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1. Introduction

The aim of the paper is to give a geometric interpretation of the Euler�

Lagrange operator. The problem considered here will be described in terms of

�bre bundle theory. First, let us consider a functional of the form

I[y] =

Z



F (x; y(x); : : : ; y(�)(x); : : :)dkx; (1)

where 
 is a domain in Rk, y : 
 �! R
m is a smooth function, � = (i1; : : : ; ik)

denotes a multiindex, and y(�) = D
j�j

y

Dx�
. We assume here that the functional (1)

has a �nite rank (say N), which means that F depends only on partial derivatives

y(�) of the rank less or equal n. It is well known [1, 2] that the Euler�Lagrange

equations X
�

(�1)j�j
Dj�j

Dx�
@F

@y
(�)
i

= 0 for i = 1; 2; : : : ;m; (2)

are necessary conditions for the extremum of the functional (1) in a suitable

class of functions satisfying the well-known boundary conditions. These equations
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imply that for any vector �eld h : 
 �! R
m the form

ÆhF =
X
i

hi
X
�

(�1)j�j
Dj�j

Dx�
@F

@y
(�)
i

(3)

is identically equal to zero on the extreme of the functional. The operator Æh is

called the Euler�Lagrange operator. This operator can be expressed in the form

ÆhF =
X
i;�

(�1)j�j

�!

8<:Dj�j

Dx�

24X
�

 
Dj�j

Dx�
((x� x0)

�hi(x))

!
x0=x

@F

@y
(�)
i

359=; : (4)

To show the equality of the formulas (3) and (4), it is enough to use the identityP
k
(�1)k

�
n

k

��
k

l

�
= (�1)nÆn;l and the Leibnitz rule. Using the following di�eren-

tial operators

VhF =
X
i;�

h
(�)
i

@F

@y
(�)
i

(5)

and (V
f�g
h

F )x = (Vh�x0
F )x0=x, where h

�
x0
(x) = (x� x0)

�h(x), we have

ÆhF =
X
�

(�1)j�j

�!

Dj�j

Dx�
(V

f�g
h

F ): (6)

W.M. Tulczyjew [2] considered the analogous to (6) expressions for jet bundles

in a local system of coordinates. The aim of the paper is to give a geometrical

formulation of the problem. For the functionals of rank one, the invariant formula

for the Euler�Lagrange equation is known [3, 4]. In [5] the authors considered

the Euler�Lagrange equation invariant with respect to a Lie group. In this paper

we will generalize (6) to the functionals de�ned on a �bre bundle, and the result

will be obtained without using the coordinate system. Here we deal with the

functionals of arbitrary but �nite rank. The paper is organized as follows. In

Section 2 we introduce some notation concerning �bre bundles, jets and di�erential

operators. In Section 3 we de�ne what an almost S(M)�multilinear map between

the sections of vector bundles is (S(M) denotes here the ring of smooth real

functions on M). By a smooth function on a Cr manifold we understand any

Cr function. The trace de�ned here can be considered as a generalization of the

trace of matrices or linear operators. In Section 4 we deal with the adjoint of

di�erential operators. In Section 5 we consider the jet vertical derivative on �bre

bundles. Further, using the adjoint of di�erential operators, we give an invariant

expression for the Euler�Lagrange operator by means of the trace of a suitable

almost bilinear map (61) which is the main result of the paper.
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2. Notation

All the manifolds considered in this paper have �nite dimensions and we deal

only with di�erential bundles. Let us consider the following notation for the

homomorphism of vector bundles. Let K = � : K �! X, E = p : E �! Y be

given vector bundles, and f : X �! Y be a map. A map � : K �! E is called

a homomorphism of the vector bundles K and E over f , if p Æ � = f Æ �, and the

restriction �j
Ef(x)

Kx
: Kx �! Ef(x) is a linear homomorphism for any x 2 X. We

denote the set of all homomorphisms of these bundles over f by HOMf (K; E).
In the case X = Y , f = idX we write HOM(K; E) instead of HOMidX (K; E).

For a bundle E = � : E �!M by V E we denote the vertical bundle of E and

by J n
E � the n�th jet extension of E [6, 7]. We denote the total space of J n

E

also by J n
E and so on. The maps

�n : J n
E �!M ; �n

k
: J n

E �! J
k
E for k � n (7)

denote suitable projections. For a local section s of the bundle E , [s]n denote the

lifting of s to J n
E . If the bundle E is a vector bundle, then J n

E is also a vector

bundle.

A linear di�erential operator D of the rank less or equal n from a vector bundle

E1 = �1 : E1 �! M to a vector bundle E2 = �2 : E2 �! M can be treated as a

homomorphism of the vector bundles J n
E1 and E2 over idM . The bundle of these

operators is denoted by Ldi�n(E1; E2). In particular, Ldi�0(E1; E2) is isomorphic

to HOM(E1; E2). In the case E1 = E2 we write Ldi�
n(E1) instead of Ldi�n(E1; E1).

For any f 2 S(M) by mf 2 �(Ldi�0(E)) we understand the di�erential operator

of the rank 0 of multiplication by the function f .

So, we regard the vector bundle Ldi�n(M;R) of the linear di�erential opera-
tors acting on S(M) of the rank less or equal n as a dual one to the n�th jet bundle

J
n(M;R). There exist two kinds of multiplication of functions and sections of

the n�th jet bundle J n(M;R):

(f�)x = f(x)�x and (f � �)x = [fg]n
x
; (8)

where x 2M , f 2 S(M), � 2 �(J n(M;R)), and g 2 S(M) is a representative of

�x. For any D 2 �(Ldi�n(M;R)) the following equalities

D(f�) = fD(�) and (D(f � �))(x) = (D(fg))(x) (9)

are ful�lled. The consequence of the second formula in (9) is

(Dmf )(�) = D(f � �): (10)

We use the following notation. A bundle � : P �! B is denoted as PB if the

projection is obvious.
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Now, let the map E = � : E �! M be a bundle, not necessarily a vector

bundle. Using this notation, we can write the equality

(J n((V E)M ))J nE = (V (J n
E))J nE ; (11)

which is a very well-known canonical isomorphism [3, 6] of the bundles over J n
E .

The following equality

J
n((V E)M ) = (V (J n

E))M (12)

is an analogue of (11) for the bundles over M .

Further, let

E = � : E �!M ; KE = p : K �! E ; KM = � Æ p : K �!M (13)

be given bundles. Then we put

(J n
KM )J nE = J

n(p) : J n
KM �! J

n
E ; (14)

where the projection is given by the formula

J
n(p)([�]n

x
) = [p Æ �]n

x
; (15)

and � is a local section of KM in a neighborhood of x 2M .

If the bundle KE in (13) is a vector bundle, then there exists a pointwise

multiplication of functions on M and sections of KM . For any f 2 S(M) and X

being a local section of KM in a neighborhood x 2M , we can put

(fX)x = f(x)Xx; (16)

because Xx is an element of the total space of the bundle KE . Moreover, either

the composition p ÆX or p Æ (fX) is the same section of E . In a similar way one

can de�ne the addition of local sections X;Y of KM for the case p ÆX = p Æ Y .

One can also de�ne two kinds of multiplication of functions and local sections

of J n(KM ) in the following way:

(fh)x = f(x)hx and (f � h)x = [fX]n
x
; (17)

where x 2M , and h is a local section of J n(KM ) such that hx = [X]nx .
Moreover, we put

(�h)x = (f � h)x for � 2 �(J n(M;R)); �x = [f ]nx: (18)
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3. Almost Multilinearity and Trace

Let Ei = pi : Ei �! M; i = 1; : : : ; n, and P = � : P �! M be given vector

bundles. An R�multilinear map

A : �(E1)� �(E2)� : : :� �(En) �! �(P) (19)

will be called almost S(M)�multilinear if the equalities

A(f�1; �2; : : : ; �n) = A(�1; f�2; : : : ; �n) = : : : = A(�1; �2; : : : ; f�n) (20)

are satis�ed for any sections �i 2 �(Ei) and a smooth function f 2 S(M).
Any almost S(M)�multilinear map A can be treated as an R�linear map

A : �(E1 
 E2 
 � � � 
 En) �! �(P) (21)

given by

A(�1 
 �2 
 : : :
 �n) = A(�1; �2; : : : ; �n): (22)

Example I.

Any S(M)-multilinear map is an almost S(M)-multilinear map.

Example II.

A Lie bracket [; ] : �(TM) � �(TM) �! �(TM) of vector �elds is not an

almost S(M)�bilinear map.

Example III.

The map A : �(TM)��(
VjM j

M) �! �(
VjM j

M) given by formula A(X;!) =
LX! is an almost S(M)�bilinear map, where LX is the Lie derivation and jM j

denotes a dimension of M . Certainly,

A(fX; !) = LfX! = (@Xf)! + fLX! = LX(f!) = A(X; f!):

Let us notice that for ! 2 �(
V
k
M) the expression LX! is not an almost S(M)-

bilinear one for k < jM j.

For the case when n = 2, E1 = E and E2 = E
�, where E : E �!M is a vector

bundle, we can de�ne the trace of map A by the following formula:

TrA = A(id�(E)); (23)

where we treat the bundle E 
 E� as End(E) using the identi�cation

(u
 v�)(w) = v�(w)u: (24)

For two sections T1; T2 2 �(End(E)) we put

lT1T2 = T1T2 ; rT1T2 = T2T1: (25)
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Then, from (23) we get

Tr(A Æ lT ) = Tr(A Æ rT ) = A(T ) (26)

for any T 2 �(End(E)).
Example IV.

The trace of a linear endomorphism.

Let V be a real k-dimensional space. Let A be an endomorphism of V and [Ai

j
]

be a representation of A in a basis (ei)i=1;:::; k in V ,

Ai

j
= ei(Aej); i; j = 1; : : : ; k; (27)

where (ei)i=1;:::; k is the dual basis to ei, it means that

ei(ej) = Æi
j
: (28)

Further, using the Eq.(24), we can write the decomposition of idV in the way:

idV =
X
i

ei 
 ei: (29)

Certainly, for any basis vector ei we have

(
X
i

ei 
 ei)ej =
X
i

ei(ej)ei =
X
i

Æi
j
ei = ej : (30)

So, the right side of the Eq.(29) is the idV . Moreover,

A(idV ) = A(
X
i

ei 
 ei) =
X
i

Ai

i
= TrA: (31)

This example shows that our de�nition of the trace is a generalization of the trace

of a linear endomorphism.

Example V. (The Taylor expansion in terms of jets.)

Lemma. Let f 2 S(M) be a smooth function and the S(M)-bilinear map

Af : �(J n(M;R)) � �(Ldi�n(M;R)) �! �(J n(M;R)) (32)

be given by the formula

Af (�;D) = (Df)�: (33)

Then for any point x 2M the equality

(TrAf )x = [f ]nx (34)

is ful�lled.
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P r o o f. The proof follows immediately from the de�nition of the trace (23).

R e m a r k. One can treat the equality (34) as the Taylor formula in the Peano

form. The basis of J n

x0
(M;R) given by e� = [f�]

n

x0
, where f�(x) = (ex � ex0)�, is

a dual one to the basis e� = 1
�!

D
j�j

Dex�
of di�erential operators, for any choice of a

chart ' at a neighborhood of the point x0, where ex = '(x) denotes coordinates
of x. Certainly,

e�e� =
1

�!

Dj�j

Dex� (ex� ex0)�jx=x0 = Æ�
�
; (35)

and
P

�
e�e� is the identity operator in the space of jets J n

x0
(M;R).

4. Adjoint of Di�erential Operators

Let us de�ne the adjoint of di�erential operators

� : �(Ldi�(M;R)) �! �(Ldi�(
^jM j

M)): (36)

For any function f 2 S(M) and any vector �eld X on M we put

(mf )
� = mf ; (@X)� = �LX : (37)

We also put

(D1D2)
� = D�

2D
�
1 (38)

for D1;D2 2 �(Ldi�(M;R)).
By a domain in M we understand here an jM j-dimensional oriented compact

connected submanifold 
 of M with boundary @
. The operation of taking the

adjoint satis�es the following integral formula:Z



(Df)! =

Z



f(D�!) (39)

for any di�erential operator D 2 �(Ldi�n(M;R), with 
 being a domain in M ,

f 2 S(M) and ! 2 �(
VjM j

M) such that [f!]n�1
j@
 � 0. The Equation (39) is

a consequence of integration by parts the formulaZ



(@Xf)! =

Z
@


fiX! �

Z



fLX!; (40)

where X 2 �(TM).
Now we can formulate the following theorem.

Theorem 1. Let

E = � : E �!M ; KE = p : K �! E; KM = � Æ p : K �!M (41)
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be given bundles, where KE is a vector bundle. Let 
 be a domain in M , and

! 2 HOM�n(J
n
KM )J nE je
;

^jM j

); h 2 �(J n(KM )j
); (42)

where e
 = (�n)�1(
). Let the map

A!

h
: �(J n(
;R)) � �(Ldi�n(
;R)) �! �(

^jM j

) (43)

be given by the formula

A!

h
(�;D) = D�(!(�h)): (44)

Then A!

h
is an almost S(M)-bilinear map, and the equality

TrA!

f�h = fTrA!

h
(45)

holds for any smooth function f .

First, let us prove the following:

Lemma. The map A!

h
satis�es the equalities:

A!

f�h(�;D) = A!

h
(f � �;D) (46)

and

A!

h
(�;D Æmf ) = fA!

h
(�;D): (47)

T h e p r o o f o f t h e l e m m a.

We can write

A!

f�h(�;D) = D�(!(�(f � h))) = D�(!((f � �)h)) = A!

h
(f � �;D) ; (48)

because �(f � h) = (f � �)h. The formula (47) is a consequence of the fact

(Dmf )
� = fD.

T h e p r o o f o f T h e o r e m 1. Using the identi�cation (22), we can

write the equality (46) as

A!

f�h = A!

h
Æ lf� : (49)

Further, from (10, 47) we get

A!

h
Æ rf� = fA!

h
: (50)

So, from Eq.(26) we obtain Eq.(45).
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5. Euler�Lagrange Operator

Let E = p : E �!M be a �bre bundle (not necessarily a vector bundle), and

F : J n
E �!

^jM j
M (51)

be a �bre map (over idM ). The map (51) induces the functional of the form

I[s] =

Z



F ([s]n) ; (52)

where s denotes a section of E over the domain 
 �M .

Let X be a local section of (V E)M over a neighborhood of x 2M and let �t,

t 2 (��; �) be a one-parameter family of local sections of E such that

X =
d

dt
�tjt=0: (53)

The expression

(VXF )x =
d

dt
F ([�t]

n

x)jt=0 (54)

is a vertical jet derivative of the map F at point x in the direction of �eld X. It

is well known that (VXF )x depends on the n-th jet of X at x. So, we can put

VhF = (VXF )x (55)

for h = [X]nx .

R e m a r k. The derivative operator (5) is an analogue of the operator (54).

The �eld X in (54) corresponds to the �eld h in (5).

Now let h be a local section of J n((V E)M ) = (V (J n
E))M . The vertical jet

derivative satis�es the following equalities:

VfhF = fVhF; (VfXF )x = (Vf�hF )x; (56)

where x 2M and X is a local section of (V E)M j
 such that [X]nx = hx.

The Euler�Lagrange operator ÆX for the functional (52) is uniquely determined

by the following two conditions:

ÆfXF = fÆXF (57)

(it means that the operator Æ is S(M)-linear with respect to the �eld X), andZ



ÆXF =

Z



VXF (58)
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for any X over 
 such that [X]n�1
j@
 � 0.

The following theorem expresses the Euler�Lagrange operator by means of the

trace of an S(M)-bilinear map.

Theorem 2. Let F : J n
E �!

VjM j
M be a �bre map over idM , 
 be a domain

in M , and

AF

h
: �(J n(
;R)) � �(Ldi�n(
;R)) �! �(

^jM j

) (59)

be given by the formula

AF

h
(�;D) = D�(V�hF ) (60)

for h 2 �(J n((V E)M )j
): Then AF

h
is an almost S(M)�bilinear map, and the

trace TrAF

[X]n is the Euler�Lagrange operator

ÆXF = TrAF

[X]n (61)

for any X 2 �((V E)M )j
).
P r o o f. Let �hF := TrAF

h
. Theorem 1 shows that the equality �f�hF =

f�hF is ful�lled for any smooth function f 2 S(M). Now let us consider an

operator of the form D Æ @Y for D 2 �(Ldi�k�1(M;R)), where k � n and Y 2

�(TM). Let � 2 �(J n(M;R)) be a section of the class of in�nitesimal jets of

rank k. It means that D0(�) � 0 for any operator D0 of the rank lower than k. SoZ



(D Æ @Y )
�(V�[X]nF ) =

Z
@


iY (D
�(V�[X]nF )) = 0 (62)

for [X](n�1)
j@
 � 0. The bundle Ldi�n(M;R) can be decomposed into the direct

sum

Ldi�n(M;R) = Ldi�0(M;R) � Ldi�n;1(M;R); (63)

where Ldi�0(M;R) is the bundle of vanishing on constant functions operators of

rank 0 (multiplication by functions) and Ldi�n;1(M;R) is the bundle of operators
of the rank not higher than n.

The decomposition of J n(M;R), dual to (63), is

J
n(M;R) = J

n;0(M;R)� J
n;1(M;R); (64)

where J n;0(M;R) is the bundle of jets represented by locally constant functions

and J n;1(M;R) is the bundle of in�nitesimal jets. We can decompose �hF

�hF = Trn;0AF

h
+ Trn;1AF

h
(65)

in accordance with (63, 64). So

Trn;0AF

h
= AF

h
([1];m1) = VhF;
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and from (62) we obtain Z



Trn;1AF

[X]n = 0

for [X]n�1
j@
 � 0.

R em a r k. Our formalism gives a geometric approach to the theory without

using local coordinates. W.M. Tulczyjew considered the bundles of jets of in�nite

rank J1(E). In the paper [2] there was introduced a family of operators �� acting

on di�erential forms on J1(E). Using these operators, W.M. Tulczyjew derived

an expression analogous to the formula (6). We have given here a de�nition of

the Euler�Lagrange operator by means of the trace of an almost S(M)�bilinear
map.

In a local coordinate the Taylor formula and the Euler�Lagrange operator are

given by means of di�erential operators of the form D
j�j

Dx�
, which commute each

other, that is a consequence of the Schwarz theorem. Our approach is global and

it can be applied to a noncommutative basis of di�erential operators. The way

is natural for to study functionals on the noncommutative Lie groups. The �rst

order operators can be globally de�ned as the left-invariant vector �elds and they

form Lie algebra of the group. Any left-invariant di�erential operator is a linear

combination of compositions of the �rst order operators. Using a suitable basis

in the space of the left-invariant di�erential operators we can study globally the

Euler�Lagrange operators on Lie groups.
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