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1. Introduction
The aim of the paper is to give a geometric interpretation of the Euler—

Lagrange operator. The problem considered here will be described in terms of
fibre bundle theory. First, let us consider a functional of the form

I[y] = /F(x,y(m),...,y(o‘)(x),...)dkx, (1)

Q
where Q is a domain in R*, y : @ — R™ is a smooth function, o = (iy, ..., %)
denotes a multiindex, and 3(® = DAZL@/‘ We assume here that the functional (1)

has a finite rank (say N), which means that F' depends only on partial derivatives
(@) of the rank less or equal n. It is well known [1, 2] that the Euler-Lagrange
equations

lot]
Z(—1)‘a|g - af;) =0 for i=1,2,...,m, (2)
@ z ayz

are necessary conditions for the extremum of the functional (1) in a suitable
class of functions satisfying the well-known boundary conditions. These equations
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imply that for any vector field h : @ — R™ the form

Dlal oF
1)lel
opF = E:h E: Dt 5, (3)

is identically equal to zero on the extreme of the functional. The operator ¢ is
called the Euler—Lagrange operator. This operator can be expressed in the form

|| 18]
ot ;(g—xﬁ«x—xom») W

)

To show the equality of the formulas (3) and (4), it is enough to use the identity
SR(=DR(G) (’f) = (—=1)"0p,; and the Leibnitz rule. Using the following differen-
tial operators

OF
ViF = 0= (5)
" 8%(,3)
and (Vh{a}F)x = (thOF)m:x, where hi (z) = (z — 29)*h(z), we have

(=Dl plel ol g
onF = za: TDma( F). (6)

W.M. Tulczyjew [2] considered the analogous to (6) expressions for jet bundles
in a local system of coordinates. The aim of the paper is to give a geometrical
formulation of the problem. For the functionals of rank one, the invariant formula
for the Euler-Lagrange equation is known [3, 4]. In [5] the authors considered
the Euler-Lagrange equation invariant with respect to a Lie group. In this paper
we will generalize (6) to the functionals defined on a fibre bundle, and the result
will be obtained without using the coordinate system. Here we deal with the
functionals of arbitrary but finite rank. The paper is organized as follows. In
Section 2 we introduce some notation concerning fibre bundles, jets and differential
operators. In Section 3 we define what an almost S(M)-multilinear map between
the sections of vector bundles is (S(M) denotes here the ring of smooth real
functions on M). By a smooth function on a C, manifold we understand any
C, function. The trace defined here can be considered as a generalization of the
trace of matrices or linear operators. In Section 4 we deal with the adjoint of
differential operators. In Section 5 we consider the jet vertical derivative on fibre
bundles. Further, using the adjoint of differential operators, we give an invariant
expression for the Euler-Lagrange operator by means of the trace of a suitable
almost bilinear map (61) which is the main result of the paper.
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2. Notation

All the manifolds considered in this paper have finite dimensions and we deal
only with differential bundles. Let us consider the following notation for the
homomorphism of vector bundles. Let C=7: K — X, E =p: E — Y be
given vector bundles, and f: X — Y be a map. A map a: K — F is called
a homomorphism of the vector bundles K and & over f, if poa = f om, and the
restriction 04|IE(J;(”) : Ky — Ej(y) is a linear homomorphism for any z € X. We
denote the set of all homomorphisms of these bundles over f by HOM/((K,E).
In the case X =Y , f =idx we write HOM(K, ) instead of HOM;q_ (K, E).

For a bundle £ =7 : E — M by V& we denote the vertical bundle of £ and
by J"E — the n—th jet extension of £ [6, 7]. We denote the total space of J"E
also by J™E and so on. The maps

™ JE — M, w1 J"E — JFE for k<n (7)

denote suitable projections. For a local section s of the bundle &£, [s]™ denote the
lifting of s to J"E. If the bundle £ is a vector bundle, then J"& is also a vector
bundle.

A linear differential operator D of the rank less or equal n from a vector bundle
& =m : By — M to a vector bundle & = w5 : Ey — M can be treated as a
homomorphism of the vector bundles J™&; and &y over idys. The bundle of these
operators is denoted by Ldiff"(&;,&). In particular, Ldiff’(£;, &) is isomorphic
to HOM(E1, ). In the case £ = & we write Ldiff” (€;) instead of Ldiff” (&1, &1).
For any f € S(M) by m; € I'(Ldiff’(£)) we understand the differential operator
of the rank 0 of multiplication by the function f.

So, we regard the vector bundle Ldiff” (M, R) of the linear differential opera-
tors acting on S(M) of the rank less or equal n as a dual one to the n—th jet bundle
J"(M,R). There exist two kinds of multiplication of functions and sections of
the n—th jet bundle J"(M,R):

(fm)e = f(z)ne and (f xn)e = [flz , (8)

where z € M, f € S(M), n e I'(J"(M,R)), and g € S(M) is a representative of
ng. For any D € T'(Ldiff” (M, R)) the following equalities

D(fn) = fD(n) and (D(f +n))(z) = (D(fg))(x) (9)
are fulfilled. The consequence of the second formula in (9) is
(Dmg)(n) = D(f *n). (10)

We use the following notation. A bundle 7 : P — B is denoted as Pg if the
projection is obvious.
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Now, let the map £€ = 7 : E — M be a bundle, not necessarily a vector
bundle. Using this notation, we can write the equality

(T ((VE M) gne = (V(T"E)) gme, (11)

which is a very well-known canonical isomorphism [3, 6] of the bundles over J"E.
The following equality

T (VEM) = (V(T"E))m (12)

is an analogue of (11) for the bundles over M.
Further, let

E=nm:EFE—M, Kp=p:K—FE, Kpy=7mop: K—M (13)
be given bundles. Then we put
(T"Kar)gre = T"(p) : T"Kny — T"E (14)
where the projection is given by the formula

J"(p)([olz) = [pealz, (15)

and o is a local section of KCps in a neighborhood of x € M.

If the bundle Kg in (13) is a vector bundle, then there exists a pointwise
multiplication of functions on M and sections of Kps. For any f € S(M) and X
being a local section of s in a neighborhood z € M, we can put

(fX)e = f(2) X, (16)

because X, is an element of the total space of the bundle K. Moreover, either
the composition p o X or po (fX) is the same section of £. In a similar way one
can define the addition of local sections X,Y of Ky for the case po X =poY.

One can also define two kinds of multiplication of functions and local sections
of J"(Kypr) in the following way:

(fh)e = f(x)he and (f xh)s = [fX]7 , (17)

where z € M, and h is a local section of J"(Kps) such that h, = [X]2.
Moreover, we put

(nh)e = (f % h)z for n € T(T"(M,R)), ne = [[]z- (18)
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3. Almost Multilinearity and Trace

Let & =p; : B — M, i=1,...,n, and P =7 : P — M be given vector
bundles. An R—multilinear map

A:T(E) X T(E) X ... x T(En) — T(P) (19)
will be called almost S(M)-multilinear if the equalities
A(faq,ag,...,an) = Alaq, fag,...,ay) = ... = Alag, a9, ..., fay) (20)

are satisfied for any sections «; € T'(&;) and a smooth function f € S(M).
Any almost S(M)—multilinear map A can be treated as an R-linear map

A:TERER--E,) — T(P) (21)
given by
Al @ e ® ... Q@ ay) = Alaq, gy ..., ). (22)

Example 1.

Any S(M)-multilinear map is an almost S(M)-multilinear map.

Example II.

A Lie bracket [,] : T(TM) x T'(TM) — I'(TM) of vector fields is not an
almost S(M)-bilinear map.

Example III.

The map A : T'(T'M) x F(/\'M‘M) — F(/\'M‘M) given by formula A(X,w) =
Lxw is an almost S(M)-bilinear map, where Lx is the Lie derivation and |M|
denotes a dimension of M. Certainly,

A(fX,w) = Lyxw = (Ox flw + fLxw = Lx(fw) = A(X, fw).

Let us notice that for w € I(A*M) the expression Lxw is not an almost S(M)-
bilinear one for k < |M].

For the case when n =2, &, = &€ and & = £*, where £ : E — M is a vector
bundle, we can define the trace of map A by the following formula:

TrA = A(idpg)), (23)
where we treat the bundle £ ® £* as End(€) using the identification
(4@ v")(w) = v* (w)u. (24)
For two sections T, Ty € T'(End(£)) we put

lT1T2 = T1T2 5 ’I“TITQ == T2T1. (25)
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Then, from (23) we get
Tr(Aolr) =Tr(Aory) = A(T) (26)

for any T € I'(End(€&)).

Example IV.

The trace of a linear endomorphism.
Let V be a real k-dimensional space. Let A be an endomorphism of V' and [A;]
be a representation of A in a basis (e;)i=1,. x in V,

Al =e'(Aej), i,j=1,....k, (27)
where (ei)i:L___,k is the dual basis to e;, it means that
e'(ef) = (5; (28)
Further, using the Eq.(24), we can write the decomposition of idy in the way:
idy =) ei®¢. (29)
i
Certainly, for any basis vector e; we have
(Z ei®e)ej = Z (ej)ei = 25 e; = ej. (30)
i i

So, the right side of the Eq.(29) is the idy. Moreover,
Aidy) = Z e;@e)=> Al =TrA (31)

This example shows that our definition of the trace is a generalization of the trace
of a linear endomorphism.
Example V. (The Taylor expansion in terms of jets.)

Lemma. Let f € S(M) be a smooth function and the S(M)-bilinear map

Ap:T(J"(M,R)) x I'(Ldiff"(M,R)) — ['(J"(M,R)) (32)
be given by the formula
Af(n, D) = (Df)n. (33)
Then for any point z € M the equality
(TrAg)e = [f]2 (34)

18 fulfilled.
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P r o o f. The proof follows immediately from the definition of the trace (23).

Remark. Onecan treat the equality (34) as the Taylor formula in the Peano
form. The basis of J! (M,R) given by en = [fa]},, where fu(z) = (Z — 20)?, is
a dual one to the basis e® = ég‘—;al of differential operators, for any choice of a
chart ¢ at a neighborhood of the point z(, where ZZ = () denotes coordinates
of z. Certainly,

1 Dlol
— = _~\B —
T o Die (@ — 70)" |o=ap = 5,%, (35)

and ), e“e, is the identity operator in the space of jets J,: (M, R).

e“es

4. Adjoint of Differential Operators

Let us define the adjoint of differential operators

|M]

*: T(Ldiff(M, R)) — T(Ldiff(A" M)). (36)

For any function f € S(M) and any vector field X on M we put
(my)* =my, (0x)" = —Lx. (37)

We also put
(D1Dy)* = D3D} (38)

for Dy, Dy € T'(Ldiff(M,R)).

By a domain in M we understand here an |M|-dimensional oriented compact
connected submanifold Q of M with boundary 0€2. The operation of taking the
adjoint satisfies the following integral formula:

[@s1e= [ 1) (39)
Q

Q

for any differential operator D € I'(Ldiff"(M,R), with ©Q being a domain in M,
f e S(M) and w € T(AMM) such that [fw]” s = 0. The Equation (39) is
a consequence of integration by parts the formula

/(3Xf)w=/fixw—/fLXW, (40)
40 0

Q

where X € I'(TM).
Now we can formulate the following theorem.

Theorem 1. Let

E=nm:EFE—M, Kp=p:K—FE, Ky=mop: K— M (41)
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be given bundles, where Kg is a vector bundle. Let Q be a domain in M, and
n |M] n
w € HOMx (J"Kar)geelg, \ Q)5 h € D(IT™(Kar)la), (42)

where Q = (77)~1(Q). Let the map

|M|

AY - T(J™(Q,R)) x T(LAiff*(Q,R)) — I'( Q) (43)
be given by the formula
Aj(n, D) = D*(w(nh)). (44)
Then A} is an almost S(M)-bilinear map, and the equality
Ted,, = FTeAf (45)
holds for any smooth function f.
First, let us prove the following:
Lemma. The map A} satisfies the equalities:
Af.p(n, D) = A§(f *n, D) (46)
and
A5 (n, D omy) = fAR(n, D). (47)
The proof of the lemm a.
We can write
Fen (1, D) = D*(w(n(f = h))) = D*(w((f = n)h)) = A7 (f *n,D) , (48)
because n(f * h) = (f * n)h. The formula (47) is a consequence of the fact
(Dmf)* = fD |

The proof of Theorem 1. Using the identification (22), we can
write the equality (46) as

A, = Ap oLy (49)
Further, from (10, 47) we get

Ay orp = fA}. (50)
So, from Eq.(26) we obtain Eq.(45). |
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5. Euler—Lagrange Operator
Let £ =p: E — M be a fibre bundle (not necessarily a vector bundle), and
M
F:J" — /\‘ M (51)

be a fibre map (over idys). The map (51) induces the functional of the form

1= [ P, (52)
Q
where s denotes a section of £ over the domain Q C M.

Let X be a local section of (V&) over a neighborhood of x € M and let oy,
t € (—¢,€) be a one-parameter family of local sections of £ such that

d
X dtO't|t 0- (53)
The expression
d
(VxF)y = 2 F([ow]z) =0 (54)

is a vertical jet derivative of the map F at point x in the direction of field X. It
is well known that (Vx F), depends on the n-th jet of X at z. So, we can put

Vi F = (VxF), (55)

for h = [X]?

n.
R em ark. The derivative operator (5) is an analogue of the operator (54).
The field X in (54) corresponds to the field h in (5).
Now let h be a local section of J*"((VE)m) = (V(I™E))ar- The vertical jet
derivative satisfies the following equalities:

thF = thF, (VfXF);p = (Vf*hF):va (56)

where z € M and X is a local section of (V&)s|q such that [X]? = hy.
The Euler-Lagrange operator dx for the functional (52) is uniquely determined
by the following two conditions:

SixF = foxF (57)

(it means that the operator ¢ is S(M)-linear with respect to the field X), and

/ SxF = / Vi F (59)
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for any X over Q such that [X]" !|sq = 0.
The following theorem expresses the Euler-Lagrange operator by means of the
trace of an S(M)-bilinear map.

Theorem 2. Let F : J"E — /\‘M|M be a fibre map overidas, Q be a domain
m M, and
A T(J"(Q,R)) x D(Ldiff"(Q,R)) — T(/\ Q) (59)
be given by the formula
Ay (n,D) = D* (Vi F) (60)
for h € T(T"(VE)m)|a). Then AL is an almost S(M)-bilinear map, and the
trace TrA&]n 1s the Euler—Lagrange operator
OxF = TrAfx. (61)

for any X e T((VE)m)|a)-

Proof. Let Ay F := TrAf. Theorem 1 shows that the equality Ag,,F =
fARLF is fulfilled for any smooth function f € S(M). Now let us consider an
operator of the form D o dy for D € T'(Ldiff* *(M,R)), where k < n and Y €
I(TM). Let n € T'(J"(M,R)) be a section of the class of infinitesimal jets of
rank k. It means that D'(n) = 0 for any operator D’ of the rank lower than k. So

[ (D00 Ve F) = [ iy (D" (oo ) =0 (62)
Q o0N

for [X]("~D|5q = 0. The bundle Ldiff*(M,R) can be decomposed into the direct
sum

Ldiff"(M,R) = Ldiff’(M,R) @ Ldiff*}(M,R), (63)

where Ldiff? (M, R) is the bundle of vanishing on constant functions operators of
rank 0 (multiplication by functions) and Ldiff>! (M, R) is the bundle of operators
of the rank not higher than n.

The decomposition of J"(M,R), dual to (63), is

J"(M,R) = J"°(M,R) ® I (M,R), (64)

where J™°(M,R) is the bundle of jets represented by locally constant functions
and J™!'(M,R) is the bundle of infinitesimal jets. We can decompose Ay F

ApF = Te" AN + vt A) (65)
in accordance with (63, 64). So

TP Ay = A (1], ma) = Vi F,
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and from (62) we obtain

/ T Afypn =0
Q

for [X]" 1|sq = 0. |

R em ar k. Our formalism gives a geometric approach to the theory without
using local coordinates. W.M. Tulczyjew considered the bundles of jets of infinite
rank J°°(&). In the paper [2] there was introduced a family of operators 6z acting
on differential forms on J°°(€). Using these operators, W.M. Tulczyjew derived
an expression analogous to the formula (6). We have given here a definition of
the Euler-Lagrange operator by means of the trace of an almost S(M)-bilinear
map.

In a local coordinate the Taylor formula and the Euler—Lagrange operator are
given by means of differential operators of the form g‘—;al, which commute each
other, that is a consequence of the Schwarz theorem. Our approach is global and
it can be applied to a noncommutative basis of differential operators. The way
is natural for to study functionals on the noncommutative Lie groups. The first
order operators can be globally defined as the left-invariant vector fields and they
form Lie algebra of the group. Any left-invariant differential operator is a linear
combination of compositions of the first order operators. Using a suitable basis
in the space of the left-invariant differential operators we can study globally the
Euler-Lagrange operators on Lie groups.
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