Complete Hypersurfaces in a Real Space Form

Shu Shichang
Department of Mathematics, Xianyang Teachers University Xianyang, 712000, Shaanxi, Peoples Republic of China E-mail:shushichang@126.com

Received February 24, 2007
Let M^{n} be an n-dimensional complete hypersurface with the scalar curvature $n(n-1) R$ and the mean curvature H being linearly related, that is, $n(n-1) R=k^{\prime} H\left(k^{\prime}>0\right)$ in a real space form $R^{n+1}(c)$. Assume that the mean curvature is positive and obtains its maximum on M^{n}. We show that (1) if $c=1, k^{\prime} \geq 2 n \sqrt{n(n-1)}$, for any $i, \sum_{j \neq i} \lambda_{j}^{2}>n(n-1)$ and $|h|^{2} \leq n H^{2}+\left(B_{H}^{+}\right)^{2}$, then M^{n} is totally umbilical, or (i) $n \geq 3, M^{n}$ is locally an $H(r)$-torus with $r^{2}<\frac{n-1}{n}$, (ii) $n=2, M^{n}$ is locally an $H(r)$-torus with $r^{2} \neq \frac{n-1}{n}$; (2) if $c=0$ and $|h|^{2} \leq n H^{2}+\left(\widetilde{B}_{H}^{+}\right)^{2}$, then M^{n} is isometric to a standard round sphere, a hyperplane R^{n} or $S^{n-1}\left(c_{1}\right) \times R^{1} ;(3)$ if $c=-1$ and $|h|^{2} \leq n H^{2}+\left(\widehat{B}_{H}^{+}\right)^{2}$, then M^{n} is totally umbilical or is isometric to $S^{n-1}(r) \times H^{1}\left(-1 /\left(r^{2}+1\right)\right)$ for some $r>0$, where $|h|^{2}$ denotes the squared norm of the second fundamental form of $M^{n}, B_{H}^{+}, \widetilde{B}_{H}^{+}$and \widehat{B}_{H}^{+}are denoted by (1.1), (1.2) and (1.3).

Key words: hypersurface, mean curvature, scalar curvature, real space form.

Mathematics Subject Classification 2000: 53C40 (primary); 53C20 (secondary).

1. Introduction

Let $R^{n+1}(c)$ be an $(n+1)$-dimensional connected Riemannian manifold with constant sectional curvature c. We also call it a real space form. According to $c>0, c=0$ or $c<0$, it is called sphere space, Euclidean space or hyperbolic space, respectively, and it is denoted by $S^{n+1}(c), R^{n+1}$ and $H^{n+1}(c)$. As it is wellknown that there are many rigidity results for hypersurfaces with constant mean curvature or with constant scalar curvature in $S^{n+1}(c), R^{n+1}$ and $H^{n+1}(c)$, for example, see $[1-3,5]$ and [12] etc., but fewer ones are obtained for hypersurfaces

[^0]with the scalar curvature and the mean curvature being linearly related. We know that an $H(r)$-torus in a unit sphere $S^{n+1}(1)$ is the product immersion $S^{n-1}(r) \times$ $S^{1}\left(\sqrt{1-r^{2}}\right) \hookrightarrow R^{n} \times R^{2}$, where $S^{n-1}(r) \subset R^{n}, S^{1}\left(\sqrt{1-r^{2}}\right) \subset R^{2}, 0<r<1$, are standard immersions. In some orientation, $H(r)$-torus has principal curvatures given by $\lambda_{1}=\cdots=\lambda_{n-1}=\frac{\sqrt{1-r^{2}}}{r}$ and $\lambda_{n}=-\frac{r}{\sqrt{1-r^{2}}}$.

In [12], the authors obtained the following:
Theorem 1.1. Let M^{n} be an n-dimensional complete hypersurface with constant mean curvature H in a unit sphere $S^{n+1}(1)$. (1) If $|h|^{2}<D^{\prime}(n, H)$, then M^{n} is totally umbilical. (2) If $|h|^{2}=D^{\prime}(n, H)$, then (i) when $H=0, M^{n}$ is locally a Clifford torus; (ii) when $H \neq 0, n \geq 3, M^{n}$ is locally an $H(r)$-torus with $r^{2}<\frac{n-1}{n}$; (iii) when $H \neq 0, n=2, M^{n}$ is locally an $H(r)$-torus with $r^{2} \neq \frac{n-1}{n}$, where

$$
D^{\prime}(n, H)=n+\frac{n^{3} H^{2}}{2(n-1)}-\frac{(n-2) n H}{2(n-1)}\left[n^{2} H^{2}+4(n-1)\right]^{\frac{1}{2}} .
$$

In [6], S.Y. Cheng and S.T. Yau obtained the following:
Theorem 1.2. Let M^{n} be a complete hypersurface with constant mean curvature in R^{n+1}. If the sectional curvature of M^{n} is nonnegative, then M^{n} is isometric to a standard round sphere, a hyperplane R^{n} or a Riemannian product $S^{k}\left(c_{1}\right) \times R^{n-k}, 1 \leq k \leq n-1$.

In this paper, we study the hypersurfaces in a real space form $R^{n+1}(c)$ with scalar curvature $n(n-1) R$ and the mean curvature H being linearly related. We obtain the following theorems:

Theorem 1.3. Let M^{n} be an n-dimensional complete hypersurface with $n(n-$ 1) $R=k^{\prime} H$ in a unit sphere $S^{n+1}(1)$, where $k^{\prime}(\geq 2 n \sqrt{n(n-1)})$ is a positive constant. Assume that the mean curvature H is positive and obtains its maximum on M^{n} and for any $i, \sum_{j \neq i} \lambda_{j}^{2}>n(n-1)$, where $\lambda_{j}(j=1, \ldots, i-1, i+1, \ldots, n)$ are the principal curvatures on M^{n}. If the squared norm of the second fundamental form $|h|^{2}$ satisfies

$$
|h|^{2} \leq n H^{2}+\left(B_{H}^{+}\right)^{2}
$$

on M^{n}, then M^{n} is totally umbilical, or (i) $n \geq 3, M^{n}$ is locally an $H(r)$-torus with $r^{2}<\frac{n-1}{n}$; (ii) $n=2, M^{n}$ is locally an $H(r)$-torus with $r^{2} \neq \frac{n-1}{n}$, where

$$
\begin{equation*}
B_{H}^{+}=-\frac{1}{2}(n-2) \sqrt{\frac{n}{n-1}} H+\sqrt{\frac{n^{3} H^{2}}{4(n-1)}+n} . \tag{1.1}
\end{equation*}
$$

Theorem 1.4. Let M^{n} be an n-dimensional complete hypersurface with $n(n-$ 1) $R=k^{\prime} H$ in a Euclidean space R^{n+1}, where k^{\prime} is a positive constant. Assume
that the mean curvature H is positive and obtains its maximum on M^{n}. If the squared norm of the second fundamental form $|h|^{2}$ satisfies

$$
|h|^{2} \leq n H^{2}+\left(\widetilde{B}_{H}^{+}\right)^{2}
$$

on M^{n}, then M^{n} is isometric to a standard round sphere, a hyperplane R^{n} or a Riemannian product $S^{n-1}\left(c_{1}\right) \times R^{1}$, where

$$
\begin{equation*}
\widetilde{B}_{H}^{+}=\sqrt{\frac{n}{n-1}} H \tag{1.2}
\end{equation*}
$$

Theorem 1.5. Let M^{n} be an n-dimensional complete hypersurface with $n(n-$ 1) $R=k^{\prime} H$ in a hyperbolic space $H^{n+1}(-1)$, where k^{\prime} is a positive constant. Assume that the mean curvature H is positive and obtains its maximum on M^{n}. If the squared norm of the second fundamental form $|h|^{2}$ satisfies

$$
|h|^{2} \leq n H^{2}+\left(\widehat{B}_{H}^{+}\right)^{2}
$$

on M^{n}, then M^{n} is totally umbilical or is isometric to $S^{n-1}(r) \times H^{1}\left(-1 /\left(r^{2}+1\right)\right)$ for some $r>0$, where

$$
\begin{equation*}
\widehat{B}_{H}^{+}=-\frac{1}{2}(n-2) \sqrt{\frac{n}{n-1}} H+\sqrt{\frac{n^{3} H^{2}}{4(n-1)}-n}, \quad\left(n^{2} H^{2} \geq 4(n-1)\right) \tag{1.3}
\end{equation*}
$$

2. Preliminaries

Let M^{n} be an n-dimensional hypersurface in $R^{n+1}(c)$. For any $p \in M^{n}$ we choose a local orthonormal frame $e_{1}, \ldots, e_{n}, e_{n+1}$ in $R^{n+1}(c)$ around p such that e_{1}, \ldots, e_{n} are tangential to M^{n}. Take the corresponding dual co-frame $\left\{\omega_{1}, \ldots, \omega_{n}, \omega_{n+1}\right\}$. In this paper we make the following convention on the range of indices,

$$
1 \leq A, B, C \cdots \leq n+1 ; \quad 1 \leq i, j, k, \cdots \leq n
$$

The structure equations of $R^{n+1}(c)$ are

$$
\begin{aligned}
& d \omega_{A}=\sum_{B} \omega_{A B} \wedge \omega_{B}, \quad \omega_{A B}=-\omega_{B A} \\
& d \omega_{A B}=\sum_{c} \omega_{A C} \wedge \omega_{C B}-c \omega_{A} \wedge \omega_{B}
\end{aligned}
$$

If we denote by the same letters the restrictions of $\omega_{A}, \omega_{A B}$ to M^{n}, we have

$$
\begin{equation*}
d \omega_{i}=\sum_{j} \omega_{i j} \wedge \omega_{j}, \quad \omega_{i j}=-\omega_{j i} \tag{2.1}
\end{equation*}
$$

$$
\begin{equation*}
d \omega_{i j}=\sum_{k} \omega_{i k} \wedge \omega_{k j}-\frac{1}{2} \sum_{k, l} R_{i j k l} \omega_{k} \wedge \omega_{l} \tag{2.2}
\end{equation*}
$$

where $R_{i j k l}$ is the curvature tensor of the induced metric on M^{n}.
Restricted to $M^{n}, \omega_{n+1}=0$, thus

$$
\begin{equation*}
0=d \omega_{n+1}=\sum_{i} \omega_{n+1 i} \wedge \omega_{i} \tag{2.3}
\end{equation*}
$$

and by Cartan's lemma we can write

$$
\begin{equation*}
\omega_{i n+1}=\sum_{j} h_{i j} \omega_{j}, \quad h_{i j}=h_{j i} \tag{2.4}
\end{equation*}
$$

The quadratic form $h=\sum_{i, j} h_{i j} \omega_{i} \otimes \omega_{j}$ is the second fundamental form of M^{n}. The Gauss equation is

$$
\begin{gather*}
R_{i j k l}=c\left(\delta_{i k} \delta_{j l}-\delta_{i l} \delta_{j k}\right)+h_{i k} h_{j l}-h_{i l} h_{j k} \tag{2.5}\\
n(n-1) R=n(n-1) c+n^{2} H^{2}-|h|^{2} \tag{2.6}
\end{gather*}
$$

where R is the normalized scalar curvature, $H=(1 / n) \sum_{i} h_{i i}$ the mean curvature and $|h|^{2}=\sum_{i, j} h_{i j}^{2}$ the squared norm of the second fundamental form of M^{n}, respectively.

The Codazzi equation and Ricci identity are

$$
\begin{gather*}
h_{i j k}=h_{i k j} \tag{2.7}\\
h_{i j k l}-h_{i j l k}=\sum_{m} h_{m j} R_{m i k l}+\sum_{m} h_{i m} R_{m j k l} \tag{2.8}
\end{gather*}
$$

where the first and the second covariant derivatives of the second fundamental form are defined by

$$
\begin{gather*}
\sum_{k} h_{i j k} \omega_{k}=d h_{i j}+\sum_{k} h_{k j} \omega_{k i}+\sum_{k} h_{i k} \omega_{k j} \tag{2.9}\\
\sum_{l} h_{i j k l} \omega_{l}=d h_{i j k}+\sum_{m} h_{m j k} \omega_{m i}+\sum_{m} h_{i m k} \omega_{m j}+\sum_{m} h_{i j m} \omega_{m k} \tag{2.10}
\end{gather*}
$$

In order to represent our theorems, we need some notations, for details see H.B. Lawson [9] and P.J. Ryan [11]. First we give a description of the real hyperbolic space $H^{n+1}(c)$ of constant curvature $c(<0)$.

For any two vectors x and y in R^{n+2}, we set

$$
g(x, y)=x_{1} y_{1}+\ldots+x_{n+1} y_{n+1}-x_{n+2} y_{n+2}
$$

$\left(R^{n+2}, g\right)$ is the so-called Minkowski space-time. Denote $\rho=\sqrt{-1 / c}$. We define

$$
H^{n+1}(c)=\left\{x \in R^{n+2} \mid g(x, x)=-\rho^{2}, x_{n+2}>0\right\} .
$$

Then $H^{n+1}(c)$ is a simply-connected hypersurface of R^{n+2}. Hence, we obtain a model of a real hyperbolic space.

We define

$$
\begin{aligned}
M_{1}= & \left\{x \in H^{n+1}(c) \mid x_{1}=0\right\} \\
M_{2}= & \left\{x \in H^{n+1}(c) \mid x_{1}=r>0\right\} \\
M_{3}= & \left\{x \in H^{n+1}(c) \mid x_{n+2}=x_{n+1}+\rho\right\} \\
M_{4}= & \left\{x \in H^{n+1}(c) \mid x_{1}^{2}+\ldots+x_{n+1}^{2}=r^{2}>0\right\} \\
M_{5}= & \left\{x \in H^{n+1}(c) \mid x_{1}^{2}+\ldots+x_{k+1}^{2}=r^{2}>0\right. \\
& \left.x_{k+2}^{2}+\ldots+x_{n+1}^{2}-x_{n+2}^{2}=-\rho^{2}-r^{2}\right\}
\end{aligned}
$$

M_{1}, \ldots, M_{5} are often called the standard examples of complete hypersurfaces in $H^{n+1}(c)$ with at most two distinct constant principal curvatures. It is obvious that M_{1}, \ldots, M_{4} are totally umbilical. In the sense of Chen [7], they are called the hyperspheres of $H^{n+1}(c) . M_{3}$ is called the horosphere and M_{4} - the geodesic distance sphere of $H^{n+1}(c)$. P.J. Ryan [11] obtained the following:

Lemma 2.1([11]). Let M^{n} be a complete hypersurface in $H^{n+1}(c)$. Suppose that, under a suitable choice of a local orthonormal tangent frame field of $T M^{n}$, the shape operator over $T M^{n}$ is expressed as a matrix A. If M^{n} has at most two distinct constant principal curvatures, then it is congruent to one of the following:
(1) M_{1}. In this case, $A=0$, and M_{1} is totally geodesic. Hence M_{1} is isometric to $H^{n}(c)$.
(2) M_{2}. In this case, $A=\frac{1 / \rho^{2}}{\sqrt{1 / \rho^{2}+1 / r^{2}}} I_{n}$, where I_{n} denotes the identity matrix of degree n, and M_{2} is isometric to $H^{n}\left(-1 /\left(r^{2}+\rho^{2}\right)\right)$.
(3) M_{3}. In this case, $A=\frac{1}{\rho} I_{n}$, and M_{3} is isometric to a Euclidean space R^{n}.
(4) M_{4}. In this case, $A=\sqrt{1 / r^{2}+1 / \rho^{2}} I_{n}, M_{4}$ is isometric to a round sphere $S^{n}(r)$ of radius r.
(5) M_{5}. In this case, $A=\lambda I_{k} \oplus \mu I_{n-k}$, where $\lambda=\sqrt{1 / \rho^{2}+1 / r^{2}}$, and $\mu=\frac{1 / \rho^{2}}{\sqrt{1 / r^{2}+1 / \rho^{2}}}, M_{5}$ is isometric to $S^{k}(r) \times H^{n-k}\left(-1 /\left(r^{2}+\rho^{2}\right)\right)$.

We also need the following algebraic Lemma due to [10] and [1].
Lemma 2.2([10, 1]). Let $\mu_{i}, i=1, \ldots, n$ be real numbers, with $\sum_{i} \mu_{i}=0$ and $\sum_{i} \mu_{i}^{2}=\beta^{2} \geq 0$. Then

$$
\begin{equation*}
-\frac{n-2}{\sqrt{n(n-1)}} \beta^{3} \leq \sum_{i} \mu_{i}^{3} \leq \frac{n-2}{\sqrt{n(n-1)}} \beta^{3}, \tag{2.11}
\end{equation*}
$$

and equality holds if and only if either $(n-1)$ of the numbers μ_{i} are equal to $\beta / \sqrt{n(n-1)}$ or $(n-1)$ of the numbers μ_{i} are equal to $-\beta / \sqrt{n(n-1)}$.

3. Proof of Theorems

In order to prove our theorems, we introduce an operator \square due to S.Y. Cheng and S.T. Yau [5] by

$$
\begin{equation*}
\square f=\sum_{i, j}\left(n H \delta_{i j}-h_{i j}\right) f_{i j}, \tag{3.1}
\end{equation*}
$$

where f is a C^{2}-function on M^{n}, the gradient and $\operatorname{Hessian}\left(f_{i j}\right)$ are defined by

$$
\begin{equation*}
d f=\sum_{i} f_{i} \omega_{i}, \quad \sum_{j} f_{i j} \omega_{j}=d f_{i}+\sum_{j} f_{j} \omega_{j i} . \tag{3.2}
\end{equation*}
$$

The Laplacian of f is defined by $\Delta f=\sum_{i} f_{i i}$.
We choose a local frame field e_{1}, \ldots, e_{n} at each point of M^{n}, such that $h_{i j}=$ $\lambda_{i} \delta_{i j}$. From (3.1) and (2.6), we have

$$
\begin{align*}
\square(n H) & =n H \Delta(n H)-\sum_{i} \lambda_{i}(n H)_{i i} \\
& =\frac{1}{2} \Delta(n H)^{2}-\sum_{i}(n H)_{i}^{2}-\sum_{i} \lambda_{i}(n H)_{i i} \\
& =\frac{1}{2} n(n-1) \Delta R+\frac{1}{2} \Delta|h|^{2}-n^{2}|\nabla H|^{2}-\sum_{i} \lambda_{i}(n H)_{i i} . \tag{3.3}
\end{align*}
$$

From (2.7) and (2.8), by a standard and direct calculation, we have

$$
\begin{equation*}
\frac{1}{2} \Delta|h|^{2}=\sum_{i, j, k} h_{i j k}^{2}+\sum_{i} \lambda_{i}(n H)_{i i}+\frac{1}{2} \sum_{i, j} R_{i j i j}\left(\lambda_{i}-\lambda_{j}\right)^{2}, \tag{3.4}
\end{equation*}
$$

where $R_{i j i j}=c+\lambda_{i} \lambda_{j}(i \neq j)$ denotes the sectional curvature of the section spanned by $\left\{e_{i}, e_{j}\right\}$.

From (3.3) and (3.4), we get

$$
\begin{equation*}
\square(n H)=\frac{1}{2} n(n-1) \Delta R+|\nabla h|^{2}-n^{2}|\nabla H|^{2}+\frac{1}{2} \sum_{i, j}\left(c+\lambda_{i} \lambda_{j}\right)\left(\lambda_{i}-\lambda_{j}\right)^{2} . \tag{3.5}
\end{equation*}
$$

By making use of the similar method in [4], we can prove the following:
Proposition 3.1. Let M^{n} be an n-dimensional hypersurface in a real space form $R^{n+1}(c)$ with $n(n-1) R=k^{\prime} H, k^{\prime}=$ constant >0. Assume that the mean curvature $H>0$. Then we have the operator

$$
L=\square-\left(k^{\prime} / 2 n\right) \Delta
$$

(1) if $c>0$ and for any $i, \sum_{j \neq i} \lambda_{j}^{2}>n(n-1) c, L$ is elliptic;
(2) if $c \leq 0, L$ is elliptic.

Proof. We choose an orthonormal frame field $\left\{e_{j}\right\}$ at each point in M^{n} so that $h_{i j}=\lambda_{i} \delta_{i j}$. For any i,

$$
\begin{align*}
\left(n H-\lambda_{i}-k^{\prime} / 2 n\right) & =\sum_{j} \lambda_{j}-\lambda_{i}-(1 / 2)\left[-\sum_{j} \lambda_{j}^{2}+n^{2} H^{2}+n(n-1) c\right] /(n H) \\
& =\left[\left(\sum_{j} \lambda_{j}\right)^{2}-\lambda_{i} \sum_{j} \lambda_{j}-(1 / 2) \sum_{l \neq j} \lambda_{l} \lambda_{j}-(1 / 2) n(n-1) c\right](n H)^{-1} \\
& =\left[\sum_{j} \lambda_{j}^{2}+(1 / 2) \sum_{l \neq j} \lambda_{l} \lambda_{j}-\lambda_{i} \sum_{j} \lambda_{j}-(1 / 2) n(n-1) c\right](n H)^{-1} \\
& =\left[\sum_{i \neq j} \lambda_{j}^{2}+(1 / 2) \sum_{\substack{l \neq j \\
l, j \neq i}} \lambda_{l} \lambda_{j}-(1 / 2) n(n-1) c\right](n H)^{-1} \\
& =(1 / 2)\left[\sum_{j \neq i} \lambda_{j}^{2}+\left(\sum_{j \neq i} \lambda_{j}\right)^{2}-n(n-1) c\right](n H)^{-1} \tag{3.6}
\end{align*}
$$

(1) If $c>0$ and for any $i, \sum_{j \neq i} \lambda_{j}^{2}>n(n-1) c$, from (3.6), we have

$$
\left(n H-\lambda_{i}-k^{\prime} / 2 n\right) \geq(1 / 2)\left[\sum_{j \neq i} \lambda_{j}^{2}-n(n-1) c\right](n H)^{-1}>0
$$

Therefore, we know that L is an elliptic operator.
(2) If $c \leq 0$, from (3.6) again, we have

$$
\left(n H-\lambda_{i}-k^{\prime} / 2 n\right)>0
$$

Therefore, we also know that L is an elliptic operator. This completes the proof of Prop. 3.1.

We can also prove the following:

Proposition 3.2. Let M^{n} be an n-dimensional hypersurface in a real space form $R^{n+1}(c)$ with $n(n-1) R=k^{\prime} H, k^{\prime}=$ constant >0. Assume that the mean curvature $H>0$. Then we have:
(1) if $c>0$ and $k^{\prime} \geq 2 n \sqrt{n(n-1) c}$, then

$$
|\nabla h|^{2} \geq n^{2}|\nabla H|^{2}
$$

(2) if $c \leq 0$, for all $k^{\prime}>0$, then

$$
|\nabla h|^{2} \geq n^{2}|\nabla H|^{2}
$$

Proof. Since $H>0$, we have $|h|^{2} \neq 0$. In fact, if $|h|^{2}=\sum_{i} \lambda_{i}^{2}=0$ at a point of M^{n}, then $\lambda_{i}=0, i=1,2, \ldots, n$, at this point. Therefore $H=0$ at this point. This is impossible.

From (2.6) and $n(n-1) R=k^{\prime} H$, we have

$$
\begin{aligned}
& k^{\prime} \nabla_{i} H=2 n^{2} H \nabla_{i} H-2 \sum_{j, k} h_{k j} h_{k j i}, \\
& \left(\frac{1}{2} k^{\prime}-n^{2} H\right) \nabla_{i} H=-\sum_{j, k} h_{k j} h_{k j i}, \\
& \left(\frac{1}{2} k^{\prime}-n^{2} H\right)^{2}|\nabla H|^{2}=\sum_{i}\left(\sum_{j, k} h_{k j} h_{k j i}\right)^{2} \leq \sum_{i, j} h_{i j}^{2} \sum_{i, j, k} h_{i j k}^{2}=|h|^{2}|\nabla h|^{2} .
\end{aligned}
$$

Therefore, we have

$$
\begin{align*}
|\nabla h|^{2}-n^{2}|\nabla H|^{2} & \geq\left[\left(\frac{k^{\prime}}{2}-n^{2} H\right)^{2}-n^{2}|h|^{2}\right]|\nabla H|^{2} \frac{1}{|h|^{2}} \\
& =\left[\frac{\left(k^{\prime}\right)^{2}}{4}-n^{3}(n-1) c\right]|\nabla H|^{2} \frac{1}{|h|^{2}} . \tag{3.7}
\end{align*}
$$

(1)If $c>0$ and $k^{\prime} \geq 2 n \sqrt{n(n-1) c}$, from (3.7), we have

$$
|\nabla h|^{2}-n^{2}|\nabla H|^{2} \geq 0
$$

(2) If $c \leq 0$, from (3.7), we also have

$$
|\nabla h|^{2}-n^{2}|\nabla H|^{2} \geq 0
$$

This completes the proof of Prop. 3.2.

Proposition 3.3. Let M^{n} be an n-dimensional hypersurface in a real space form $R^{n+1}(c)$ with $n(n-1) R=k^{\prime} H, k^{\prime}=$ constant >0. Then we have

$$
n L H \geq\left(|\nabla h|^{2}-n^{2}|\nabla H|^{2}\right)+|g|^{2}\left\{n c+n H^{2}-\frac{n(n-2)}{\sqrt{n(n-1)}}|H||g|-|g|^{2}\right\}
$$

where $|g|^{2}$ is a nonnegative C^{2}-function on M^{n} defined by $|g|^{2}=|h|^{2}-n H^{2}$.
Proof. From (3.5) we have

$$
\begin{align*}
n L H & =n\left[\square H-\left(k^{\prime} / 2 n\right) \Delta H\right] \\
& =\square(n H)-(1 / 2) \Delta[n(n-1) R] \\
& =|\nabla h|^{2}-n^{2}|\nabla H|^{2}+\frac{1}{2} \sum_{i, j}\left(c+\lambda_{i} \lambda_{j}\right)\left(\lambda_{i}-\lambda_{j}\right)^{2} \\
& =|\nabla h|^{2}-n^{2}|\nabla H|^{2}+n c|h|^{2}-n^{2} H^{2} c-|h|^{4}+n H \sum_{i} \lambda_{i}^{3} \tag{3.8}
\end{align*}
$$

Let $|g|^{2}$ be a nonnegative C^{2}-function on M^{n} defined by $|g|^{2}=|h|^{2}-n H^{2}$. Since $\sum_{i}\left(H-\lambda_{i}\right)=0, \sum_{i}\left(H-\lambda_{i}\right)^{2}=|h|^{2}-n H^{2}=|g|^{2}$, by Lem. 2.2 we get

$$
\begin{align*}
n H \sum_{i} \lambda_{i}^{3} & =3 n H^{2}|h|^{2}-2 n^{2} H^{4}-n H \sum_{i}\left(H-\lambda_{i}\right)^{3} \\
& \geq 3 n H^{2}|g|^{2}+n^{2} H^{4}-n|H| \frac{n-2}{\sqrt{n(n-1)}}|g|^{3} . \tag{3.9}
\end{align*}
$$

Therefore, from (3.8) and (3.9), we have

$$
n L H \geq|\nabla h|^{2}-n^{2}|\nabla H|^{2}+|g|^{2}\left\{n c+n H^{2}-\frac{n(n-2)}{\sqrt{n(n-1)}}|H||g|-|g|^{2}\right\} .
$$

This completes the proof of Prop. 3.3.
Proof of Theorem1.3. From the assumption of Th. 1.3, Prop. 3.2 and Prop. 3.3 for $c=1$, we have

$$
\begin{equation*}
n L H \geq|g|^{2}\left\{n+n H^{2}-\frac{n(n-2)}{\sqrt{n(n-1)}} H|g|-|g|^{2}\right\}=|g|^{2} P_{H}(|g|) \tag{3.10}
\end{equation*}
$$

where

$$
P_{H}(|g|)=n+n H^{2}-\frac{n(n-2)}{\sqrt{n(n-1)}} H|g|-|g|^{2} .
$$

$P_{H}(|g|)$ has two real roots B_{H}^{-}and B_{H}^{+}given by

$$
B_{H}^{ \pm}=-\frac{1}{2}(n-2) \sqrt{\frac{n}{n-1}} H \pm \sqrt{\frac{n^{3} H^{2}}{4(n-1)}+n} .
$$

Therefore, we know that

$$
P_{H}(|g|)=\left(|g|-B_{H}^{-}\right)\left(-|g|+B_{H}^{+}\right) .
$$

Clearly, we know that $|g|-B_{H}^{-}>0$. From the assumption of Th. 1.3, we infer that $P_{H}(|g|) \geq 0$ on M^{n}. This implies that the right-hand side of (3.10) is nonnegative. Since, from Prop. 3.1, the operator L is elliptic, and H obtains its maximum on M^{n}, from (3.10) we know that $H=$ const on M^{n}. Therefore, we know that M^{n} is an n-dimensional complete hypersurface with constant mean curvature $H(>0)$ in a unit sphere $S^{n+1}(1)$. By the assumption of Th. 1.3 and the result of Th. 1.1, we can check directly that $|h|^{2} \leq n H^{2}+\left(B_{H}^{+}\right)^{2}=n+\frac{n^{3} H^{2}}{2(n-1)}-\frac{(n-2) n H}{2(n-1)}\left[n^{2} H^{2}+\right.$ $4(n-1)]^{\frac{1}{2}}=D^{\prime}(n, H)$. Therefore we have either M^{n} is totally umbilical, or (i) $n \geq 3, M^{n}$ is locally an $H(r)$-torus with $r^{2}<\frac{n-1}{n}$; (ii) $n=2, M^{n}$ is locally an $H(r)$-torus with $r^{2} \neq \frac{n-1}{n}$. This completes the proof of Th. 1.3.

Proof of Theorem1.4. From the assumption of Th. 1.4, Prop. 3.2 and Prop. 3.3, for $c=0$, we have

$$
\begin{equation*}
n L H \geq|g|^{2}\left\{n H^{2}-\frac{n(n-2)}{\sqrt{n(n-1)}} H|g|-|g|^{2}\right\}=|g|^{2} Q_{H}(|g|) \tag{3.11}
\end{equation*}
$$

where

$$
Q_{H}(|g|)=n H^{2}-\frac{n(n-2)}{\sqrt{n(n-1)}} H|g|-|g|^{2}
$$

$Q_{H}(|g|)$ has two real roots \widetilde{B}_{H}^{-}and \widetilde{B}_{H}^{+}given by

$$
\widetilde{B}_{H}^{-}=-(n-1) \sqrt{\frac{n}{n-1}} H, \quad \widetilde{B}_{H}^{+}=\sqrt{\frac{n}{n-1}} H
$$

Therefore, we know that

$$
Q_{H}(|g|)=\left(|g|-\widetilde{B}_{H}^{-}\right)\left(-|g|+\widetilde{B}_{H}^{+}\right)
$$

Clearly, we know that $|g|-\widetilde{B}_{H}^{-}>0$. From the assumption of Th. 1.4, we infer that $Q_{H}(|g|) \geq 0$ on M^{n}. This implies that the right-hand side of (3.11) is nonnegative. From Proposition 3.1, we know that L is elliptic, and H obtains its maximum on M^{n}. From (3.11), we have $H=$ const on M^{n}. From (3.11) again, we get $|g|^{2} Q_{H}(|g|)=0$. We infer that the equality holds in Lem. 2.2. Therefore, we know that $(n-1)$ of the numbers $H-\lambda_{i}$ are equal to $|g| / \sqrt{n(n-1)}$. This implies that M^{n} has $(n-1)$ principal curvatures equal and constant. As H is constant, the other principal curvature is constant as well. From an inequality of Chen-Okumura [8], we know that $|h|^{2} \leq n^{2} H^{2} /(n-1)$ implies that the sectional curvature K of M^{n} is nonnegative. Therefore, we know that M^{n} is a complete hypersurface in R^{n+1} with constant mean curvature and nonnegative sectional curvature. From Theorem 1.2, we have either M^{n} is isometric to a standard round sphere, a hyperplane R^{n} or a Riemannian product $S^{n-1}\left(c_{1}\right) \times R^{1}$. This completes the proof of Th. 1.4.

Proof of Theorem 1.5. From the assumption of Th. 1.5, Prop. 3.2 and Prop. 3.3, for $c=-1$, we have

$$
\begin{equation*}
n L H \geq|g|^{2}\left\{-n+n H^{2}-\frac{n(n-2)}{\sqrt{n(n-1)}} H|g|-|g|^{2}\right\}=|g|^{2} R_{H}(|g|) \tag{3.12}
\end{equation*}
$$

where

$$
R_{H}(|g|)=-n+n H^{2}-\frac{n(n-2)}{\sqrt{n(n-1)}} H|g|-|g|^{2}
$$

$R_{H}(|g|)$ has two real roots \widehat{B}_{H}^{-}and \widehat{B}_{H}^{+}given by

$$
\widehat{B}_{H}^{ \pm}=-\frac{1}{2}(n-2) \sqrt{\frac{n}{n-1}} H \pm \sqrt{\frac{n^{3} H^{2}}{4(n-1)}-n}, \quad n^{2} H^{2} \geq 4(n-1)
$$

Therefore, we know that

$$
R_{H}(|g|)=\left(|g|-\widehat{B}_{H}^{-}\right)\left(-|g|+\widehat{B}_{H}^{+}\right) .
$$

Clearly, we know that $|g|-\widehat{B}_{H}^{-}>0$. From the assumption of Th. 1.5, we infer that $R_{H}(|g|) \geq 0$ on M^{n}. This implies that the right-hand side of (3.12) is nonnegative. From Proposition 3.1, we know that L is elliptic. Since H obtains its maximum on M^{n}, from (3.12), we have $H=$ const on M^{n}. From (3.12) again, we get $|g|^{2} R_{H}(|g|)=0$, so $|g|^{2}=0$, and M^{n} is totally umbilical, or $R_{H}(|g|)=0$. In the latter case, we know that $(n-1)$ of the numbers $H-\lambda_{i}$ are equal to $|g| / \sqrt{n(n-1)}$. This implies that M^{n} has $(n-1)$ principal curvatures equal and constant. As H is constant, the other principal curvature is constant as well, so M^{n} is isoparametric. From the result of Lem. 2.1, M^{n} is isometric to $S^{n-1}(r) \times H^{1}\left(-1 /\left(r^{2}+1\right)\right.$) for some $r>0$. This completes the proof of Th. 1.5.

References

[1] H. Alencar and M.P. do Carmo, Hypersurfaces with Constant Mean Curvature in Sphere. - Proc. Amer. Math. Soc. 120 (1994), 1223-1229.
[2] Q.M. Cheng, Complete Hypersurfaces in Euclidean Space R^{n+1} with Constant Scalar Curvature. - Indiana Univ. Math. J. 51 (2002), 53-68.
[3] Q.M. Cheng, Hypersurfaces in a Unit Shere $S^{n+1}(1)$ with Constant Scalar Curvature. - J. London Math. Soc. 64 (2001), 755-768.
[4] Q.M. Cheng, Complete Space-Like Hypersurfaces of a de Sitter Space with $r=k H$. - Mem. Fac. Sci. Kyushu Univ. 44 (1990), 67-77.
[5] S.Y. Cheng and S.T. Yau, Hypersurfaces with Constant Scalar Curvature. - Math. Ann. 225 (1977), 195-204.
[6] S.Y. Cheng and S.T. Yau, Differential Equations on Riemannian Manifolds and their Geometric Applications. - Comm. Pure Appl. Math. 28 (1975), 333-354.
[7] B.Y. Chen, Totally Mean Curvature and Submanifolds of Finite Type. World Sci., Singapore, 1984.
[8] B.Y. Chen and M. Okumura, Scalar Curvature, Inequality and Submanifold. Proc. Amer. Math. Soc. 38 (1973), 605-608.
[9] H.B. Lawson, Jr., Local Rigidity Theorems for Minimal Hypersurfaces. - Ann. Math. 89(2) (1969), 187-197.
[10] M. Okumura, Hypersurfaces and a Pinching Problem on the Second Fundamental Tensor. - Amer. J. Math. 96 (1974), 207-213.
[11] P.J. Ryan, Hypersurfaces with Parallel Ricci Tensor. - Osaka J. Math. 8 (1971), 251-259.
[12] S.C. Shu, Complete Hypersurfaces with Constant Mean Curvature in Locally Symmetric Manifold. - Adv. Math. Chinese 33 (2004), 563-569.

[^0]: This work is supported in part by the Natural Science Foundation of China and NSF of Shaanxi, China.

