths lies between two positive constants
independent of [;

v) diam QW =< b(dist (Q1,0)).

Remark 3.1. Thisis similar to [3], except we have introduced the parameter
p (p =2 1in [3]). Property iii) is adapted for D.
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Definition 2. Given a function b satisfying (3.1), we say that a measure p
is locally regular with respect to (w.r.t.) b if

b(|z)
t=0(1), ro<|z| <1,

(=)

for some constant ro € (0,1).

Theorem 3. Let v € SH(D), b: [0,1) — (0,+00) satisfy (3.1). Let u,, admits
a partition of slow variation, assume that p, is locally reqular w.r.t. b, and, with

p from above, that
1
= (t)
/ i t)pdt < 400. (3.2)

Then there exists an analytic function f in D such that Ve > 0 Iry € (0,1)
log|f(z)| —u(z) =0(1), mn <l|z] <1, z ¢ E,
where B, = {z € D : dist(z, Zy) < €b(|z|)}, and for some constant C > 0
log|f(z)] —u(z) < C, =zeD. (3.3)
Moreover, Zy C U (supp pu, K1(p)b(|2])), K1(p) is a positive constant, and
T(r,u) —T(r,log|f]) =0(1), r1T1 (3.4)

Rem ark 32  The author does not know whether condition (3.2) is
necessary. But if b(t) = O((1 — t)log (1 —¢), n > 0, ¢ T 1 (3.2) holds for
sufficiently large p. On the other hand, in view of v) the condition b(¢) = O(1 —1)
as t T 1 is natural.

Proof of Theorem 3. We follow [3] and also use the arguments and
notation from the proof of Th. 1.

Let ji = pto — S, V). Since f_;é‘ 1 as |2| 11 for fixed ¢ € D, 3(D) < +oo,

inz) = [ logl{—2 a0

D

is a subharmonic function in I and |, (2)| < C for r; < |z| < 1, r1 € (0,1). So
we can assume that p, =), p® ) where p® are from Def. 1.
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Fix a partition of slow variation. Instead of points (l(l) and Cl@) satisfying
(2.11) we define él)7 ey fz(,l) from the system

Gt & = [ou &dul(©),
G+ = fou €du(e),

511) +eet fzz)) = fQ(l) fpdlﬁ(l)(g)-

Lemma 3 is a modification of the estimates in(2.12).

Lemma 3. Let IT be a set in C, p is a measure on I, (1) = p € N, diam I =
d. Then for any solution ({1,...,&) of (3.5) we have | — &| < Ki(p)d, where
K1(p) is a constant, &y is the center of mass of T1.

Proof of Lemma3. Let& = %fné’du(f) be the center of mass of II.
By induction, it is easy to prove that (3.5) is equivalent to the system

wi+ -+ wp =0,
wi+ 4wy = J,
wi+ - wp = Jp,

where wy, = & — &o, Ji, = [7(€ — &) du(€), 1 < k < p. Note that

A S/I&—iolkdu(i) < pd".
11

From algebra it is well known that the symmetric polynomials
Z Wi, - Wi,
1<t << <m
1 < k < m, can be obtained from the polynomials Z;’;l w;? using only finite
number of operations of addition and multiplication. Therefore (3.6) yields
wy + -+ +wp, =0,
Y. wiwi, = by,

1<i1<ia<p

wy - wp = by,
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(k) (k) . .
where by, = Zl ayp(J1)%u - (J)*mit ) aye = ax(p), s(]lc) are nonnegative integers,
and Y°F =15 l ] = k. The last equality follows from homogeneousity. Hence, there

exists a constant K;(p) > 2 such that |by| < K;(p)d¥, 1 < k < p. By Vieta’s
formulas ([11, §851, 52]) w;, 1 < j < p, satisfy the equation

wP + byw? % — bywP 3 .. 4+ (=1)Pb, = 0. (3.7)
For |w| = K;(p)d we have
0P+ by 2 — bywP =3 4+ (1P| < K () (@l -+ )
= Ki(p)d (K] + K71+ 4 1) <2K7 (p)d” < KT (p)dP = w]”.
By Rouché’s theorem all p roots of (3.7) lay in the disk |w| < K;(p)d, i.e., | —
o] < Ki(p)d. Consequently, dist (§;,1I) < Ki(p)d. [ |

Applying Lem. 3 to Q) we obtain that |§l(j) —¢&| < Ki(p)d;, 1 < j <p, where
& =5 Jow £ ().

Consider

ij )< Z/(log‘l__;c —%ilog %Ddu(”(é‘)-
l

j=1 1—2

For R, =1—2"" z € A,,, m is fixed, we define the sets of indices LT, £~ and
£° as in the proof of Th. 1.

The estimate of > j;(z) repeats that of >, Ay(z), so
leL— leL—

> liu2)] < Car. (3.8)
lec—

Following [3], we estimate ), 0 ji(2). Let by = b(R,,). Note that d; < by, for
I € L£° by condition v). As in (2.18), we have

G1(2)] < Capd) __max ___|s— 2| < Chy—r—, (3.9)
S€U(QW K1 (p)dr) &7 — 2
provided that dist (z, Q")) > 3K (p)d;. Then
. dy
Z Ji(z)] < Oz Z m
lecd leco 15
QWONU(2,3K1(p)d;)=2
dm bm
< C33bm / |Z _(§|)3 > 035 035- (3-10)
|z—(|>C34bm
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Let now [ be such that Q) N U(z, 3K, (p)d;) # @. Since d; < b, the number of
these [ is bounded uniformly in [. For z ¢ E. we have (1 < k < p)

2 — M)
b

m

log|z—£l(k)| = log by, + log = logb(|z]) + O(1). (3.11)

Therefore

() = /(1og|z—<|——zlog|z—£l 1)du®(¢)
o0
_l/log L dp(¢) = Js + Ji.

¢ (k)

As in the proof of the proposition (see the estimate of I), one can show that
—(=1—|z| x| - f’l(J)|. Hence, we have Jy = O(1).
Let pu,(t) = p(U(z,t)). Further, using (3.11),

Jy = / log |z — Cldu (¢) + / log |z — ¢ du®(¢)
QW\U(2,b(|2])) U(z,b(1z]))
“plogh(|z]) + O(1) = QO \ U (z, b(|=])) log b(|]) + O(1)
b(|2])
T / log £ du® () — plogb(|z]) = s (QW \ U (=, b(|2])) log b(|z])

bz

+0() + U bl ogb(ll) — [
0
(D o
—plogb(|z|):—/ =W+ o) = o) (3.12)
0

by the regularity of u, w.r.t b(t). Together with (3.10) it yields

> iz =0(1), z¢E.. (3.13)

leLo

Now we estimate ) ;. -+ ji(2). Integration by parts gives us

m ¢
Q=L = 3 gt PE G-+ [ H )¢ ds, (314
k=1 ’
&"
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where L(¢) = log IZ:C ,

z

e

2(k —1)!
|z = ¢IF
The definition of fl(k), 1 <k < p, allows us to cancel the first p moments. There-
fore, similarly to (2.18) and (2.22), we have

1L (0)] < (3.15)

1(2)] < Cogdl™ max |s —z| P71, (3.16)
s€U(QM,K1(p)dy)

Then (z € Ap,)

p+1

' dt b1 dm(z)
Z |jz(2)|§0282m§0292dl / m

lec+ et 12 =& lec+ o

dm(z) =1 (I¢hdm(¢)
< C30(N,p,q Z ! o —cptt < Cs / Te—(pt
n<m-—12 A, |§|SRm712

Ryp—12

1
bpfl b p—1
< (C39 / ( ('0) dp < 033/ ('0) d,O < +00.
0

|2 = p)P (1—=p)?

Using the latter inequality, (3.13) and (3.8) we obtain |V (2)] = O(1) for z ¢ E..
The construction of f is similar to that of Th. 1. It remains to prove (3.3) for
z € E..
By (3.10) it is sufficient to consider [ with Q) NU(z, 3K, (p)d;) # @. For all
sufficiently large I € £ we have

| [ gl - a0 < | 10g|zig|du(”(ﬁ)

QW U(z4K1(p)d1)
0 - Lo 0w
S (1) =10 o) (4K () + [ - o).
" " (3.17)
Then we have
l0g 7] — u(z) = (1) + Y (3 logls — ¢ |—/( log |z — ¢ldn(¢)) < C.

leL0 k=1

because |z —{l(j)| = O(b(]z])) < 1 for [ > Iy and (3.3) is proved.
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Finally, in order to prove (3.4) we note that for z € E,, in view of (3.8), (3.10),
(3.17), we have

log|f(2)| —u(z) =Y _log|z = ¢;| + O(1),

=1

where (; € Zf, and m are uniformly bounded. Then T'(r,u —log|f|) is bounded,
and consequently

T(r,u) =T(r,log|f]) + T(r,u —log|f]) + O(1) = T(r,log|f]) + O(1).

|
Proof of Theorem 2. Let,uj:uu[ 8 By the assumptions of the

i
theorem we have p, = 377" 1. We can write u - >_j=1 Uj, where u; € SH(D),
and Pou; = Hj- Therefore, it is sufficient to approximate each u;, 1 < j < m,
separately.

We write R(r) = (1—r) " and W (R) = R*®). Then pu;(U(0,7)) = A; W (R(r)).
Put b(t) = (1 —t)/W(R(r)). Then condition (3.2) is satisfied. We are going to
prove that p; admits a partition of slow variation and is locally regular w.r.t. b(¢).
We define a sequence (ry,) from the relation AjW (R(rp)) = 2n, n € N. Then,
using the theorem on the inverse function and the properties of proximate order
[7, Ch. 1, §12], we have (r' € (rp,Tns1))

m

2= 2+o)RE)(1L=1)? _ 2+0(1)
T NWIRE) T AW(R() T Ao

b(r') < b(ry,).

Let QM = {z : 1, < |2 < rus1, 05 <0 < b}, where ¢ = 0;(ry) — K(rni1 —
o), ¢p = 0j(rn) + K(rpi1 — ). Since [07(t)| < K, we have 0;(r) € [¢,,¢}],
rn <1 <rpy1. Let ,u(”) = Uj o’ Then, by the definition of ry,, u(")(Q(")) = 2.
Therefore conditions i) and iv) in the definition of partition of slow growth are
satisfied. Condition ii) is trivial. Since diam Q™ < b(r,) < (1—r,) 7)o > 0,
conditions iii) and v) are valid. Therefore,  admits a partition of slow growth
wr.t. b, N =p=2.

Finally, we check the local regularity of pu; w.r.t. b(t). For |z| =, p < b(r)
we have

1i(U(z,p)) < AW (R(r + p)) = AW (R(r — p) = W'(R(r*)) =L

W(R(r*)) < 3opA;
1—r* = b(r)

— 2+ o(1)Ajop

Then fob(r) Mdp < 304}, as required.
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Applying Th. 3 we obtain (1.8), (1.9), and (1.10) for some analytic function

fjin D.

Finally, we define f = H;nzl -
The theorem is proved. [
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