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It is proved that a differentiable with respect to each variable function
f:R? = Ris a solution of the equation 2% + g—’; = 0 if and only if there
exists a function ¢ : R — R such that f(z,y) = ¢(x — y). This gives
a positive answer to a question by R. Baire. Besides, this result is used to
solve analogous partial differential equations in abstract spaces and partial
differential equations of higher-order.
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1. Introduction

Let X,Y,Z be arbitrary setsand f: X XY — Z. Foranyx € X andy € Y
we define the mappings f*:Y — Z and f, : X — Z by the following equalities:
f“(y) = fy(z) = f(z,y). We say that a mapping f separately has P for some
property P of mappings (continuity, differentiability, etc.) if for any x € X and
y € Y the mappings f* and f, have P.

R. Baire in the fifth section of his PhD thesis [1] raised a problem of solving
differential equations with partial derivatives under minimal requirements, that is,
a problem of solving some differential equation in the class of functions satisfying
strongly necessary conditions for the existence of expressions contained in this
equation. Besides, considering the equation
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he proved, using rather laborious arguments, that a jointly continuous separately
differentiable function f : R? — R is a solution of (1) if and only if there exists
a differentiable function ¢ : R — R such that f(z,y) = p(z —y) for any z,y € R.
Taking into account the solution of this equation in the class of differentiable
functions f (which can be obtained by introducing new variables ¢ = z — y and
s =z +y), the given result means that every jointly continuous separately differ-
entiable solution of (1) is differentiable. It is clear that the continuity condition
on f is not necessary for the existence of partial derivatives of f. Hence R. Baire
naturally raised the following question.

Question 1.1 (R. Baire [1, p. 118]). Let f : R2 — R be a separately
differentiable solution of (1). Does there exist a differentiable function ¢ : R — R
such that f(x,y) = @(x —y) for any z,y € R?

Note that the result analogous to Baire’s was independently obtained in [2]
where Question 1.1 was formulated too. Notice that the method used in [2] is
based essentially on the joint continuity of f; it is very nice and simpler than the
method from [1]|. But, in fact, in [1] R. Baire solved (1) for separately differentiable
functions f which are continuous on every line y = z + ¢ (see Th. 4.1).

Besides, by the end of the XX century there were known some results con-
cerning solutions of the following equation:
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So, in [3] it was proved that every continuously differentiable solution
f : B2 — R of the equation (2) depends only on one variable. This result was
carried over the mappings f : X XY — Z with locally convex range space Z. Also,
there was shown the essentiality of local convexity of space Z. An analogous result
for separately differentiable functions was obtained in [4]. Moreover, using rather
delicate topological arguments, it was proved that if f : R?> — R is a separately
continuous function and for every point p € R? there exists at least one of the
partial derivatives %(p) and g—z(p), and it is equal to zero, then f depends only
on one variable. This result from [4] was generalized in [5] to the case of the
so-called separately L-differentiable mappings f: X XY — Z, where X,Y, 7 are
real vector spaces and L is a subspace of the space of all linear functionals on Z
which separates points from Z.

In this paper we firstly develop a technique from [1] and study the properties
of separately differentiable vector-valued functions of two real variables (Sect. 2).
Further, in Sect. 3 we establish necessary and sufficient conditions under which
the metric-valued functions defined on an interval are constant. Also we obtain
the following property of separately pointwise Lipschitz (in particular, separately
differentiable) functions: the restriction of the function of this type on an arbitrary

Journal of Mathematical Physics, Analysis, Geometry, 2008, vol. 4, No. 2 253



V.K. Maslyuchenko and V.V. Mykhaylyuk

set has nowhere dense discontinuity point set. This property makes it possible to
give a positive answer to Question 1.1. In the two last sections we generalize this
result to the case of mappings defined on the square of a vector space and then
we use it in solving partial differential equations of higher-orders.

2. Auxiliary Baire Function and Separately
Differentiable Functions on R?

In this section we introduce an auxiliary function connected with the difference
relation analogously as real functions in [1], study its properties and use it for
studying separately differentiable functions.

For arbitrary a,b € R with a < b, by [a;b], [a;b), (a;b] and (a;b) we denote
the corresponding intervals on R.

Let Z be a vector space and f : R — Z be a function. For the arbitrary
z,y €ER, x #y,and B C Z put re(z,y) = %_?J;(y) and A(B, f,z) = {6 € (0;1] :
(VP p" € (& — 82) x (32 +)) (ry () = r(p") € B)}.

Define a function A\(B, f) : R — R by the following: )\(B, f)(z) = supA(B, f,z)
if A(B, f,z) # @ and X(B, f)(z) =0if A(B, f,z) =

Let Z be a Hausdorff topological vector space. A mapping f : R — Z is called
differentiable at a point zy € R if there exists f'(zp) = lim [ £( o) Note that

r—zg LT
for a topological vector space Z, a differentiable at zy function f : R — Z and

an arbitrary neighborhood W of zero in Z we have \(W, f)(zo) > 0. Moreover,
putting 7 (zo,z0) = f'(zo) we obtain that A(W, f,z9) = {6 € (0;1] : (Vp',p" €
(o — &3 0] X [o; o +9)) (rf(p') —rp(p") € W)} for any closed neighborhood W
of zero in Z.

Theorem 2.1. Let Z be a Hausdorff topological vector space, f : R2 — Z be
a differentiable in the first variable and continuous in the second variable function
and W be a closed neighborhood of zero in Z. Then the function g : R? — R,
g(z,y) = MW, fy)(x), is a jointly upper semicontinuous function.

Proof Let zg,y0 € R, v = g(xo,y0) and € > 0. If y +¢e > 1, then
g(z,y) <1< 7y+e¢ forevery z,y € R.

Now, let vy + & < 1. Then dp = v+ § < 1. Since g(wo,%0) < do, do &
A(W, fyo,x0). Therefore, there exist z1, x| € (xo—0do; zo) and z2, x5 € (zo;zo+00)

such that , ,
f(z2,90) — fl@1,90)  f(@h,90) — f(2],0)
To — X1 zh —

& W.

The continuity of f in the second variable and the closedness of W imply the
existence of a neighborhood V of yy in R such that

flz2,y) = fl@y)  fo5.9) — f(21,y)

¢w
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for every y € V. Put s = min{zg — 21,20 — 2,22 — 20,2, — 0,5}, U =
(o — 8520+ 8) and 61 = v+ 2—35 Then z1, 2} € (£ —d1;2) and x9, 2} € (z; 2+ 01)
for every € U. Therefore §; ¢ A(W, fy,z) and g(z,y) < §1 < v + ¢ for every
zeUandyeV.

Thus g is a jointly upper semicontinuous at (z, o) function. ]

Let ¢,p € R?. The Euclid distance in R? between ¢ and p we denote by
d(q,p). If ¢ # p, then by a(q,p) we denote the angle between the vector pé and
the positive direction of abscissa.

The following theorem shows that using the function A one can obtain some
properties of separately differentiable functions.

Theorem 2.2. Let Z be a topological vector space, f : R2 — Z be a separately
differentiable function, E C R% be a nonempty set and W be an arbitrary neigh-
borhood of zero in Z. Then for any open in E nonempty set G there exists a point
po € G and its neighborhood O in E such that for any distinct points p,q € O the
following inclusion holds:

flg) — f(p)

d(q,p) (f2(po) cos a(q, p) + fy(po) sina(q, p)) € W.

Proof Note that it is sufficient to consider the case of closed set E.

Let G C E be an arbitrary nonempty open in F set and Wy be such closed
radial neighborhood of zero in Z that Wi+W14+W+W1+W14+W; C W. Consider
the functions g : B> = R, gi(z,y) = AW, f,)(z) and g2 : R = R, go(z,y) =
AW, f%)(y). According to Th. 2.1, g; and go are jointly upper semicontinuous.
For every n € N put E, = {(z,y) € E : g1(z,y) > %,gg(az,y) > %} Evidently,
all the sets E,, are closed in a Baire space E. Since g1(z,y) > 0 and go(z,y) > 0

(e.@)
for any (z,y) € R?, E = |J E,. Then there exists an open in G nonempty set

H C G and ng € N such t?l;.é HCE,,.

Fix an arbitrary point pg = (zo,40) € H. Denote 2} = o — nio, zh =x0 + n—lo,
Yy = yo — nio and v, = yo + nio The separate continuity of f implies that there
exists § < ﬁ such that

rreo (Y2, y1) — rpe (Y, y1) € Wi and 1y (25, 27) — 1y, (25, 27) € W)

forany 2 € U = (zg—0d;20+0) andy € V = (yo—0;40+0). Put O = (UxV)NH.
Let p = (z1,y1), ¢ = (x2,y2) be distinct points from the set O and a = a(q, p).
If z1 # z9 and y; # yo, then
fla)=fp) _ fla) = f@1,40) x2— a1
d(q,p) Ty — 11 d(q,p)
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flr,y2) = flp) y2—wn

+ :rfyz(@,xl)cosa+rfz1(y2,y1)sina.

Y2 — 41 d(q,p)
If £y = z9 or y; = yo, then cos @ = 0 or sina = 0, and therefore
fla) — f(p)

IR =7y, (T2,71) cos a + =1 (y2, Y1) sin o

Since po € Eny, g1(po) > nio, there exists d; > ﬁ such that §; € A(W1, fyo, To)-
Hence

TFuo (x4, 7)) — Tf,, (To,To) € W1,
provided z € (zo — d1; 0], 24 € [x0; 20 + 01) and fL(po) = T fyo (zo,T0)-

Note also that ¢ € E,,, besides, ¢g1(q) > nio Since ﬁ +4§ < nLO, there
exists 0y > ﬁ + & > 20 such that oo € AW, fy,,22). Then 2} = zp — g <
9 — 6 < Iog, $2—x’1<$0+5—$0+ﬁ < b9, x’szo—i—ﬁ > 29+ 06 > 9 and
zh —x9 < T + ﬁ — 2o+ 0 < d2. Thus 2} € (xe — d2; 22| and zf, € [x9; 22 + d2).
The inequalities |x; — z2| < 20 < d2 imply

Tf,, (T2,T1) =7y, (zh, 7)) € Wy.

Since y2 € V,
rny ($I27x,1) - Irfyo ($I27$Il) E Wl'

Now we have
P @201) = f1(00) = (rg,, (@2,m1) = 15, (2h,01))

(g, (s 4) = 11,0 (3, 20) ) + (g, (5, 4) — fa(po) ) € Wi+ W + W,

Analogously,
ryo1 (y2,y1) — fy(po) € Wi + Wi + Wi

e @) - 19)
q) —J\P) ' .
P (Fulpo) eosc + 1y (o) sino)
= cosa (Tfyz (2, 21) — fé(m)) + sina (rpe (y2,41) — f5(po))
€ cos Oz(Wl + Wi+ Wl) + Sina(W1 + Wi + WI) cCw.
This completes the proof. ]
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3. Separately Pointwise Lipschitz Functions and Pointwise
Changeable Functions

Firstly recall some definitions.

Let (X,|-—-|x) and (Y,|- — - |y) be metric spaces. A mapping f: X =Y
satisfies the Lipschitz condition with a constant C > 0if | f(z)—f(y)ly < Clz—y|x
for any z,y € X. A mapping f: X — Y is called pointwise Lipschitz if for any
point 2y € X there exists a neighborhood U of point zp in X and C > 0 such
that |f(zo) — f(z)ly < Clzg — z|x for any z € U. A mapping f : X = Y is
called pointwise changeable, if for every € > 0 the union G, of the system G. of
all open nonempty sets G C X such that f|q satisfies the Lipschitz property with
the constant ¢, is an everywhere dense set.

The following property of separately pointwise Lipschitz mappings plays an im-
portant role in obtaining the positive answer to Question 1.1.

Theorem 3.1. Let (X,|-—-|x) and (Y,|-—-|y) be metric spaces such that
the space X XY is a hereditarily Baire space, (Z,| - — -|z) be a metric space
and f : X XY — Z be a separately pointwise Lipschitz mapping. Then for any
nonempty set E C X x Y the discontinuity point set D(f|r) of mapping f|g is
nowhere dense in E.

P roof. Note that it is sufficient to prove the theorem for the closed set E.

Let E C X xY be a closed nonempty set and G C X XY be an open set such
that Wy = GNE # O. For any n,m € N, by E,,, denote the set of all points
(z,y) € Wy such that

|f(xlay) - f(fL',y)|Z < n|xl - x|X and |f(xayl) - f(xay)|Z < n|y, - y|Y
for any 2’ € X with |2/ —z|x < L and 3/ € Y with |y — y|y < L. Since f is

o0
a separately pointwise Lipschitz function, Wy = |J FEpnn,- We obtain that there
n,m=1
exist ng,mp € N and an open in E nonempty set W C Wy such that Ey,gm, is
dense in W, provided Wy is an open set in a Baire space F.

Choose the open balls U; and V; with radius % in the spaces X and Y,
respectively, such that Wy = (U; x Vi) N W # . Let us show that the function
f satisfies a Lipschitz condition on the set W with the constant 2ng with respect
to the maximum metric |- — - |xxy on X x Y.

Let p1 = (x1,y1),p2 = (z2,y2) € Wi. Fix arbitrary £,6 > 0. Since f is
continuous in the first variable at points p; and p2 and the set Ey, is dense in

Wy, there exist (Z1,91), (Z2,792) € W1 N Epym, such that
lz1 — Z1|x <6, |y1 — ily <6, |12 — Falx <6, y2 — 2ly <4,

|f(z1,91) — f(Z1,91)|z < e and |f(w2,y2) — f(T2,92)|z <e.
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Then

|f(p1) — f(p2)lz < |f(@1,01) — f(@,y0)lz + [ f(@n90) — f(@1,01)]2

(@1, 01) = f(Z1,92) 2 + [f(@1,82) — f(Z2,92) |z + | f(Z2,92) — (T2, 92) 2
+[f(Z2,y2) — f(®2,y2)|z < € +nolyr — Galy +nolf1 — Gely + nolZ1 — Talx

+no|92 — yoly + € < 2e + 20n0 + no(|lyr — yoly + 20) + no(|z1 — z2|x + 29)
= 2e + 6dng + no(|z1 — T2|x + [y1 — yaly) < 26 +6dn0 + 2n0|p1 — p2|xxy-

Tending € and 0 to zero, we obtain

|f(p1) = f(p2)lz < 2nolp1 — p2|xxv-

Hence, f|g is continuous on the set W7j. ]

Note that the obtained property of separately pointwise Lipschitz mappings
is new, but for the real-valued separately differentiable functions of two variables
this property can be obtained from the analog of Th. 2.2, which was presented
in [1]. Besides, in [6] it was proved that the discontinuity point set of function of
two real variables, which is differentiable in the first variable and continuous in
the second one, is nowhere dense. This result was generalized in [7].

For a topological space X and a set A C X, by A we denote the closure of A
in X.

The following characterization was obtained in [1] for the real-valued functions
of one real variable.

Theorem 3.2. Let X C R be a nonempty interval, (Y,|-—-|y) be a met-
ric space, f : X = Y be a continuous pointwise changeable on every closed set
mapping. Then f is constant.

|f(z2)=f(z)|y

lz2—21]

every x € X put g(x) = (isngsup{r(xl,xg) x—0<z1 <x9 <T+}
>

Proof. Forany zy,z0 € X, 1 # 29 put r(z1,22) = and for

Let us show that for any a,b € X, a < b, there exists a point ¢ € [a;b] such
that g(c) > r(a,b).
Let a <z <y <z <b Then r(z,z) < L=r(z,y) + Z=2r(y,z). Hence,
r(z,z) < r(z,y) or r(z,z) < r(y,z). Now it is easy to construct the sequence
I,)22, of segments I,, = [an;by] C [a;b] such that lim (b, —a,) =0, I+ C I,
n—o0

oo
and r(an,bn) > r(a,b) for every n € N. Then, for point ¢ € [) I, we have

n=1
g(c) 2 r(a,b).
Therefore, if a,b € X, ¢ > 0 and g(z) < ¢ for any z € (a,b) C X, then
r(z,y) < e for any z,y € (a;b), what implies r(a, b) < ¢, provided f is continuous.
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Assume that f is not constant. Then there exists ¢ > 0 such that F = {z €
X :g(xz) > e} # . Since f is pointwise changeable on the set F' = E, there
exist g € E and 6 > 0 such that r(z,y) < e for any distinct z,y € FNU, where
U = (zg— 0 + 9).

Let x,y € U be arbitrary distinct points. Let us show that r(z,y) <e.
We assume that = < y. First consider the case of z,y & F. If (z;y)NF = O, then
(z;9) NE =@ and r(z,y) < e. Let (z;y) N F # . Choose the points u,v € F
such that x < u < v <y, (z;u) NF = @ and (v;y) N F = @. Then, as above,
r(z,u) <eand r(v,y) <e. If u < v, then

u—T v—u —v

r(z,u) + r(u,v) + i
y—x y—r y—r

r(z,y) = r(v,y),

therefore r(x,y) < e. When u = v, we use the equality

u_xr(x,u) + 422
y—x y—x
In the case of x € F or y € F we use analogous reasons.
Thus, sup{r(z,y) : o —0 < z < y < 29+ 0} < e. Then g(zy) < ¢, what
contradicts to zp € E. [ ]

r(z,y) = r(u, y)-

Corollary 3.3. Let X be an arbitrary normed space, (Y,|-—-|y) be a met-
ric space, f : X — Y be a continuous pointwise changeable on every closed set
mapping. Then f is constant.

Proof. Itisenough to prove that f(z) = f(0) for any z € X.
Let zg € X, zg # 0, be an arbitrary point. Consider the function ¢ : R = Y,

g(a) = f(axp). Since |a — | = Hx—IOHHO‘xU — Bzl and f is a continuous pointwise
changeable on every closed set mapping, ¢ satisfies the conditions of Th. 3.2.
Therefore, g is constant and f(z¢) = g(1) = g(0) = £(0). ]

The following two examples demonstrate that there is no analogous property
for the mappings defined on an arbitrary metric space and, on the other hand,
this property does not have any equivalent formulation in topological terms.

Example 3.4. Let (X,|-—-|x) be a metric space with the discrete metric,
ie., |r1 —zo|x =1 when 1 # x93, and (Y, |- —- |y) be an arbitrary metric space.
Then every mapping f : X — Y is continuous and pointwise changeable on every
closed set.

Example 35 Let0<p<1andR, beareal line with the metric |z —y|,
= |z — y[P. Then the identical map f : R, = R, f(z) = , is a homeomorphism
of pointwise changeable on every closed set.
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4. The Equation f; + f; = 0.

In this section we give a positive answer to Question 1.1.

Actually, the following theorem was proved in [1], but R. Baire instead of
continuity of function f on respective lines put on f a stronger condition of joint
continuity.

Theorem 4.1. Let f : R2 — R be a separately differentiable function and
c € R such that the restriction of function f to the set A = {(x,y) € R? : y—z = ¢}
is continuous and fy(p)~+f,(p) = 0 for every p € A. Then the function g: R — R,
g(x) = f(r,c+ x), is constant.

Proof  Since cosa(q,p) = sina(q,p) for any distinct points p,q € A,
Th. 2.2 implies that the continuous function ¢ is pointwise changeable on every
closed set. It remains to apply Th. 3.2. [

In the proof of the main result we will use the following auxiliary fact.

Lemma 4.2. Let I = (a;b) C R be an arbitrary nonempty interval, ¢ € R,
§>0, W={(z,y) eR:xel,ly—z—c/ <6}, f:RZE=>Randg: R - R
be such separately continuous functions that f(z,y) = g(z,y) for any (z,y) € W.
Then f(z,y) = g(z,y) for any (z,y) € W.

Proof. Letzy=aand |yy—zo—c| <. Then f(xo,y0) = lirriof(x,yg) =
T—ra
lim g(z,y0) = g(z0,y0). Analogously, if zyg = b and |yg — zo — ¢| < 6, then
z—a+0
f(zo,90) = g(zo, yo)-
Now let g = a and yo — x9p — ¢ = 6. Then f(zp,yp) = lim Of(xg,y) =
Yy—Yo—
lim Og(xo,y) = g(zo,y0). We use analogous reasons in the case of 29 = a and

Yy—Yo
Yo — o — ¢ = —0, or g = b and yg — 29 — ¢ = £4. [

Let X be a topological space, g € X, U be a system of all neighborhoods

of point zp in X, (Y,|- —-|y) be a metric space and f: X — Y. Recall that a

real wy(zo) = inf  sup |f(z') — f(z")]y is called the oscillation of mapping f
Ueld 2, o' el

at xg.

Now let us prove our main result.

Theorem 4.3. Let f : R? — R be a separately differentiable function such
that f(p) + f,;(p) = 0 for every p € R*. Then for any ¢ € R the function f is
constant on the set A = {(r,y) € R? 1y —x = c}.

Proof. According to Th. 4.1 it is enough to prove that f is continuous.

Assume that the discontinuity point set E of function f is nonempty. Theo-
rem 3.1 implies that there exists a point pyg = (xg,yp) € E, in which function f|g
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is continuous. Denote € = wy (po), co = yo — xp and choose d1, 62 > 0 such that for
any point p € EW, where W = {(z,y) € R? : |z —z0| < 61, |y —z —co| < da},
the inequality |f(p) — f(po)| < 5 holds. Note that for any point ¢ € W with
|f(q) — f(po)| > 5 the function f is continuous at q.

Consider the continuous function ¢ : R? — R, g(z,y) = f(z0, 20 +y — ) and
show that f(p) = g(p) for any point p € W with [f(p) — f(po)| > 5.

Let py = (z1,y1) € W, besides, |f(p1) — f(po)| > 5. Choose d > 0 such that
|f(z1,y) — f(20,90)| > 5 and (z1,y) € W for any y € [y1 — d;y1 + J].

Denote by Z the system of all nonempty open intervals I C (zg — d1; 2o + 01)
such that 1 € I and |f(z,y) — f(wo,y0)| > § for any x € I and y € R with
ly —z — 1| < 6, where ¢; = y; — 1. Note that f is continuous at every point
of compact set K = {(z1,y) : y € [y1 — ;41 + 6]}. Therefore the system 7 is
nonempty.

Put Iy = (a;0) = Y I and Wy = {(z,y) € R%2 : 2z € Iy, |y — 7 — c1]| < 6}.
IeT
Since |f(p) — f(po)| > 5 for every p € Wy C W, the function f is continuous at

every point from Wj. According to Th. 2.2, the function p(z) = f(z,c + z) is
pointwise changeable on I, and therefore, according to Th. 3.2, ¢ is constant on
I for every ¢ € [c1 — d;¢1 + 0], ie, f(z,y) = f(r,2+y—2x) = flz1,21 +y — 2)
for any (x,y) € W.

Let us show that Iy = (z¢g — d1;20 + 01). Assume that ¢ > 29 — d;. Then
Lem. 4.2 implies f(z,y) = f(z1,z1+y—z) for any (z,y) € W1, besides, f(a,y) =
f(z1,21+y—a) for any y € [a+c1 —0;a+c1 +d]. Note that (z1;21+y—a) € K
if y € [a+c1 —d;a +cy + 6], then |f(p) — f(po)| > 5 for every p € K;, where
K, = {(a,y) : ly —a —c1| < d}. Since K; C W, the function f is continuous
at every point from the set K. Hence, there exists a nonempty interval I; C
(0 — 61; 0 +61) such that a € I; and |f(z,y) — f(w0,%0)| > 5 for any x € I and
y € Rwith |y —2 —¢;| <0. Then Iy|JI) € Z, what is contrary to the definition
of set Iy. We use analogous reasons if b < zy + §.

Thus, Iy = ((L‘g — 01510 + (51) Then (:Eo,:Eo -I-Cl) e Wi, f((L‘(),ZEO + 01) =
f(z1, 21 +c1) = f(z1,91), and g(z1,91) = f(20, 70 + 1) = f(21,91).

Since wy(po) = €, then there exists a sequence (g,)p>; of points ¢, = (un,vy)
€ W such that |f(g.) — f(po)| > 5 and nlggo gn = po- Then, using the continuity

of g, we obtain le flgn) = le 9(qn) = g(po) = f(po). But the last equalities

contradict to the choice of (g,)2 ;. |

Corollary 4.4. Letk € R, k # 0, f : R2 = R be such a separately dif-
ferentiable function that f;(p) + kf,(p) = 0 for every p € R?. Then there exists
a differentiable function p : R — R such that f(x,y) = @(kz—y) for any x,y € R.
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5. Equations for Separately L-Differentiable Functions

In this section we apply Th. 4.3 for solving differential equations in
abstract spaces.

Let X be a vector space, Z be a set and L be a system of functions [ : Z — R.
We say that a mapping f : X — Z is L-differentiable at xo € X if for arbitrary
h € X and [ € L the function g : R — R, g(t) = I(f(zo + th)), is differentiable

at typ = 0, i.e., there exists A(h,l) = lim l(f(IOJ“th)t)*l(f(IO)). The mapping A :

t—0

X x L — R is called L-derivative of f at xg and is denoted by D f(zg). Besides,
we denote D f(xy)(h,l) by D f(xg,h,l).

A mapping f : X — Z is called L-differentiable if f is L-differentiable at every
point x € X.

Recall that a system L of functions defined on a set Z separates points from Z
if for arbitrary distinct points z1, 2z € Z there exists [ € L such that [(z1) # [(22).

Theorem 5.1. Let X be a vector space, Z be a set, L be a system of functions
defined on Z which separates points from Z, and f: X% — Z be a separately
L-differentiable mappings such that

Df*(y) + Dfy(z) =0

for every x,y € X. Then there exists an L-differentiable mapping ¢ : X — Z
such that f(z,y) = @(x —y) for every z,y € X.

Proof. Firstly show that f(x,y) = ¢(z —y) for some mapping ¢ : X — Z.
It is enough to prove that f(z1,y1) = f(x2,y2) if 21 — y1 = T2 — yo.

Suppose that there exist z1,y1,z2,y2 € X such that 1 —y; = 2 — yo and
f(z1,y1) = 21 # f(x2,y2) = 2. Since the system L separates points from Z,
there exists [ € L such that [(z1) # [(22). Put h = z2 — 21 = yo — y1 and consider
the function u : R? — R, u(s,t) = I(f(z1 + sh,y1 + th)).

Show that u is a separately differentiable function with ) + uj = 0.

Let sg,t0 € R, 9 = 1 + sph and yg = y1 + toh. Then

l(f(xl + sh,y1 + toh)) — l(f(x1 + sph,y1 + tgh))

ul (s, t9) = lim

550 §— 580
~ lim [(f(wo + (5 — s0)h,90)) — L(f (w0, %0))
$—S0 S — 80
— lim l(fyo(xo + (5 B So)h)) B l(fy0($0)) _ nyo(l,o’ h, l).
S—S0 S — 8o

Analogously, uj(so,to) = Df®™(yo,h,l). Since Df*(yo) + D fy,(zo) = 0,
uls(sﬂato) + ’U/;(Sg,to) =0.
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Thus u satisfies the conditions of Th. 4.3, therefore I(z1) = u(0,0) = u(1,1) =
[(z2) what is contrary to our assumption.

The L-differentiability of ¢ follows from ¢(z) = f(z,0) and L-differentiability
of fy if y =0. [

Let X, Z be topological vector spaces. A mapping f : X — Z is called the
Gateauz differentiable at point xg € X if there exists a linear continuous operator
A: X — Z such that

lim f(zo +th) — f(z0)
t—0 t

= (Azo)(h)

for every h € X. The operator A is called the Gateaur derivative of mapping f
at point xq.

Note that for a Hausdorff topological vector space Z the Gateaux derivative is
unique. A mapping f : X — Z, which is the Gateaux differentiable at every point
x € X, is called the Gateaux differentiable. A mapping D, which assigns to every
Gateaux differentiable mapping f : X — Z the Gateaux derivative mapping,
ie., Df(z) is the Gateaux derivative of f at point z € X, we call the Gateauz
differentiation operator.

Corollary 5.2. Let X be a topological vector space, Z be a topological vector
space such that the conjugate space Z* separates points from Z, and f : X> — Z
be a mapping such that

Df*(y) + Dfy(z) =0

for every x,y € X, where D is a Gateauz differentiation operator for the mapping
acting from X to Z. Then there exists a Gateaur differentiable mapping
v : X = Z such that f(x,y) = o(x —y) for every z, y € X.

Proof Since Z* separates points from Z, Z is a Hausdorff space and the
definition of D is correct. Besides, for arbitrary z,y,h € X and z* € Z* we have

i z*(fy(x+th)t) — 2 (fy(®) _ g%z*<fy(x+tht) - fy(x)) _ (D, (@) (A)
and

o 2 th) — 2 (7 (y)
t—0 t

=2/ (Df*(y)(h)) = =2"(Dfy(x)(h)).

Therefore f is a separately Z*-differentiable mapping and D f%(y) + ﬁfy(x) =0,
where D is the Z*-differentiation operator. Theorem 5.1 implies that there exists
a mapping ¢ : X — Z such that f(z,y) = p(z —y) for every z,y € X. Since
o(z) = f(z,0), p is a Gateaux differentiable mapping. [ |
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6. Higher-Order Equations

Finally, we give the applications of Th. 4.3 for solving higher-order partial
differential equations.

Let n € N and a function f : R?> — R has all n-order partial
derivatives. We denote the sum of all n-order partial derivatives of f by D,f.
Clearly, Dyixf = Dn(Dgf) for every n,k € N and any function f : R2 — R
which has all (n + k)-order partial derivatives.

Theorem 6.1. Let n € N, a function f : R2 — R have all n-order partial
derivatives and Dy, f(p) = 0 for every p € R%. Then there ewist differentiable
functions p1,...,pn : R = R such that

fay)=pi@—y)+@+y)pz—y)+- -+ (@+y)" onlz—y)

for every xz,y € R.

P roof. The proof is by induction in n.

For n =1 it follows from Th. 4.3.

Assume that our assertion is true for some n = k and prove it for n = k + 1.

Let f : R? — R be a function which has all (k + 1)-order partial derivatives
and Dy1f(p) = 0 for every p € R2.

Put ¢ = Dy f. Since Dyg = Dgy1f = 0, the assumption implies that there
exist differentiable functions ¢1,...,%, : R — R such that

g(z,y) =1z —y) + (@ +ype(z —y) + -+ (@ + ) hp(z —y).
Denote @;1 = Q%.z,bi if 1 <7<k, and put

w(z,y) = (T +y)e2(z —y) + (2 +y)°p3(z —y) + - + (+ y) i1 (z — ).
Then

Diu(z,y) = 2p2(z —y) + 4z + y)ps(z —y) + -+ 2k(z + 1) T ppp(z — )

=pi(z—y) + (@ +y)pa (@ —y)+- -+ @+ r(z —y) = g(2,y) = Dif(=,y).
Thus Di(f —u) = 0 and Th. 4.3 implies that there exists a differentiable
function ¢y : R — R such that f(z,y) = o1(z,y) + u(z,y). [ ]

Theorem 6.2. Let a function f : R2 — R have all second-order partial
derivatives and

fra(®) = fyy(p) and  f7,(p) = fy(p)
for every p € R?. Then there exist twice differentiable functions @, : R = R
such that
flz,y) = plz+y) + ¢z —y)

for every x,y € R.

264 Journal of Mathematical Physics, Analysis, Geometry, 2008, vol. 4, No. 2



Solving of Partial Differential Equations under Minimal Conditions

Proof Consider the function g : R* = R, g(p) = f1(p) — f,(p). Then

9:(p) + 95(p) = fr2(p) — fyz(p) + f2y(p) — f(p) = 0. Theorem 4.3 implies that
there exists a differentiable function ¢ : R — R such that g(z,y) = ¥ (z — y).
Choose some twice differentiable function 1 : R — R such that 21’ = ¢ and

consider the function f(w, y) = f(z,y) —¢¥(x —y). Then

falzy) = folz,y) = folz,y) — fol,y) — 24/ (z — y) = g(z,y) — g(z,y) = 0.

Therefore, Cor. 4.4 implies that there exists a differentiable function ¢ : R — R
such that f(z,y) = p(z+y), i.e., f(z,y) = p(z+y)+(x—y) for every z, y € R.
Since p(z) = f(z,0) — (), ¢ is a twice differentiable function. |

Remarks. The existence of f;}, and f; for a function f : R?> — R does
not imply the existence of f; and f;,. For example, the Schwartz function

22y ; 2 2 .
o) =4 7o LTy 0
0, if z=y=0,
is a separately infinite differentiable function, but f;, (0,0) and f;(0,0) do not
exist.
On the other hand, the existence of all second-order partial derivatives of
function f : R? — R and the equality zy = [y do not imply the joint continuity

of f. Really, the function

3,3 )
fly) = iﬁx—fyﬁ, if 2%+ y5 £ 0;
’ 0, if z=y=0,

no _ r£n

has all second-order partial derivatives, besides, f;, = f,, on R? and f is jointly
discontinuous at (0,0).

In this connection the following question arises naturally.

Question 6.3. Let a function f : R2 — R have partial derivatives f!. and

" and

vy’ 1/ 1/
22(P) = fyy(D)

for every p € R?. Do there exist twice differentiable functions @, : R — R such
that

fla,y) = ez +y) + Pz —y)
for every x,y € R?
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