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Let M™ be an n-dimensional complete hypersurface with the scalar cur-
vature n(n — 1)R and the mean curvature H being linearly related, that
is, n(n — 1)R = k'H(K' > 0) in a real space form R"*!(c). Assume that
the mean curvature is positive and obtains its maximum on M". We show
that (1) if c = 1,k" > 2ny/n(n —1), for any i, 3, A7 > n(n —1) and
|h|?> < nH? + (B};)?, then M" is totally umbilical, or (i) n > 3, M™ is lo-
cally an H (r)-torus with 7> < 2=1 (ii) n = 2, M" is locally an H(r)-torus
with 72 # 221 (2) if ¢ = 0 and |h|? < nH?+(B})?, then M™ is isometric to
a standard round sphere, a hyperplane R™ or S 1(¢;) x R'; (3) if c = —1
and |h|> < nH? + (B};)?, then M™ is totally umbilical or is isometric to
Sn=l(r) x H'(=1/(r? + 1)) for some r > 0, where |h|?> denotes the squared
norm of the second fundamental form of M™, B};, E}; and §;} are denoted
by (1.1), (1.2) and (1.3).

Key words: hypersurface, mean curvature, scalar curvature, real space
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1. Introduction

Let R"*!(c) be an (n 4 1)-dimensional connected Riemannian manifold with
constant sectional curvature c¢. We also call it a real space form. According to
c>0,c=0o0rc <0, it is called sphere space, Euclidean space or hyperbolic
space, respectively, and it is denoted by S"t1(c), R**! and H™*!(c). As it is well-
known that there are many rigidity results for hypersurfaces with constant mean
curvature or with constant scalar curvature in S"*!(c), R"*! and H"*1(c), for
example, see [1-3, 5] and [12] etc., but fewer ones are obtained for hypersurfaces
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with the scalar curvature and the mean curvature being linearly related. We know
that an H (r)-torus in a unit sphere S"*1(1) is the product immersion S"~!(r) x
SY V1 —1r2) — R™ x R?, where S" 1(r) c R*",S'(V1—1r2) C R}, 0<r <1, are
standard immersions. In some orientation, H (r)-torus has principal curvatures

given by A\j =+ =\, = \/1r—r2 and )\, = _ﬁ.

In [12], the authors obtained the following:

Theorem 1.1. Let M" be an n-dimensional complete hypersurface with con-
stant mean curvature H in a unit sphere S"*Y(1). (1) If |h|?> < D'(n,H), then
M™ is totally umbilical. (2) If |h|*> = D'(n,H), then (i) when H = 0, M™ is
locally a Clifford torus; (ii) when H # 0,n > 3, M™ is locally an H(r)-torus with
r? < %; (iii) when H # 0,n = 2, M™ is locally an H(r)-torus with r? # "Tfl,
where

n’ H? (n—2)nH

D'(n,H):n+2(n_1)— 2= 1) [n2H? + 4(n —1)]2.

D=

In [6], S.Y. Cheng and S.T. Yau obtained the following:

Theorem 1.2. Let M™ be a complete hypersurface with constant mean cur-
vature in R™'. If the sectional curvature of M™ is nonnegative, then M™ is
wsometric to a standard round sphere, a hyperplane R™ or a Riemannian product
Skey) x R % 1<k<n-—1.

In this paper, we study the hypersurfaces in a real space form R"*!(c) with
scalar curvature n(n — 1)R and the mean curvature H being linearly related.
We obtain the following theorems:

Theorem 1.3. Let M™ be an n-dimensional complete hypersurface with n(n—
)R = K'H in a unit sphere S"TY(1), where k'(> 2n+/n(n — 1)) is a positive
constant. Assume that the mean curvature H is positive and obtains its mazimum
on M™ and for any 1, Z#i)\? >n(n—1), where \j(j =1,...,i—1,i+1,...,n)
are the principal curvatures on M™. If the squared norm of the second fundamental
form |h|? satisfies

W2 < nH? + (Bj)?
on M"™, then M™ 1is totally umbilical, or (i) n > 3, M"™ is locally an H(r)-torus

L2 L. i) : L2 —1
with r* < ®—=; (ii) n = 2, M™ is locally an H(r)-torus with r* # *—, where

1 n n3H?
Bh=—(n—2)/ ——H+ | ——— +n. 1.1
s 1LY Y v s (1.1)

Theorem 1.4. Let M™ be an n-dimensional complete hypersurface with n(n—
)R = K'H in a Euclidean space R, where k' is a positive constant. Assume
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that the mean curvature H is positive and obtains its marimum on M™. If the
squared norm of the second fundamental form |h|? satisfies

hf? < nH? + (B};)?

on M™, then M™ 1is isometric to a standard round sphere, a hyperplane R™ or
a Riemannian product S"~'(c;) x R, where

H. (1.2)

Theorem 1.5. Let M™ be an n-dimensional complete hypersurface with n(n—
)R = k'H in a hyperbolic space H"*'(—1), where k' is a positive constant.
Assume that the mean curvature H is positive and obtains its mazimum on M™.
If the squared norm of the second fundamental form |h|? satisfies

h* < nH? + (Bf)?

on M™, then M™ is totally umbilical or is isometric to S™ (r) x H (=1/(r?+1))
for some v > 0, where

Egz—%(n—m,/%fu %—n, (n2H? > 4(n—1)). (13)

2. Preliminaries

Let M™ be an n-dimensional hypersurface in R"*!(c). For any p € M"

we choose a local orthonormal frame ey, ..., epn,e,41 in R (c) around p such
that ej,...,e, are tangential to M"™. Take the corresponding dual co-frame
{wi,...,wn,wnt1}. In this paper we make the following convention on the range
of indices,

The structure equations of R"!(c) are
dwa =) waB ANWB, WAB = —WBA,
B

dwap =Y wac Nwep — cwa A wp.
Cc

If we denote by the same letters the restrictions of wa,wap to M™, we have

dw; = Zwij A Wy, Wi = —Wjs, (2.1)
J
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1
dwz'j = Zwik N wgj — 5 Z Rijk:lwk: A wy, (2.2)
% kol

where R;j; is the curvature tensor of the induced metric on M™.
Restricted to M™, w11 = 0, thus

0=dwyi1 = Z Wna1i A\ wj, (2.3)
i

and by Cartan’s lemma we can write

Wing1 = Y _ hijwj,  hij = hj;. (2.4)
j

The quadratic form h = Z hijw; ® wj is the second fundamental form of M".

The Gauss equation is s
Rijr = c(Oixdj1 — 0adji) + hixhji — hihjp, (2.5)
n(n —1)R =n(n — 1)c+n*H* — |h|?, (2.6)
where R is the normalized scalar curvature, H = (1/n) 3_ hi; the mean curvature
and |h? = Zh?j the squared norm of the second fu;damental form of M™,

respectively. s

The Codazzi equation and Ricci identity are
hijk = hikj, (2.7)
hijkt = hijik = Y hmjBmikt + > Bim R, (2.8)
m m

where the first and the second covariant derivatives of the second fundamental
form are defined by

ks k b

Z hijhiw; = dhijp + Z homjkwmi + Z himkwm; + Z R jmWim - (2.10)
l m m m

In order to represent our theorems, we need some notations, for details see
H.B. Lawson [9] and P.J. Ryan [11]. First we give a description of the real hyper-
bolic space H"*1(¢) of constant curvature ¢(< 0).

For any two vectors z and y in R"12, we set

g(z,y) =z1y1 + ...+ Tnr1Yntl — Tnt2Ynt2,
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(R"*2,g) is the so-called Minkowski space-time. Denote p = \/—1/c. We define
H"(c) = {z € R"*? | g(2,2) = —p?, 2012 > 0}

Then H"*!(c) is a simply-connected hypersurface of R"*2?. Hence, we obtain
a model of a real hyperbolic space.

We define
M, = {I S Hn+1(c) | 1 = 0},
My = {z € H""(c) | 1 = r > 0},
M ={z€ Hn+1(c) | T2 = Tni1 + pl,
My={z e H" " (c) | 2¥ +... + 22, =r? >0},
Ms={z € H""'(c) |2} + ...+ x},, =17 >0,
Thyo T T oy — T =—p? — 17}
My, ..., M5 are often called the standard examples of complete hypersurfaces in

H™1(c) with at most two distinct constant principal curvatures. It is obvious
that My,..., My are totally umbilical. In the sense of Chen [7], they are called
the hyperspheres of H"*!(c). Mj is called the horosphere and My — the geodesic
distance sphere of H"*1(c). P.J. Ryan [11] obtained the following:

Lemma 2.1([11]). Let M™ be a complete hypersurface in H"*1(c). Suppose
that, under a suitable choice of a local orthonormal tangent frame field of TM™,
the shape operator over TM™ is expressed as a matriz A. If M™ has at most two
distinct constant principal curvatures, then it is congruent to one of the following:

(1) My. In this case, A =0, and My is totally geodesic. Hence My is isometric
to H"(c).

(2) Ms. In this case, A = \/1/1/27”%/7«2[7“ where I, denotes the identity matriz
of degree n, and My is isometric to H"(—1/(r? + p?)).

(8) Ms. In this case, A = %In, and M3 is isometric to o Fuclidean space R™.

(4) My. In this case, A = \/1/r? + 1/p?I,,, My is isometric to a round sphere
S™(r) of radius .

(5) Ms. In this case, A = X} @ pl, , where X\ = \/1/p>+1/r?, and
_ 1/p? - : k n—k(_ 2 2
u—i\/m,Mg, is isometric to S*(r) x H"™*(=1/(r* + p7)).
We also need the following algebraic Lemma due to [10] and [1].
Lemma 2.2([10, 1]). Let p;,i = 1,...,n be real numbers, with > p; = 0
i

and Y p? = 32> 0. Then

e )ﬁSSZuféin_Q B, (2.11)

n(n —1 -

298 Journal of Mathematical Physics, Analysis, Geometry, 2008, vol. 4, No. 2



Complete Hypersurfaces in a Real Space Form

and equality holds if and only if either (n — 1) of the numbers pu; are equal to

B/\/n(n—1) or (n— 1) of the numbers p; are equal to —3/+/n(n —1).
3. Proof of Theorems

In order to prove our theorems, we introduce an operator O due to S.Y. Cheng
and S.T. Yau [5] by

Of => (nHéij — hij) fij, (3.1)
i,J

where f is a C?-function on M", the gradient and Hessian (fi;) are defined by
df =Y fiwi, Y fywy =dfi+ Y fiwji. (3.2)
( J J

The Laplacian of f is defined by Af =" fii.

2
We choose a local frame field ey, ..., e, at each point of M™, such that h;; =
Aidi;. From (3.1) and (2.6), we have

O(nH)=nHA(nH) — Z Ai(nH )i

= JA@H)? - S} = 3\ (n),
= DAR+ IARE =2 VH]? = S NmH) (3.3)
2 2 o
From (2.7) and (2.8), by a standard and direct calculation, we have
%A|h|2 = hi+ Y Ai(nH)y + % > Rijij(Ai — Aj), (3.4)
ivjik i i
where R;jij = ¢+ AAj(i # j) denotes the sectional curvature of the section

spanned by {e;, e;}.
From (3.3) and (3.4), we get

1 1
O(nH) = 5n(n — 1)AR + |Vh|?> = n?|VH|? + 5 Z(c + AN = )2 (3.5)
2
By making use of the similar method in [4], we can prove the following:

Proposition 3.1. Let M™ be an n-dimensional hypersurface in a real space
form R™1(c) with n(n —1)R = k'H, k' = constant > 0. Assume that the mean
curvature H > 0. Then we have the operator

L=0-(K/2n)A
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(1) if ¢ >0 and for any i, Y, )\? > n(n — 1)c, L is elliptic;
(2) if ¢ <0, L is elliptic.

Proof We choose an orthonormal frame field {e;} at each point in M™ so
that hi]‘ = )\25” For any i,

(nH — X\; — K'/2n) = DA = = (1/2)[-2 A? +n2H? + n(n —1)c]/(nH)
j j
= ISP = AT = (1/2) 0, - (1720~ Do)
j j J
= [Z A2+ (1/2) S0 = XA — (1/2)n(n — De](nH) !
J I#5 J

=[2 A7+ (1/2) X M = (1/2)n(n = De](nH) ™!

7 L
= (1/2)[2 )x? +( 22 =n(n—1)c(nH)™". (3.6)
J#i J#i

(1) If ¢ > 0 and for any 1, ; )\? > n(n — 1)c, from (3.6), we have
VE=

(nH — X\ — K /2n) > (1/2)[>_ Aj = n(n— 1)d(nH)~" > 0.
J#i

Therefore, we know that L is an elliptic operator.
(2) If ¢ <0, from (3.6) again, we have

(nH — X\; — K'/2n) > 0.

Therefore, we also know that L is an elliptic operator. This completes the
proof of Prop. 3.1.

We can also prove the following:

Proposition 3.2. Let M™ be an n-dimensional hypersurface in a real space
form R™(c) with n(n — 1)R = k'H, k' = constant > 0. Assume that the mean
curvature H > 0. Then we have:

(1) if ¢ >0 and k' > 2n\/n(n — 1)c, then
IVh|? > n?|VH|?;
(2) if ¢ <0, for all k' >0, then

|Vh|?> > n?|VH|?.
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Proof Since H> 0, we have |h|> # 0. In fact, if [h]? = Y.A? = 0 at
i
a point of M™, then \; = 0,47 =1,2,...,n, at this point. Therefore H = 0 at this
point. This is impossible.
From (2.6) and n(n — 1)R = k'H, we have
k’VZH = QHZHVZ'H -2 Z hkjhkji,
Tk

(3k" —n?H)V;H = — Y hijhyji,
e

(3k' = n?H)*|VH|> = 3(3 hijhigi)® < S5 b3 32 b2y = WP VAP,
7 ],k 2y i:jak
Therefore, we have
2 2 2 k' 2772 217,12 2 1
VA" =0 |VH]" 2 [(5 —n"H)" = n7|h[7]|VH| e
K2 , 1
= " (n—1)c]|VH]| e (3.7)

(DIf ¢ > 0 and k' > 2ny/n(n — 1)¢, from (3.7), we have
|Vh|? — n?|VH|* > 0.

(2) If ¢ <0, from (3.7), we also have
|Vh|? —n?|VH|* > 0.

This completes the proof of Prop. 3.2.

Proposition 3.3. Let M™ be an n-dimensional hypersurface in a real space
form R"1(c) with n(n —1)R = kK'H, k' = constant > 0. Then we have

n(n — 2)

nLH > (|Vh|? = n?|VH|?) + |g|*{nc +nH? —
nin—1)

|H||g| —19/°},

where |g|? is a nonnegative C%-function on M™ defined by |g|* = |h|*> — nH?.
Proof. From (3.5) we have

nLH = n[0H — (K'/2n)AH]
=0(nH) — (1/2)Aln(n — 1)R]

1
= |Vh|? = n?|VH|? + 5Z(c + X)) (N — Aj)?
2]

= |Vh|? — n?|VH|?> + nc|h|? —n?H?c— |h)* + nHY X3, (3.8)
[
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Let |g|? be a nonnegative C?-function on M™ defined by |g|> = |h|?> — nH?.
Since Y (H — X\;) =0, S2(H — \;)? = |h|> —nH? = |g|2, by Lem. 2.2 we get
i i

nHY A} = 3nH?|h> — 20’ H* —nHY (H — \;)*
i i
2| 12 2774 n—2 3
>3nH"|g|” + n"H* — n|H|—|g/°. (3.9)
n(n —1)
Therefore, from (3.8) and (3.9), we have
2 2 2 2 2 n(n — 2) 2
nLH > |Vh|" —n*|VH[" + [g]"{nc + nH" — \/ﬁuf“ﬂ —lgI”}-

This completes the proof of Prop. 3.3.

Proof of Theorem 1.3. From the assumption of Th. 1.3, Prop. 3.2
and Prop. 3.3 for ¢ = 1, we have

nLH > |gf*{(n+nH? — SE=2 gl |9} = [9PPu(lg),  (3.10)
where ( 2)
n\n —
Pr(lgl) = n+nH* — —=——=Hlg| - |g|"
n(n—1)

Pr(|g]) has two real roots By, and B}, given by

3F2
Bji = —5(n—2)/——=H + 2_1)—1-71.

Therefore, we know that

Pu(lgl) = (lg| — Bp)(—lgl + By).

Clearly, we know that |g|—Bj > 0. From the assumption of Th. 1.3, we infer that
Pr(lg]) > 0on M™. This implies that the right-hand side of (3.10) is nonnegative.
Since, from Prop. 3.1, the operator L is elliptic, and H obtains its maximum on
M™, from (3.10) we know that H = const on M". Therefore, we know that M"
is an n-dimensional complete hypersurface with constant mean curvature H (> 0)
in a unit sphere S"*!(1). By the assumption of Th. 1.3 and the result of Th. 1.1,

we can check directly that |h|? < nH? + (Bf)? =n + (SHZ) - (g(_fzr{f [n?H? +

4(n — 1)]% = D'(n, H). Therefore we have either M™ is totally umbilical, or (i)
n > 3, M" is locally an H(r)-torus with r> < 2=L; (ii) n = 2, M™ is locally an
H (r)-torus with r2 # ”Tfl This completes the proof of Th. 1.3.
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Proof of Theorem 1.4. From the assumption of Th. 1.4, Prop. 3.2
and Prop. 3.3, for ¢ = 0, we have

nLH > |g* (nf? — SE2 Mg 9} = |9P*Qn (Ig)), (3.11)
where ( 2)
n\n —
Qullgl) = nH* — —=——=Hlg| ~ gI*
n(n —1)

Qmu(g|) has two real roots B; and B;"I given by

By =—(n—1),]— Br = -

n—1 n—1

Therefore, we know that
Qu(lg) = (gl = Byp) (=gl + Byy).

Clearly, we know that |g| — El} > 0. From the assumption of Th. 1.4, we infer
that Qm(lg|]) > 0 on M™. This implies that the right-hand side of (3.11) is
nonnegative. From Proposition 3.1, we know that L is elliptic, and H obtains its
maximum on M™. From (3.11), we have H = const on M™. From (3.11) again,
we get |9/2Qu(|g]) = 0. We infer that the equality holds in Lem. 2.2. Therefore,
we know that (n — 1) of the numbers H — \; are equal to |g|/y/n(n —1). This
implies that M™ has (n — 1) principal curvatures equal and constant. As H is
constant, the other principal curvature is constant as well. From an inequality of
Chen—Okumura [8], we know that |h|?> < n?H?/(n — 1) implies that the sectional
curvature K of M"™ is nonnegative. Therefore, we know that M™ is a complete
hypersurface in R™t! with constant mean curvature and nonnegative sectional
curvature. From Theorem 1.2, we have either M" is isometric to a standard
round sphere, a hyperplane R" or a Riemannian product S"~'(c;) x R!. This
completes the proof of Th. 1.4.

Proof of Theorem 1.5. From the assumption of Th. 1.5, Prop. 3.2
and Prop. 3.3, for ¢ = —1, we have

nLH > |gP {=n+nH? - ZEZLH|gl 9P} = oPRu(lg).  (312)
where ( 2
nin —
Ri(|g]) = —n+nH? - ——=H]g| - |g]*
n(n —1)

Rp(g|) has two real roots B\E and Eg given by
~ 1 n n3H?
Bf =——(n—2),/ —H+ | —— — 2H? > 4(n —1).
n="5 )Vn—l Vim—1) ™ "7 = (n=1)
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Therefore, we know that

Ru(lgl) = (g — By)(~lgl + Bf).

Clearly, we know that |g]| _Eﬁ > 0. From the assumption of Th. 1.5, we infer that
Ry (lg]) > 0on M™. This implies that the right-hand side of (3.12) is nonnegative.
From Proposition 3.1, we know that L is elliptic. Since H obtains its maximum
on M™ from (3.12), we have H = const on M™. From (3.12) again, we get
l9I?Ri(]g]) = 0, so |g|> = 0, and M™ is totally umbilical, or Ry (]g|) = 0. In the
latter case, we know that (n—1) of the numbers H —\; are equal to |g|/y/n(n — 1).
This implies that M™ has (n—1) principal curvatures equal and constant. As H is
constant, the other principal curvature is constant as well, so M" is isoparametric.
From the result of Lem. 2.1, M™ is isometric to S" !(r) x H'(=1/(r? + 1)) for
some 7 > (0. This completes the proof of Th. 1.5.
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