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Let Mn be an n-dimensional complete hypersurface with the scalar cur-

vature n(n � 1)R and the mean curvature H being linearly related, that

is, n(n � 1)R = k0H(k0 > 0) in a real space form Rn+1(c). Assume that

the mean curvature is positive and obtains its maximum on Mn. We show

that (1) if c = 1; k0 � 2n
p
n(n� 1), for any i,

P
j 6=i

�2
j
> n(n � 1) and

jhj2 � nH2 + (B+

H
)2, then Mn is totally umbilical, or (i) n � 3;Mn is lo-

cally an H(r)-torus with r2 < n�1

n
, (ii) n = 2;Mn is locally an H(r)-torus

with r2 6= n�1

n
; (2) if c = 0 and jhj2 � nH2+( eB+

H
)2, thenMn is isometric to

a standard round sphere, a hyperplane Rn or Sn�1(c1) � R1; (3) if c = �1

and jhj2 � nH2 + ( bB+

H
)2, then Mn is totally umbilical or is isometric to

Sn�1(r) �H1(�1=(r2 + 1)) for some r > 0, where jhj2 denotes the squared

norm of the second fundamental form of Mn; B+

H
; eB+

H
and bB+

H
are denoted

by (1.1), (1.2) and (1.3).

Key words: hypersurface, mean curvature, scalar curvature, real space

form.

Mathematics Subject Classi�cation 2000: 53C40 (primary); 53C20

(secondary).

1. Introduction

Let Rn+1(c) be an (n+ 1)-dimensional connected Riemannian manifold with

constant sectional curvature c. We also call it a real space form. According to

c > 0, c = 0 or c < 0, it is called sphere space, Euclidean space or hyperbolic

space, respectively, and it is denoted by Sn+1(c); Rn+1 and Hn+1(c). As it is well-
known that there are many rigidity results for hypersurfaces with constant mean

curvature or with constant scalar curvature in Sn+1(c); Rn+1 and Hn+1(c), for
example, see [1�3, 5] and [12] etc., but fewer ones are obtained for hypersurfaces
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with the scalar curvature and the mean curvature being linearly related. We know

that an H(r)-torus in a unit sphere Sn+1(1) is the product immersion Sn�1(r)�
S1(

p
1� r2) ,! Rn�R2, where Sn�1(r) � Rn; S1(

p
1� r2) � R2, 0 < r < 1, are

standard immersions. In some orientation, H(r)-torus has principal curvatures

given by �1 = � � � = �n�1 =
p
1�r2
r

and �n = � rp
1�r2

.

In [12], the authors obtained the following:

Theorem 1.1. Let Mn be an n-dimensional complete hypersurface with con-

stant mean curvature H in a unit sphere Sn+1(1). (1) If jhj2 < D0(n;H), then
Mn is totally umbilical. (2) If jhj2 = D0(n;H), then (i) when H = 0;Mn is

locally a Cli�ord torus; (ii) when H 6= 0; n � 3;Mn is locally an H(r)-torus with

r2 < n�1
n

; (iii) when H 6= 0; n = 2;Mn is locally an H(r)-torus with r2 6= n�1
n

,

where

D0(n;H) = n+
n3H2

2(n� 1)
� (n� 2)nH

2(n� 1)
[n2H2 + 4(n� 1)]

1

2 :

In [6], S.Y. Cheng and S.T. Yau obtained the following:

Theorem 1.2. Let Mn be a complete hypersurface with constant mean cur-

vature in Rn+1. If the sectional curvature of Mn is nonnegative, then Mn is

isometric to a standard round sphere, a hyperplane Rn or a Riemannian product

Sk(c1)�Rn�k, 1 � k � n� 1.

In this paper, we study the hypersurfaces in a real space form Rn+1(c) with
scalar curvature n(n � 1)R and the mean curvature H being linearly related.

We obtain the following theorems:

Theorem 1.3. Let Mn be an n-dimensional complete hypersurface with n(n�
1)R = k0H in a unit sphere Sn+1(1), where k0(� 2n

p
n(n� 1)) is a positive

constant. Assume that the mean curvature H is positive and obtains its maximum

on Mn and for any i,
P

j 6=i �
2
j
> n(n� 1), where �j(j = 1; : : : ; i� 1; i+1; : : : ; n)

are the principal curvatures onMn. If the squared norm of the second fundamental

form jhj2 satis�es

jhj2 � nH2 + (B+
H
)2

on Mn, then Mn is totally umbilical, or (i) n � 3;Mn is locally an H(r)-torus
with r2 < n�1

n
; (ii) n = 2;Mn is locally an H(r)-torus with r2 6= n�1

n
, where

B+
H

= �1

2
(n� 2)

r
n

n� 1
H +

s
n3H2

4(n� 1)
+ n: (1:1)

Theorem 1.4. Let Mn be an n-dimensional complete hypersurface with n(n�
1)R = k0H in a Euclidean space Rn+1, where k0 is a positive constant. Assume
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that the mean curvature H is positive and obtains its maximum on Mn. If the

squared norm of the second fundamental form jhj2 satis�es

jhj2 � nH2 + ( eB+
H
)2

on Mn, then Mn is isometric to a standard round sphere, a hyperplane Rn or

a Riemannian product Sn�1(c1)�R1, where

eB+
H

=

r
n

n� 1
H: (1:2)

Theorem 1.5. Let Mn be an n-dimensional complete hypersurface with n(n�
1)R = k0H in a hyperbolic space Hn+1(�1), where k0 is a positive constant.

Assume that the mean curvature H is positive and obtains its maximum on Mn.

If the squared norm of the second fundamental form jhj2 satis�es

jhj2 � nH2 + ( bB+
H
)2

on Mn, then Mn is totally umbilical or is isometric to Sn�1(r)�H1(�1=(r2+1))
for some r > 0, where

bB+
H

= �1

2
(n� 2)

r
n

n� 1
H +

s
n3H2

4(n� 1)
� n; (n2H2 � 4(n� 1)): (1:3)

2. Preliminaries

Let Mn be an n-dimensional hypersurface in Rn+1(c). For any p 2 Mn

we choose a local orthonormal frame e1; : : : ; en; en+1 in Rn+1(c) around p such

that e1; : : : ; en are tangential to Mn. Take the corresponding dual co-frame

f!1; : : : ; !n; !n+1g. In this paper we make the following convention on the range

of indices,

1 � A;B;C � � � � n+ 1; 1 � i; j; k; � � � � n:

The structure equations of Rn+1(c) are

d!A =
P
B

!AB ^ !B ; !AB = �!BA;

d!AB =
P
c

!AC ^ !CB � c!A ^ !B:

If we denote by the same letters the restrictions of !A; !AB to Mn, we have

d!i =
X
j

!ij ^ !j; !ij = �!ji; (2:1)
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d!ij =
X
k

!ik ^ !kj �
1

2

X
k;l

Rijkl!k ^ !l; (2:2)

where Rijkl is the curvature tensor of the induced metric on Mn.

Restricted to Mn; !n+1 = 0, thus

0 = d!n+1 =
X
i

!n+1i ^ !i; (2:3)

and by Cartan's lemma we can write

!in+1 =
X
j

hij!j; hij = hji: (2:4)

The quadratic form h =
P
i;j

hij!i
!j is the second fundamental form of Mn.

The Gauss equation is

Rijkl = c(ÆikÆjl � ÆilÆjk) + hikhjl � hilhjk; (2:5)

n(n� 1)R = n(n� 1)c+ n2H2 � jhj2; (2:6)

where R is the normalized scalar curvature, H = (1=n)
P
i

hii the mean curvature

and jhj2 =
P
i;j

h2
ij

the squared norm of the second fundamental form of Mn,

respectively.

The Codazzi equation and Ricci identity are

hijk = hikj ; (2:7)

hijkl � hijlk =
X
m

hmjRmikl +
X
m

himRmjkl; (2:8)

where the �rst and the second covariant derivatives of the second fundamental

form are de�ned byX
k

hijk!k = dhij +
X
k

hkj!ki +
X
k

hik!kj; (2:9)

X
l

hijkl!l = dhijk +
X
m

hmjk!mi +
X
m

himk!mj +
X
m

hijm!mk: (2:10)

In order to represent our theorems, we need some notations, for details see

H.B. Lawson [9] and P.J. Ryan [11]. First we give a description of the real hyper-

bolic space Hn+1(c) of constant curvature c(< 0).
For any two vectors x and y in Rn+2, we set

g(x; y) = x1y1 + : : :+ xn+1yn+1 � xn+2yn+2;
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(Rn+2; g) is the so-called Minkowski space-time. Denote � =
p
�1=c. We de�ne

Hn+1(c) = fx 2 Rn+2 j g(x; x) = ��2; xn+2 > 0g:

Then Hn+1(c) is a simply-connected hypersurface of Rn+2. Hence, we obtain

a model of a real hyperbolic space.

We de�ne

M1 = fx 2 Hn+1(c) j x1 = 0g;
M2 = fx 2 Hn+1(c) j x1 = r > 0g;
M3 = fx 2 Hn+1(c) j xn+2 = xn+1 + �g;
M4 = fx 2 Hn+1(c) j x21 + : : :+ x2

n+1 = r2 > 0g;
M5 = fx 2 Hn+1(c) j x21 + : : :+ x2

k+1 = r2 > 0;
x2
k+2 + : : :+ x2

n+1 � x2
n+2 = ��2 � r2g:

M1; : : : ;M5 are often called the standard examples of complete hypersurfaces in

Hn+1(c) with at most two distinct constant principal curvatures. It is obvious

that M1; : : : ;M4 are totally umbilical. In the sense of Chen [7], they are called

the hyperspheres of Hn+1(c). M3 is called the horosphere and M4 � the geodesic

distance sphere of Hn+1(c). P.J. Ryan [11] obtained the following:

Lemma 2.1([11]). Let Mn be a complete hypersurface in Hn+1(c). Suppose

that, under a suitable choice of a local orthonormal tangent frame �eld of TMn,

the shape operator over TMn is expressed as a matrix A. If Mn has at most two

distinct constant principal curvatures, then it is congruent to one of the following:

(1) M1. In this case, A = 0, andM1 is totally geodesic. Hence M1 is isometric

to Hn(c).

(2) M2. In this case, A = 1=�2p
1=�2+1=r2

In, where In denotes the identity matrix

of degree n, and M2 is isometric to Hn(�1=(r2 + �2)).
(3) M3. In this case, A = 1

�
In, and M3 is isometric to a Euclidean space Rn.

(4) M4. In this case, A =
p

1=r2 + 1=�2In;M4 is isometric to a round sphere

Sn(r) of radius r.

(5) M5. In this case, A = �Ik � �In�k, where � =
p

1=�2 + 1=r2, and

� = 1=�2p
1=r2+1=�2

;M5 is isometric to Sk(r)�Hn�k(�1=(r2 + �2)).

We also need the following algebraic Lemma due to [10] and [1].

Lemma 2.2([10, 1]). Let �i; i = 1; : : : ; n be real numbers, with
P
i

�i = 0

and
P
i

�2
i
= �2 � 0. Then

� n� 2p
n(n� 1)

�3 �
X
i

�3i �
n� 2p
n(n� 1)

�3; (2:11)
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and equality holds if and only if either (n � 1) of the numbers �i are equal to

�=
p
n(n� 1) or (n� 1) of the numbers �i are equal to ��=

p
n(n� 1).

3. Proof of Theorems

In order to prove our theorems, we introduce an operator 2 due to S.Y. Cheng

and S.T. Yau [5] by

2f =
X
i;j

(nHÆij � hij)fij; (3:1)

where f is a C2-function on Mn, the gradient and Hessian (fij) are de�ned by

df =
X
i

fi!i;
X
j

fij!j = dfi +
X
j

fj!ji: (3:2)

The Laplacian of f is de�ned by �f =
P
i

fii.

We choose a local frame �eld e1; : : : ; en at each point of Mn, such that hij =
�iÆij . From (3.1) and (2.6), we have

2(nH) = nH�(nH)�
P
i

�i(nH)ii

=
1

2
�(nH)2 �

P
i

(nH)2
i
�
P
i

�i(nH)ii

=
1

2
n(n� 1)�R+

1

2
�jhj2 � n2jrHj2 �

P
i

�i(nH)ii: (3.3)

From (2.7) and (2.8), by a standard and direct calculation, we have

1

2
�jhj2 =

X
i;j;k

h2ijk +
X
i

�i(nH)ii +
1

2

X
i;j

Rijij(�i � �j)
2; (3:4)

where Rijij = c + �i�j(i 6= j) denotes the sectional curvature of the section

spanned by fei; ejg:
From (3.3) and (3.4), we get

2(nH) =
1

2
n(n� 1)�R+ jrhj2 � n2jrHj2 + 1

2

X
i;j

(c+ �i�j)(�i � �j)
2: (3:5)

By making use of the similar method in [4], we can prove the following:

Proposition 3.1. Let Mn be an n-dimensional hypersurface in a real space

form Rn+1(c) with n(n� 1)R = k0H, k0 = constant > 0. Assume that the mean

curvature H > 0. Then we have the operator

L = 2� (k0=2n)�

Journal of Mathematical Physics, Analysis, Geometry, 2008, vol. 4, No. 2 299



Shu Shichang

(1) if c > 0 and for any i,
P

j 6=i �
2
j
> n(n� 1)c; L is elliptic;

(2) if c � 0; L is elliptic.

P r o o f. We choose an orthonormal frame �eld fejg at each point in Mn so

that hij = �iÆij. For any i,

(nH � �i � k0=2n) =
P
j

�j � �i � (1=2)[�
P
j

�2
j
+ n2H2 + n(n� 1)c]=(nH)

= [(
P
j

�j)
2 � �i

P
j

�j � (1=2)
P
l 6=j

�l�j � (1=2)n(n� 1)c](nH)�1

= [
P
j

�2
j
+ (1=2)

P
l 6=j

�l�j � �i
P
j

�j � (1=2)n(n � 1)c](nH)�1

= [
P
i6=j

�2
j
+ (1=2)

P
l6=j

l;j 6=i

�l�j � (1=2)n(n � 1)c](nH)�1

= (1=2)[
P
j 6=i

�2
j
+ (
P
j 6=i

�j)
2 � n(n� 1)c](nH)�1: (3.6)

(1) If c > 0 and for any i,
P
j 6=i

�2
j
> n(n� 1)c; from (3.6), we have

(nH � �i � k0=2n) � (1=2)[
X
j 6=i

�2j � n(n� 1)c](nH)�1 > 0:

Therefore, we know that L is an elliptic operator.

(2) If c � 0, from (3.6) again, we have

(nH � �i � k0=2n) > 0:

Therefore, we also know that L is an elliptic operator. This completes the

proof of Prop. 3.1.

We can also prove the following:

Proposition 3.2. Let Mn be an n-dimensional hypersurface in a real space

form Rn+1(c) with n(n� 1)R = k0H, k0 = constant > 0. Assume that the mean

curvature H > 0. Then we have:

(1) if c > 0 and k0 � 2n
p
n(n� 1)c, then

jrhj2 � n2jrHj2;

(2) if c � 0, for all k0 > 0, then

jrhj2 � n2jrHj2:
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P r o o f. Since H > 0, we have jhj2 6= 0. In fact, if jhj2 =
P
i

�2
i
= 0 at

a point of Mn, then �i = 0, i = 1; 2; : : : ; n, at this point. Therefore H = 0 at this

point. This is impossible.

From (2.6) and n(n� 1)R = k0H, we have

k0riH = 2n2HriH � 2
P
j;k

hkjhkji;

(1
2
k0 � n2H)riH = �

P
j;k

hkjhkji;

(1
2
k0 � n2H)2jrHj2 =

P
i

(
P
j;k

hkjhkji)
2 �
P
i;j

h2
ij

P
i;j;k

h2
ijk

= jhj2jrhj2:

Therefore, we have

jrhj2 � n2jrHj2 � [(
k0

2
� n2H)2 � n2jhj2]jrHj2 1

jhj2

= [
(k0)2

4
� n3(n� 1)c]jrHj2 1

jhj2 : (3.7)

(1)If c > 0 and k0 � 2n
p
n(n� 1)c, from (3.7), we have

jrhj2 � n2jrHj2 � 0:

(2) If c � 0, from (3.7), we also have

jrhj2 � n2jrHj2 � 0:

This completes the proof of Prop. 3.2.

Proposition 3.3. Let Mn be an n-dimensional hypersurface in a real space

form Rn+1(c) with n(n� 1)R = k0H, k0 = constant > 0. Then we have

nLH � (jrhj2 � n2jrHj2) + jgj2fnc+ nH2 � n(n� 2)p
n(n� 1)

jHjjgj � jgj2g;

where jgj2 is a nonnegative C2-function on Mn de�ned by jgj2 = jhj2 � nH2.

P r o o f. From (3.5) we have

nLH = n[2H � (k0=2n)�H]

= 2(nH)� (1=2)�[n(n� 1)R]

= jrhj2 � n2jrHj2 + 1

2

P
i;j

(c+ �i�j)(�i � �j)
2

= jrhj2 � n2jrHj2 + ncjhj2 � n2H2c� jhj4 + nH
P
i

�3
i
: (3.8)
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Let jgj2 be a nonnegative C2-function on Mn de�ned by jgj2 = jhj2 � nH2.

Since
P
i

(H � �i) = 0,
P
i

(H � �i)
2 = jhj2 � nH2 = jgj2, by Lem. 2.2 we get

nH
P
i

�3
i
= 3nH2jhj2 � 2n2H4 � nH

P
i

(H � �i)
3

� 3nH2jgj2 + n2H4 � njHj n� 2p
n(n� 1)

jgj3: (3.9)

Therefore, from (3.8) and (3.9), we have

nLH � jrhj2 � n2jrHj2 + jgj2fnc+ nH2 � n(n� 2)p
n(n� 1)

jHjjgj � jgj2g:

This completes the proof of Prop. 3.3.

P r o o f o f T h e o r e m 1.3. From the assumption of Th. 1.3, Prop. 3.2

and Prop. 3.3 for c = 1, we have

nLH � jgj2fn+ nH2 � n(n�2)p
n(n�1)

Hjgj � jgj2g = jgj2PH(jgj); (3:10)

where

PH(jgj) = n+ nH2 � n(n� 2)p
n(n� 1)

Hjgj � jgj2:

PH(jgj) has two real roots B�
H

and B+
H

given by

B�
H

= �1

2
(n� 2)

r
n

n� 1
H �

s
n3H2

4(n� 1)
+ n:

Therefore, we know that

PH(jgj) = (jgj �B�
H
)(�jgj +B+

H
):

Clearly, we know that jgj�B�
H
> 0. From the assumption of Th. 1.3, we infer that

PH(jgj) � 0 onMn. This implies that the right-hand side of (3.10) is nonnegative.

Since, from Prop. 3.1, the operator L is elliptic, and H obtains its maximum on

Mn, from (3.10) we know that H = const on Mn. Therefore, we know that Mn

is an n-dimensional complete hypersurface with constant mean curvature H(> 0)
in a unit sphere Sn+1(1). By the assumption of Th. 1.3 and the result of Th. 1.1,

we can check directly that jhj2 � nH2 + (B+
H
)2 = n+ n

3
H
2

2(n�1) �
(n�2)nH
2(n�1) [n2H2 +

4(n � 1)]
1

2 = D0(n;H). Therefore we have either Mn is totally umbilical, or (i)

n � 3;Mn is locally an H(r)-torus with r2 < n�1
n

; (ii) n = 2;Mn is locally an

H(r)-torus with r2 6= n�1
n

. This completes the proof of Th. 1.3.
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P r o o f o f T h e o r e m 1.4. From the assumption of Th. 1.4, Prop. 3.2

and Prop. 3.3, for c = 0, we have

nLH � jgj2fnH2 � n(n�2)p
n(n�1)

Hjgj � jgj2g = jgj2QH(jgj); (3:11)

where

QH(jgj) = nH2 � n(n� 2)p
n(n� 1)

Hjgj � jgj2:

QH(jgj) has two real roots eB�
H

and eB+
H

given by

eB�
H

= �(n� 1)

r
n

n� 1
H; eB+

H
=

r
n

n� 1
H:

Therefore, we know that

QH(jgj) = (jgj � eB�
H
)(�jgj + eB+

H
):

Clearly, we know that jgj � eB�
H
> 0. From the assumption of Th. 1.4, we infer

that QH(jgj) � 0 on Mn. This implies that the right-hand side of (3.11) is

nonnegative. From Proposition 3.1, we know that L is elliptic, and H obtains its

maximum on Mn. From (3.11), we have H = const on Mn. From (3.11) again,

we get jgj2QH(jgj) = 0. We infer that the equality holds in Lem. 2.2. Therefore,

we know that (n � 1) of the numbers H � �i are equal to jgj=
p
n(n� 1). This

implies that Mn has (n � 1) principal curvatures equal and constant. As H is

constant, the other principal curvature is constant as well. From an inequality of

Chen�Okumura [8], we know that jhj2 � n2H2=(n� 1) implies that the sectional

curvature K of Mn is nonnegative. Therefore, we know that Mn is a complete

hypersurface in Rn+1 with constant mean curvature and nonnegative sectional

curvature. From Theorem 1.2, we have either Mn is isometric to a standard

round sphere, a hyperplane Rn or a Riemannian product Sn�1(c1) � R1. This

completes the proof of Th. 1.4.

P r o o f o f T h e o r e m 1.5. From the assumption of Th. 1.5, Prop. 3.2

and Prop. 3.3, for c = �1, we have

nLH � jgj2f�n+ nH2 � n(n�2)p
n(n�1)

Hjgj � jgj2g = jgj2RH(jgj); (3:12)

where

RH(jgj) = �n+ nH2 � n(n� 2)p
n(n� 1)

Hjgj � jgj2:

RH(jgj) has two real roots bB�
H

and bB+
H

given by

bB�
H

= �1

2
(n� 2)

r
n

n� 1
H �

s
n3H2

4(n� 1)
� n; n2H2 � 4(n� 1):
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Therefore, we know that

RH(jgj) = (jgj � bB�
H
)(�jgj + bB+

H
):

Clearly, we know that jgj� bB�
H
> 0. From the assumption of Th. 1.5, we infer that

RH(jgj) � 0 onMn. This implies that the right-hand side of (3.12) is nonnegative.

From Proposition 3.1, we know that L is elliptic. Since H obtains its maximum

on Mn, from (3.12), we have H = const on Mn. From (3.12) again, we get

jgj2RH(jgj) = 0, so jgj2 = 0, and Mn is totally umbilical, or RH(jgj) = 0. In the

latter case, we know that (n�1) of the numbers H��i are equal to jgj=
p
n(n� 1).

This implies thatMn has (n�1) principal curvatures equal and constant. As H is

constant, the other principal curvature is constant as well, soMn is isoparametric.

From the result of Lem. 2.1, Mn is isometric to Sn�1(r) �H1(�1=(r2 + 1)) for
some r > 0. This completes the proof of Th. 1.5.
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