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1. Introduction

The procedures for solving a one-dimensional wave equation are detailed in

[1] and they are used to study a great number of oscillatory motions. One of

the simplest procedures is the method of continuation. But its application is

restricted because of complexity of the analysis of the obtained solution; we do

not have a uni�ed formula solution in many important cases. In the paper [2]

such a solution is given to the problem of free vibrations of a �nite string with

�xed ends. At the beginning we introduce the function

stc(x;w) =
w

2�
arccos cos

2�x

w
�

����x� w

�
x

w
+

1

2

����� ; w > 0; (1)

where square brackets [z] denote the greatest integer that is less than or equal

to z. The expression stc(x;w) represents the continuous even piecewise-linear

periodic function of the period w. It takes the values stc(x; 2L) = x� 2kL on the

intervals 2kL � x � (2k + 1)L (k 2 Z) and the values stc(x; 2L) = 2(k + 1)L� x

on the intervals (2k + 1)L � x � 2(k + 1)L. In the paper [2] we proved two

propositions.
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Proposition 1.1. Let f(x) be a function de�ned on the interval [0; L]. Per-

form its even extension to the interval [�L; 0] and then periodic extension from

the interval [�L;L] to the whole axis. The formula of even periodic extension

looks like the following:

Fe(x) = f(stc(x; 2L)): (2)

Proposition 1.2. Let f(x) be a function de�ned on the interval [0; L] such

that f(0) = f(L) = 0. The odd periodic extension of the function from the interval

[0; L] to the whole axis can be constructed by the following formula:

Fo(x) = (�1)[x=L]f(stc(x; 2L)): (3)

The proof of these propositions is performed by veri�cation of the fact that

the functions Fe(x), Fo(x) coincide with the function f(x) on the interval [0; L];
the function Fe(x) coincides with f(jxj) and Fo(x) with �f(jxj) on the interval

[�L; 0]. Both functions have a period 2L. As a result they are even and odd

periodic extensions of the function f(x) from the interval [0; L] to the whole real

axis. Also, it is easy to see that if the function f(x) is continuous on 0 � x � L,

the constructed functions Fe(x) and Fo(x) are continuous on R.
We consider the �rst boundary value problem for the homogeneous wave equa-

tion
@
2
u

@t2
= a

2@
2
u

@x2
; t > 0; (4)

on a �nite interval 0 < x < L with the general initial conditions

u(x; 0) = '(x); u0t(x; 0) =  (x); 0 � x � L; (5)

and homogeneous boundary conditions u(0; t) = 0; u(L; t) = 0 (t � 0).
The main idea for the construction of solution to the problem in the paper

[2] was proposed as follows. In accordance with the concept of the continuation

method we extend the initial functions to be odd periodic functions. For this

purpose we can use formula (3)

�(x) = (�1)[x=L]'(stc(x; 2L)), 	(x) = (�1)[x=L] (stc(x; 2L)): (6)

The following lemma is needed for the sequel [1].

Lemma 1.1. If initial data in the problem on the propagation of vibrations

along an in�nite string are odd functions with respect to some point x0, the cor-

responding solution at this point is equal to 0.
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The functions �(x) and 	(x) are odd with respect to points x = 0 and x = L.

Therefore, using them in the formula of d'Alembert

u(x; t) =
�(x+ at) + �(x� at)

2
+

1

2a

x+atZ
x�at

	(�)d� (7)

we get a solution to the equation of vibration of a �nite string with �xed ends.

Substituting Eqs. (6) into Eq. (7) and using the equality

x+atZ
x�at

(�1)[�=L] (stc(�; 2L))d� =

stc(x+at;2L)Z
stc(x�at;2L)

 (�)d� ;

which was proved in [2], we obtain the following formula:

u(x; t) =
1

2

�
(�1)[(x+at)=L]

'(stc(x+ at; 2L))

+ (�1)[(x�at)=L]
'(stc(x� at; 2L))

�
+

1

2a

stc(x+at;2L)Z
stc(x�at;2L)

 (�)d�: (8)

At any x and t we have 0 � stc(x� at; 2L) � L. So the argument of the function

'(stc(x � at; 2L)) is contained in the limits of the interval [0; L] on which the

function '(x) is given. The integration in Eq. (8) is always performed over an

interior section of the interval [0; L] on which the function  (x) is known too.

Therefore, formula (8) gives the explicit solution to the problem of free vibrations

of the �nite string with �xed ends.

If the initial functions '(x) 2 C
2([0; L]) and  (x) 2 C

1([0; L]) satisfy the

compatibility conditions '(0) = '(L) = 0,  (0) =  (L) = 0, '00(0) = '
00(L) = 0,

the solution given by d'Alembert's formula will have continuous derivatives of

the �rst and second orders [1, 3]. But Eq. (8) is the transformed formula of

d'Alembert considered on the interval 0 � x � L. Therefore, if the compatibility

conditions are satis�ed, then Eq. (8) gives a representation of classical solution of

the problem on the interval [0; L].
In the present paper a similar approach is developed to construct a solution

to the initial boundary value problem for the equation of vibration of a �nite

string with free ends (formula (13)) and a string with one end �xed and one free

(formula (19)).

2. Free Boundary Conditions

Consider a problem of vibrations of a �nite string with free ends. For this

purpose we have to solve the wave equation (4) with the general initial conditions

(5) and boundary conditions u0(0; t) = 0; u0(L; t) = 0.
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As we know [1], the functions �(x) and 	(x) from the d'Alembert solution (7)

must be even periodic extensions of the initial functions '(x) and  (x). Therefore
we can use formula (2)

�(x) = '(stc(x; 2L)); 	(x) =  (stc(x; 2L)): (9)

Indeed, the function stc(x; 2L) coincides with jxj on the interval [�L;L] and hence
�(x) = �(�x), 	(x) = 	(�x) for �L � x � L. As the function stc(x; 2L) is

periodic of the period 2L, the functions �(x), 	(x) are periodic of the same period,

too. Consequently, they will be even periodic extensions of initial functions from

the interval [0; L] to the whole real axis.

Then we employ the following lemma [1]

Lemma 2.1. If initial data in the problem on the propagation of vibrations

along an in�nite string are even functions with respect to some point x0, then the

derivative in x of the corresponding solution at this point is equal to 0.

The functions �(x) and 	(x) are even with respect to the points x = 0 and

x = L. Therefore, using them in the formula of d'Alembert (7), which should

be considered only on the interval [0; L], we get a solution to the equation of

vibrations of a �nite string with free ends. Substituting (9) in (7), we obtain

u(x; t) =
'(stc(x+ at; 2L)) + '(stc(x� at; 2L))

2
+

1

2a

x+atZ
x�at

 (stc(�; 2L))d�: (10)

The �rst item of Eq. (10) is convenient for calculations. Now, let us study the in-

tegral 
(x; t) =
R
x+at

x�at
 (stc(�; 2L))d� on the right-hand side of Eq. (10). For this

we will need the following lemma.

Lemma 2.2. Let f(x) be a piecewise continuous function de�ned on the in-

terval [0; L]. Then the following equality is valid

xZ
0

f(stc(�; 2L))d� = (�1)[x=L]
stc(x;2L)Z

0

f(�)d� + 2
h
x+ L

2L

i LZ
0

f(�)d�: (11)

P r o o f. As values of the function stc(x; 2L) at any x are contained in the

limits of the interval [0; L], the integrals on both sides of Eq. (11) exist. To prove

the formula, we need to verify that the right-hand and the left-hand members of

Eq. (11) coincide at any x.

Denote the right-hand side of Eq. (11) as I(x) and de�ne �(x) �
xR
0

f(�)d�+C,

where C is any constant. As f(x) is a piecewise continuous function on the interval
[0; L], then �(x) is a continuous function on the same interval.
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Let 2kL � x < (2k + 1)L; k = 0; 1; 2; : : : . Then

xZ
0

f(stc(�; 2L))d� =

LZ
0

f(�)d� +

2LZ
L

f(2L� �)d� + : : :

+

xZ
2kL

f(� � 2kL)d� = (�(L)� �(0)) + : : :+ (�(L)��(0))| {z }
2k

+�(� � 2kL)
���x
2kL

= 2k(�(L)� �(0)) + (�(x� 2kL)� �(0)):

But in this case we have stc(x; 2L) = x� 2kL, [x=L] = 2k, and [(x+L)=2L] = k.

Hence I(x) = �(x � 2kL) � �(0) + 2k(�(L) � �(0)) and we obtain I(x) =R
x

0 f(stc(�; 2L))d� .
Let (2k + 1)L � x < 2(k + 1)L, k = 0; 1; 2; : : : . Then

xZ
0

f(stc(�; 2L))d� =

LZ
0

f(�)d� +

2LZ
L

f(2L� �)d� + : : : +

xZ
(2k+1)L

f(2(k + 1)L� �)d�

= (�(L)� �(0)) + : : :+ (�(L)� �(0))| {z }
2k+1

��(2(k + 1)L� �)
���x
(2k+1)L

= (2k + 1)(�(L) � �(0))� (�(2(k + 1)L� x)� �(L)):

In this case we have [x=L] = 2k + 1, [(x+ L)=2L] = k + 1 and stc(x; 2L) =
2(k + 1)L� x. Hence

I(x) = � (�(stc(x; 2L))� �(0)) + 2(k + 1) (�(L)� �(0))

= � (�(2(k + 1)L� x)� �(L)) + (2k + 1) (�(L)� �(0)) :

Thus in this case we have I(x) =
R
x

0 f(stc(�; 2L))d� , too. Therefore Eq. (11) is

satis�ed for all x � 0.
Show that Eq. (11) is valid for x < 0. Here by virtue of evenness of the inte-

grand we have
R
x

0 f(stc(�; 2L))d� = �
R jxj
0 f(stc(�; 2L))d� . Formula (11) already

is valid for the last integral. Thus, for x < 0 we have

xZ
0

f(stc(�; 2L))d� = �(�1)[jxj=L]
stc(x;2L)Z

0

f(�)d� � 2
h
jxj+ L

2L

i LZ
0

f(�)d� : (12)

For a nonintegral z the equality occurs [�z] = � [z] � 1. By setting z = x=L

(x 6= kL), this equality results [�x=L] = � [x=L] � 1, and for x < 0 we obtain
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[jxj=L] = � [x=L]� 1. Then �(�1)[jxj=L] = (�1)�[x=L] = (�1)[x=L]. By setting

z = (x� L)=(2L), we obtain [�(x� L)=(2L)] = � [(x� L)=(2L)] � 1. Therefore,
for x < 0 we have [(jxj+ L)=(2L)] = � [(x� L)=(2L) + 1] = � [(x+ L)=(2L)].
If we change the factors in Eq. (12), which contain jxj to their values without one,

we again obtain Eq. (11).

It remains only to verify that Eq. (11) is valid for x = kL, k = �1;�2; : : : .
This can be seen by direct veri�cation. Thus the left-hand and the right-hand

members of Eq. (11) coincide at all x. The lemma is proved.

Let us return to the integral 
(x; t) on the right-hand side of Eq. (10). Taking

into account (11), we get


(x; t) =

x+atZ
0

 (stc(�; 2L))d� �

x�atZ
0

 (stc(�; 2L))d� = (�1)[
x+at

L
]

stc(x+at;2L)Z
0

 (�)d�

�(�1)[
x�at

L
]

stc(x�at;2L)Z
0

 (�)d� + 2
�h
x+ at+ L

2L

i
�

h
x� at+ L

2L

i� LZ
0

 (�)d�:

Substituting this equality in (10), we �nally obtain

u(x; t) =
'(stc(x + at; 2L)) + '(stc(x� at; 2L))

2

+
1

2a

�
(�1)[

x+at

L
]

stc(x+at;2L)Z
0

 (�)d� � (�1)[
x�at

L
]

stc(x�at;2L)Z
0

 (�)d�

+ 2
�h
x+ at+ L

2L

i
�

h
x� at+ L

2L

i� LZ
0

 (�)d�
�
: (13)

The argument of the function '(stc(x� at; 2L)) is contained in the interval [0; L]
and integration is also performed over [0; L]. Therefore, formula (13) gives an

explicit solution to the problem of vibrations of the �nite string with free ends.

It is known that the formula of d'Alembert (7) gives doubly continuously

di�erentiable solution to the wave equation provided �(x) 2 C
2(R) and 	(x) 2

C
1(R). But Eq. (13) actually is d'Alembert's solution with the functions �(x) =

'(stc(x; 2L)) and 	(x) =  (stc(x; 2L)).
The function �(x) will be of class C2(R) provided '(x) 2 C

2([0; L]) and

'
0(0) = '

0(L) = 0. Indeed, derivative discontinuities can be only at points
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x = kL, k 2 Z. At points x = 2kL we have

�0+(2kL) = lim
x!2kL+0

�(x)� �(2kL)

x� 2kL
= lim

x!2kL+0

'(x� 2kL)� '(0)

x� 2kL
= '

00);

�0�(2kL) = lim
x!2kL�0

�(x)� �(2kL)

x� 2kL
= lim

x!2kL�0

'(2kL � x)� '(0)

x� 2kL
= �'

0(0):

If '0(0) = 0, then the left-hand �0�(2kL) and the right-hand �0+(2kL) derivatives
coincide. So �0(2kL) exists. In addition, we have

lim
x!2kL+0

d�

dx
= lim

x!2kL+0

d

dx
'(x� 2kL) = '

0(0);

lim
x!2kL�0

d�

dx
= lim

x!2kL�0

d

dx
'(2kL� x) = �'

0(0):

As a result, the derivative �0(x) will be continuous at points x = 2kL provided

'
0(0) = 0.
Repeating in the same way as above, we can establish that the derivative �0(x)

exists and it is continuous at points x = (2k + 1)L, k 2 Z provided '0(L) = 0.
The same proof applies for �00(x) also. In this case the second derivative exists

and it is continuous at any x.

In the same way we can establish that 	(x) =  (stc(x; 2L)) 2 C1(R) provided
 (x) 2 C1([0; L]) and  0(0) =  

0(L) = 0.
We have obtained the known result [3]. If initial functions '(x) 2 C2([0; L]),

 (x) 2 C1([0; L]) satisfy the compatibility conditions '0(0) = '
0(L) = 0,  0(0) =

 
0(L) = 0, the d'Alembert solution (7) will have continuous derivatives of the

�rst and second orders. Then solution (13), which is the transformed d'Alembert

formula considered on the interval 0 � x � L, gives a representation of classical

solution to the problem.

R e m a r k. If
R
L

0  (�)d� 6= 0, then solution (13) grows in time. To under-

stand this, we analyze the last item in Eq. (13), which we denote as G(x; t) =

2A �
R
L

0  (�)d�, where A = [(x+ at+ L)=(2L)] � [(x� at+ L)=(2L)].
Taking into account (at)=(2L) = [(at)=(2L)] + ", where 0 � "(t) < 1, we can

write

A =
h
x+ L

2L
+
h
at

2L

i
+ "

i
�

h
x+ L

2L
�

h
at

2L

i
� "

i
=

h
x+ L

2L
+ "

i
�

h
x+ L

2L
� "

i
+ 2

h
at

2L

i
:

Since 0 � x � L, then 1=2 � (x + L)=(2L) � 1. Therefore the expression

[(x+ L)=(2L) + "] can be equal to 0 or 1. The expression [(x+ L)=(2L) � "] can
be equal to �1 or 0; also it can be equal to 1 in the case x = L and " = 0. In any

case, as it is easy to see, we have [(x+ L)=(2L) + "] � [(x+ L)=(2L) � "] � 0
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because this expression may be equal only to 0, 1 or 2. Therefore A � 2 [(at)=(2L)]

and jG(x; t)j � 4 [(at)=(2L)]
���R L

0  (�)d�
���. Obviously, the other items of Eq. (13)

are bounded. Therefore the solution u(x; t) grows in time.

R e m a r k. Solution (13) is bounded if
R
L

0  (�)d� = 0. Also, it is easy to

see that in this case at a given x the function u(x; t) will be 2L=a periodic in t.

3. Homogeneous Mixed Boundary Conditions

Consider a problem of vibrations of a �nite string which is fastened at the left

end and is free at the right end. In this case we have to solve the wave equa-

tion (4) with the general initial conditions (5) and boundary conditions u(0; t) = 0,
u
0(L; t) = 0.
Consider a function f(x) that is given on the interval [0; L] such that f(0) = 0.

Construct its even extension to the interval [L; 2L], i.e., construct the function

f1(x), x 2 [0; 2L] so that f1(x) = f(x) for x 2 [0; L] and f1(x) = f(2L � x) for
x 2 [L; 2L]. Extend the function f1(x) to be odd on the interval [�2L; 2L], i.e.,
construct the function f2(x), x 2 [�2L; 2L] such that f2(x) = f1(x) for x 2 [0; 2L]
and f2(x) = �f1(�x) for x 2 [�2L; 0]. After that, extend f2(x) to be a periodic

function of the period 4L. As a result, the obtained function F (x) coincides with
f(x) on the interval x 2 [0; L], with f1(x) on the interval x 2 [0; 2L] and with

f2(x) on the interval x 2 [�2L; 2L].
For the function F (x) the following properties hold:

(i) F (x) = F (x+ 4kL), x 2 R, k 2 Z;

(ii) F (x) = �F (�x), x 2 R.

This property is satis�ed by the construction for x2 [�2L; 2L]. Let

x =2 [�2L; 2L]. It is always possible to choose x0 2 [�2L; 2L] and k 2 Z such

that x = x0 + 4kL. Then we have

F (x) = F (x0 + 4kL) = F (x0) = �F (�x0) = �F (�x0 � 4kL) = �F (�x);

(iii) F (L� z) = F (L+ z), 8z 2 R.

This property expresses the evenness with respect to the point x = L.

We have the property F (x) = F (2L � x) for x 2 [0; 2L] by construction.

Show that it is satis�ed for all x. Indeed, let x =2 [�2L; 2L]. It is always

possible to choose x0 2 [�2L; 2L] and k 2 Z such that x = x0 + 4kL.
If x0 2 [0; 2L], we have

F (x) =F (x0+4kL) =F (x0) =F (2L�x0) =F (2L�x0�4kL) =F (2L�x):
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If x0 2 [�2L; 0], we have

F (x) = F (x0 + 4kL) = F (x0) = �F (�x0) = �F (jx0j) = �F (2L� jx0j)

= �F (2L+ x0) = F (�x0 � 2L) = F (�x0 � 2L� 4(k � 1)L)

= F (2L� (x0 + 4kL)) = F (2L� x):

Therefore the condition F (x) = F (2L � x) is satis�ed far all x. Replacing

x by L� z, we obtain F (L� z) = F (L+ z).

We note that the condition f(0) = 0 is necessary to avoid the ambiguities of

function F (x) at points x = 2kL, k 2 Z. Moreover, if the function f(x) is

continuous on the interval [0; L] and f(0) = 0, the obtained function F (x) is

continuous on the whole real axis.

We will call the described above extension of the function as an even-odd

periodic continuation.

Let us return to the boundary value problem. As it is required that the

string should be fastened at x = 0, the initial functions must be subjected to

the restrictions '(0) = 0,  (0) = 0. Extend the initial functions '(x) and  (x),
which are given on the segment [0; L], to be even-odd periodic functions of the

period 4L. Denote the obtained functions as �(x), 	(x) and substitute them into

the d'Alembert solution (7).

Lemma 3.1. If the initial data �(x) and 	(x) in the problem on the propaga-

tion of vibrations along an in�nite string are even-odd periodic continuations of

the initial functions '(x) and  (x), then the formula of d'Alembert (7), which is

actually considered on the interval [0; L], represents a solution of the considered

initial boundary value problem.

P r o o f. Indeed, we have constructed the initial functions �(x), 	(x) for
the in�nite string so that they are odd functions with respect to the point x = 0.
Therefore, by Lemma 1.1 the d'Alembert solution at this point will be equal to 0.
Moreover, the functions �(x), 	(x) have been constructed so that they are even

functions with respect to the point x = L. Then, by Lemma 2.1, the derivative

in x of d'Alembert's solution will be equal to 0 at this point, i.e., u0x(L; t) = 0.
Thus both boundary conditions u(0; t) = 0, u0(L; t) = 0 are satis�ed.

From (7) we have u(x; 0) = �(x)+�(x)
2 + 1

2a

R
x

x
	(�)d� = �(x). But we have

�(x) = '(x) for 0 � x � L and therefore u(x; 0) = '(x) on this interval. Next,

we have u0t(x; 0) = 1
2 (a�

0(x)� a�0(x)) + 1
2a (a	(x)� (�a)	(x)) = 	(x). But

we have 	(x) =  (x) for 0 � x � L and hence u0t(x; 0) =  (x). So the initial

conditions are satis�ed also. The lemma is proved.
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Thus, when it is required that the string should be fastened at the left end

and free at the right end, the initial functions '(x),  (x) must be even-odd

periodic extended; then the obtained functions �(x), 	(x) must be substituted

into d'Alembert's solution (7).

Lemma 3.2. Let f(x) be a function de�ned on the interval 0 � x � L such

that f(0) = 0. The formula of even-odd periodic continuation of the function f(x)
to the whole real axis looks like the following:

Feo(x) = (�1)[x=(2L)]f(stc(x; 2L)): (14)

P r o o f. Let a function f(x) is given on the interval [0; L] and f(0) = 0.
Perform its even extension from the interval [0; L] to the interval [L; 2L]. This

can be done by formula f1(x) = f(L� jL� xj). In fact, we have f1(z) = f(z) for
0 � z � L and f1(L+z) = f(L�jL� (L+z)j) = f(L�z) = f1(L�z). Therefore
f1(x) is an even function on the interval [0; 2L] with respect to the point x = L.

After that we perform the odd extension of the function f1(x) from the in-

terval [0; 2L] to the interval [�2L; 0]. Then the obtained function is extended

periodically from the interval [�2L; 2L] to entire line �1 < x <1. This can be

done with the help of formula (3), where it is necessary to use 2L as half-period.

So we have

Feo(x) = (�1)[x=(2L)]f1(stc(x; 4L)) = (�1)[x=(2L)]f(L� jL� stc(x; 4L)j):

Let us show that L�jL�stc(x; 4L)j � stc(x; 2L). It is evident that the expression
I(x) = L� jL� stc(x; 4L)j has a period 4L, and the function stc(x; 2L) has

a period 2L. Therefore it su�ces to verify their coincidence on the interval [0; 4L].
For 0 � x � L we have stc(x; 4L) = x and stc(x; 2L) = x. Therefore

I(x) = L� jL� xj = L� (L� x) = x = stc(x; 2L).
For L � x � 2L we have stc(x; 4L) = x and stc(x; 2L) = 2L � x. Hence

I(x) = L� jL� xj = L� (x� L) = 2L� x = stc(x; 2L).
For 2L � x � 3L we have stc(x; 4L) = 4L� x and stc(x; 2L) = x� 2L. Thus

I(x) = L� jL� (4L� x)j = L� jx� 3Lj = L� (3L� x) = x� 2L = stc(x; 2L).
For 3L � x � 4L we have stc(x; 4L) = 4L�x and stc(x; 2L) = 4L�x. Hence

I(x) = L� jL� (4L� x)j = L� jx� 3Lj = L� (x� 3L) = 4L� x = stc(x; 2L).
Thus the functions I(x) and stc(x; 2L) coincide on the interval [0; 4L], and by

virtue of periodicity they coincide on the whole axis. Therefore we have

Feo(x) = (�1)[x=(2L)]f(L� jL� stc(x; 4L)j) = (�1)[x=(2L)]f(stc(x; 2L)):

This proves the lemma.
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In view of (14), the even-odd continuation of the initial functions '(x),  (x)
can be written

�(x) = (�1)[x=(2L)]'(stc(x; 2L)); 	(x) = (�1)[x=(2L)] (stc(x; 4L)): (15)

Then the solution of the boundary value problem, represented by d'Alembert's

formula (7) becomes after the substitution of (15)

u(x; t) =
(�1)[

x+at

2L
]
'(stc(x+ at; 2L)) + (�1)[

x�at

2L
]
'(stc(x� at; 2L))

2

+
1

2a

x+atZ
x�at

(�1)[
�

2L
]
 (stc(�; 2L))d�:

(16)

The �rst item of Eq. (16) is convenient for calculations. Let us now consider the

integral 
(x; t)=
R
x+at

x�at
	(�)d�, where the integrand 	(x)=(�1)[

�

2L
]
 (stc(�; 2L))

is an odd periodic function with the period 4L.

Lemma 3.3. Let f(x) be a piecewise continuous odd periodic function. Then

the function F (x) de�ned by F (x) =
R
x

0 f(�)d� will be an even periodic continuous

function with the same period.

P r o o f. It is obvious that F (x) is a continuous function. Let T be a period

of an odd function f(x). Since
R
x0+T

x0
f(�)d� = 0 for any x0, it follows that

F (x+T ) =
R
x+T

0 f(�)d� =
R
T

0 f(�)d�+
R
x+T

T
f(�)d� =

R
x+T

T
f(�)d�. By changing

variables � = � + T and using periodicity f(� + T ) = f(�), we obtain

F (x+ T ) =

xZ
0

f(� + T )d� =

xZ
0

f(�)d� = F (x:)

Using the oddness of the function f(�) = �f(��), we have

F (�x) =

�xZ
0

f(�)d� = �

xZ
0

f(��)d� =

xZ
0

f(�)d� = F (x):

This proves the lemma.

Lemma 3.4. Let f(x) be a piecewise continuous function de�ned on the in-

terval 0 � x � L. Then the following holds

xZ
0

(�1)[
�

2L
]
f(stc(�; 2L))d� =

LZ
0

f(�)d� � (�1)[
x+L

2L
]

LZ
stc(x;2L)

f(�)d�: (17)
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P r o o f. As we have 0 � stc(x; 2L) � L, and f(x) is a piecewise con-

tinuous function for 0 � x � L, the integrals on both sides of Eq. (17) exist.

The integrand H(x) = (�1)[x=(2L)]f(stc(x; 2L)) is an odd periodic function with

the period 4L. We can apply Lemma 3.3 to the function F (x) =
R
x

0 H(�)d� that

will be an even periodic function with the same period. If we evaluate the integral
~F (x) =

R
x

0 H(�)d� only for 0 � x � 2L, then we can build the whole function

F (x) by even periodic continuation of expression ~F (x) from interval [0; 2L] to
entire line �1 < x <1.

Let us denote �(x) =
R
x

0 f(�)d�+C, where C = �(0) is any constant. As f(x)
is a piecewise continuous function on the interval [0; L], then �(x) is a continuous
function on the same interval.

For 0 � x < L we have

~F (x) =

xZ
0

(�1)[�=(2L)]f(stc(�; 2L))d� =

xZ
0

f(�)d� = �(x)� �(0):

For L � x < 2L we have

~F (x) =

xZ
0

H(�)d�

=

LZ
0

f(�)d� +

xZ
L

f(2L� �)d� = �(L)� �(0)� �(2L� �)
���x
L

= �(L)� �(0)� (�(2L� x)� �(L)) = 2�(L)� �(2L� x)� �(0):

As ~F (x) is a continuous function for 0 � x � 2L , then the last equality is valid

for x = 2L. Hence, for the expression ~F (x) we obtain

~F (x) =

(
�(x)� �(0); 0 � x < L;

2�(L)� �(2L� x)� �(0); L � x � 2L:

Show that the even periodic continuation of the expression ~F (x) with a period

4L from the interval [0; 2L] to the whole axis is given by

F (x) = (�1)[
x+L

2L
] (�(stc(x; 2L)) � �(L)) + �(L)� �(0): (18)

As the factor (�1)[(x+L)=(2L)] is a periodic function with the period 4L, the right-
hand member of Eq. (18) has a period 4L instead of 2L. Therefore, it su�ces

to show that F (x) = ~F (x) for x 2 [0; 2L] and F (x) = ~F (�x) for x 2 (�2L; 0).
For 0 � x < L we have stc(x; 2L) = x and hence

F (x) = (�(x)� �(L)) + �(L)��(0) = �(x)� �(0) = ~F (x):

248 Journal of Mathematical Physics, Analysis, Geometry, 2008, vol. 4, No. 2



Free Vibrations of a Finite String

For L � x � 2L we have stc(x; 2L) = 2L� x and hence

F (x) = � (�(2L� x)� �(L))+�(L)��(0) = 2�(L)��(2L�x)��(0) = ~F (x):

For �L � x < 0 we have stc(x; 2L) = �x and hence

F (x) = (�(�x)� �(L)) + �(L)� �(0) = �(�x)� �(0) = ~F (�x):

For �2L < x < �L we have stc(x; 2L) = x+ 2L and hence

F (x) = � (�(2L+ x)� �(L))+�(L)��(0) = 2�(L)��(2L+x)��(0) = ~F (�x):

As a result, the function F (x) coincides with ~F (x) for 0 � x � 2L and it coincides

with ~F (�x) for �2L < x < 0. Therefore F (x) represents an even periodic

continuation of the expression ~F (x) from the segment [0; 2L] to the whole axis.

Thus equality (18) holds. When the value of �(x) is substituted in Eq. (18), we

obtain the desired form (17). The lemma is proved.

Let us now consider the integral 
(x; t) =
R
x+at

x�at
	(�)d� standing in Eq. (16).

Taking into account (17), we have


(x; t) =

x+atZ
x�at

(�1)[
�

2L
]
 (stc(�; 2L))d� =

x+atZ
0

�

x�atZ
0

= (�1)[
x�at+L

2L
]

LZ
stc(x�at;2L)

 (�)d� � (�1)[
x+at+L

2L
]

LZ
stc(x+at;2L)

 (�)d�:

Substituting the value of 
(x; t) in (16), we �nally obtain

u(x; t) =
(�1)[

x+at

2L
]
'(stc(x+ at; 2L)) + (�1)[

x�at

2L
]
'(stc(x� at; 2L))

2

+
1

2a

�
(�1)[

x�at+L

2L
]

LZ
stc(x�at;2L)

 (�)d� � (�1)[
x+at+L

2L
]

LZ
stc(x+at;2L)

 (�)d�
�
:

(19)

The argument of function '(stc(x� at; 2L)) is contained in the limits of interval

[0; L] and the integration is also performed in the limits of [0; L]. Therefore,

formula (19) gives the explicit solution to the problem of vibrations of the �nite

string with one end �xed and one end free.

R e m a r k. It is easy to see that the solution (19) will be 4L=a periodic in

t at given x.
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As we know, d'Alembert's formula (7) for the in�nite string gives doubly

continuously di�erentiable solution to the wave equation provided �(x) 2 C2(R)
and 	(x) 2 C

1(R). But Eq. (19) actually is the d'Alembert solution with the

functions �(x) = (�1)[x=(2L)]'(stc(x; 2L)) and 	(x) = (�1)[x=(2L)] (stc(x; 4L)).
The function �(x) will be of class C2(R) if '(x) 2 C

2([0; L]) and satisfy the

additional conditions of existence and continuity of the 1-st and 2-nd derivatives

at points x = kL, k 2 Z. It follows immediately from the condition '(0) = 0
that �(x) is continuous at points x = 2kL, k 2 Z. The continuity at points

x = (2k + 1)L follows from the evenness of function �(x) with respect to these

points.

Now, since '(0) = 0, we have

�0+(2kL) = lim
x!2kL+0

�(x)� �(2kL)

x� 2kL

= lim
x!2kL+0

(�1)k'(x� 2kL)� (�1)k'(0)

x� 2kL
= (�1)k'0(0);

�0�(2kL) = lim
x!2kL�0

�(x)� �(2kL)

x� 2kL

= lim
x!2kL�0

(�1)k�1
'(2kL � x)� (�1)k'(0)

x� 2kL
= (�1)k'0(0):

The left-hand �0� and the right-hand �0+ derivatives coincide at points x = 2kL
provided '0(0) exists and '(0) = 0. Then �0(2kL) exists. Because of

lim
x!2kL+0

�0(x) = (�1)k'0(0) = lim
x!2kL�0

�0(x);

the derivative �0(x) is continuous at points x = 2kL.
At points x = (2k + 1)L, k 2 Z we have

�0+((2k + 1)L) = lim
x!(2k+1)L+0

(�1)k'(2(k + 1)L� x)� (�1)k'(L)

x� (2k + 1)L
= �(�1)k'0(L);

�0�((2k + 1)L) = lim
x!(2k+1)L�0

(�1)k'(x� 2kL)� (�1)k'(L)

x� (2k + 1)L
= (�1)k'0(L):

The left-hand �0� and the right-hand �0+ derivatives coincide at points

x = (2k + 1)L provided '0(L) = 0. Then �0(x) exists at these points. It is easy

to see that �0(x) also is continuous at these points.

The requirement of the existence and continuity of the second derivative �00(x)
at points x = 2kL results in '00(0) = 0. For the existence and continuity of �00(x)
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at points x = (2k + 1)L no additional conditions are required; the existence of

'
00(L) is necessary only.

Repeating the same procedure, we can establish that 	(x) 2 C1(R) provided
 (x) 2 C1([0; L]) and  (0) = 0,  0(L) = 0. The requirement  (0) = 0 is used at

veri�cation of di�erentiability at points x = 2kL as well as  0(L) = 0 is used at

points x = (2k + 1)L.
Thus, if initial functions '(x) 2 C2([0; L]),  (x) 2 C1([0; L]) satisfy the com-

patibility conditions '(0) = 0, '00(0) = 0,  (0) = 0 and '
0(L) = 0,  0(L) = 0,

d'Alembert's solution will have continuous derivatives in t and x of the �rst and

second orders [3]. Then the function (19), which is the transformed d'Alembert so-

lution, has the same properties. So it will be a classical solution to the considered

initial boundary value problem.
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