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The controllability of a slowly rotating beam clamped to a disc is consi-

dered. It is assumed that at the beginning the beam remains at the position

of rest and it is supposed to rotate by the given angle to achieve a de-

sired position. The movement is governed by the system of two di�erential

equations with nonhomogeneous coe�cients: mass density, rotary inertia,

�exural rigidity and shear sti�ness. The problem of controllability is re-

duced to the moment problem that is, in turn, solved with the use of the

asymptotics of the spectrum of the operator connected with the movement.
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1. Introduction

The problem of controllability of a slowly rotating Timoshenko beam was

studied by many authors ([7, 11, 15]). In this paper we consider the beam clamped

to a disc that is rotated by a motor. The controllability depends on the radius of

the disc then, and there are values of the radius (at most countably many of them

� as it is shown in Sect. 4) for which controllability is not given. The control

of a rotating homogeneous beam was described by G.M. Sklyar and W. Krabs in

monograph [7] and in a series of papers (for example, [5, 8]). In [15] F. Woittennek

and J. Rudolph considered the homogeneous Timoshenko beam with the load

attached to the other (i.e., not clamped to the disc) end of the beam. The most

complex analysis of the Timoshenko beam (not clamped to a disc, but directly
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to a rotating motor) was given by M. Shubov ([12, 10, 11]). In addition, she was

the �rst author to consider the nonhomogeneous case. She studied the control of

dumped beam.

It turns out that her study leads to the theory of not self-adjoint operators.

This theory has not been well developed yet and only few authors study it. The

control of an undumped beam is not a special case of dumped beam control and

it is not trivial. It is just a di�erent subject that should be elaborated from the

very beginning. The theory developed here deals with selfadjoint operators, so

Ullrich's theorem [14] may be used. An analysis of the dumped Timoshenko beam

presented by M. Shubov excludes the case RK = E. In the case of undumped

beam, that equality is naturally included into the theory. G.M. Sklyar, W. Krabs

and V.I. Korobov [5] considered the case when RK = E = 1 and they solved the

problem of exact controllability for that case. The spectral analysis, independent

of assumption RK 6= E, was given in [13]. In the present paper we solve the prob-

lem of controllability of nonhomogeneous Timoshenko beam generalizing results

from [5] and [8].

2. Timoshenko Beam Model

We consider the rotational motion of a beam in a horizontal plane. Its left

end is clamped to the disk of a driving motor. We denote by r the radius of

the disk, and let � = �(t) be the rotation angle considered as a function of time

(t � 0). Further on, we assign to a (uniform) cross section at x with

0 � x � 1 the following: E(x) which is the �exural rigidity, K(x) � shear

sti�ness, %(x) � linear mass density, i.e., the weight of a cross section, R(x) �

rotary inertia. All of the above functions are assumed to be real and bounded

by two positive numbers. It is assumed that they vary slowly, so their �rst and

second derivatives are bounded. The length of the beam is assumed to be 1. We

denote by w(x; t) the de�ection of the center line of beam and by �(x; t) � the

rotation angle of cross section area at the location x and at time t. Then w and

� are governed by the following system of di�erential equations [13, 7]:

%(x) �w(x; t)�
�
K(x)(w0(x; t) + �(x; t))

�
0

= ���(t)%(x)(x+ r)

R(x)��(x; t)� (E(x)�0(x; t))0 +K(x)(w0(x; t) + �(x; t)) = ��(t)R(x):
(1)

Here for the given function g of two variables t and x, we adopt the notation

_g = gt, g
0 = gx for derivatives. In addition to (1) we impose the following

boundary conditions:

w(0; t) = �(0; t) = 0;

w0(1; t) + �(1; t) = 0; �0(1; t) = 0

for t � 0.
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We de�ne

��
y1
z1

�
;

�
y2
z2

��
=

1Z
0

%(x)y1(x)y2(x)dx+

1Z
0

R(x)z1(x)z2(x)dx (2)

and consider the space H, whose underlying set is L2
�
(0; 1); C 2

�
and with inner

product (2). Due to the hypotheses imposed on %, the norm generated by (2) is

equivalent to the standard L2 norm. Next, we de�ne the linear operator

A : D(A)! H by the formula

A

�
y

z

�
=

0
B@ �

1

%

�
K(y0 + z)

�
0

�
1

R

�
(Ez0)0 �K(y0 + z)

�
1
CA ; (3)

where K, E, %, R, y and z are functions of variable x 2 [0; 1] and

D(A) =

��
y

z

�
2 H2

�
(0; 1); C 2

�
:

y(0) = z(0) = 0;

y0(1) + z(1) = z0(1) = 0

�
� H:

It is easy to see that D(A) is dense in H. Using the de�ned operator A and

putting

f1(x; t) = ���(t)(r + x); f2(x; t) = ��(t); (4)

we can rewrite the equations (1) in the vector form�
�w(x; t)
��(x; t)

�
+A

�
w(x; t)

�(x; t)

�
=

�
f1(x; t)

f2(x; t)

�
: (5)

It follows readily [13] that the operator A : D(A)! H is positive, symmetric,

invertible and selfadjoint. Therefore there exists the unique weak solution to (1)

and it is given by

�
w(x; t)

�(x; t)

�
=

1X
j=1

1p
�j

tZ
0

��
f1(�; s)

f2(�; s)

�
;

�
yj
zj

��
sin
p
�j(t� s)ds

�
yj(x)

zj(x)

�
: (6)

The inner product used here is de�ned in (2), the functions f1 and f2 are de�ned

in (4) and

�
yj
zj

�
for j 2 N is the eigenvector of the operator A that corresponds

to eigenvalue �j . Also, we notice that the �rst (time) derivative of the above

solution is

�
_w(x; t)
_�(x; t)

�
=

1X
j=1

tZ
0

��
f1(�; s)

f2(�; s)

�
;

�
yj
zj

��
cos
p
�j(t� s)ds

�
yj(x)

zj(x)

�
: (7)
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As it was proved in [13] the spectrum asymptotically splits into two subsets:

�(0) =

8<
:
 Z 1

0

s
%(t)

K(t)
dt

!�2 �
�
�

2
+ n� + "(0)n

�2
: n > N

9=
; ; (8)

�(1) =

8<
:
 Z 1

0

s
R(t)

E(t)
dt

!�2 �
�
�

2
+ n� + "(1)n

�2
: n > N

9=
; (9)

with "
(0)
n ; "

(1)
n ! 1 as n ! 1. We denote by �

(k)
n the elements of the set �(k),

where k 2 f0; 1g, and by J (k) the corresponding integrals, i.e.,

J (0) =

1Z
0

s
%(t)

K(t)
dt; J (1) =

1Z
0

s
R(t)

E(t)
dt:

R e m a r k. In [13] we proved that the eigenvalues of the operator A

were at most double. It is not enough for exact controllability, where asymptotic

singularity of eigenvalues is required. However, for a wide class of models (that

includes all homogeneous case patterns) the singularity of eigenvalues is proved.

As we do not have the general proof of singularity, we set an assumption that all

eigenspaces of the operator A are one-dimensional.

3. Ullrich Theorem and its Modi�cation

Generalizing the classical theorem of R.E.A.C. Paley and N. Wiener (see [9]),

D. Ullrich proved the following theorem in [14]. We simplify it to the case that

ful�lls our requirements.

Theorem 1. Suppose that for every integer number n, the distinct complex

numbers !n0, !n1 with

lim
n!�1

jn� !nkj = 0 for k = 0; 1

are given. Then for any set of complex numbers fcnkg with n 2 Z, k = 0; 1, the

system of integral equations

2�Z
�2�

f(t) exp(it!nk)dt = cnk (10)

has a solution f 2 L2(�2�; 2�), if and only if

1X
n=�1

 
jcn0j

2 +

���� cn0 � cn1

!n0 � !n1

����
2
!
<1; (11)

for every integer n and k = 0; 1. If the solution to (10) exists, then it is unique.
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The above theorem should be altered to serve the purpose of controllability.

V.I. Korobov, W. Krabs and G.M. Sklyar proved the following modi�cation in [5].

Theorem 2. The condition (11) remains necessary and su�cient for

the solvability of the system of integral equations (10) if the interval of integra-

tion
�
�2�; 2�

�
is replaced by [0; T ] with T � 4�. The solution is not unique unless

T = 4�.

A modi�cation of the above theorem was proved by W. Krabs, G.M. Sklyar

and J. Wo�zniak in [8]. We state a little bit altered version of it.

Theorem 3. Assume n is an integer,

!n0 = 

�
�
�

2
+ n�

�
+ "n0;

!n1 =
�
�
�

2
+ n�

�
+ "n1;

where 1 < 
 = p
q
, p, q are relatively prime positive integers and lim

n!�1
"nk = 0 for

k = 0; 1. Let I
 =
h
0; 21+





i
.

1) If both p and q are odd, then the systemZ
I


f(t) exp(�i!nkt)dt = cnk; n 2 Z; k 2 f0; 1g; (12)

has a solution f 2 L2(I
) if and only if

1X
n=�1

 
jcn0j

2 + jcn1j
2 +

���� c((1�q)=2)+qn;0 � c((1�p)=2)+pn;1

!((1�q)=2)+qn;0 � !((1�p)=2)+pn;1

����
2
!
<1: (13)

2) If exactly one of p, q is even, then the system (12) has a solution if and only

if
1X

n=�1

�
jcn0j

2 + jcn1j
2
�
<1: (14)

In both cases, if the solution exists, it is unique. The interval I
 may be replaced

by any interval of the length T = 2
+1



. If T > 2
+1



, then the solution still exists,

but it is not unique.
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4. Solution to the Problem of Controllability

We assume that at time t = 0 the beam remains at the position of rest, i.e.,

w(x; 0) = _w(x; 0) = �(x; 0) = _�(x; 0) = �(0) = _�(0) = 0

for x 2 [0; 1]. At a given time T , we need to achieve the following position:

w(x; T ) = wT (x); _w(x; T ) = _wT (x);

�(x; T ) = �T (x); _�(x; T ) = _�T (x);
(15)

where functions wT , _wT , �T , _�T de�ned on [0; 1] are given. The problem of

controllability from rest to arbitrary position is:

Problem of Controllability. Given time T > 0, numbers �T , _�T 2 R and

position (15), �nd a function � 2 H2
0 (0; T ) satisfying

�(T ) = �T ; _�(T ) = _�T (16)

and such that the weak solution (6) of (1) satis�es (15).

Employing the end conditions (15) to (6), (7) and comparing the coe�cients,

we obtain

a(k)n

TZ
0

��(t) sin

q
�
(k)
n (T � t)dt =

q
�
(k)
n

*�
wT

�T

�
;

 
y
(k)
n

z
(k)
n

!+
;

a(k)n

TZ
0

��(t) cos

q
�
(k)
n (T � t)dt =

*�
_wT

_�T

�
;

 
y
(k)
n

z
(k)
n

!+ (17)

for all n 2 N and k 2 f0; 1g, where

a(k)n =

1Z
0

R(x)z
(k)
n (x)dx�

1Z
0

%(x)(r + x)y
(k)
n (x)dx:

From now on we assume that all the a
(k)
n 's are di�erent from 0. Actually, we

call the value r of the radius regular if a
(k)
n 6= 0 for all positive integers n and

k 2 f0; 1g. Other values of r are called singular. We notice that there are only

countably many singular values of r. To see this, we write a instead of a
(k)
n and y,

z for the corresponding to a coordinates of an eigenvector of A. From the spectral

equation of the operator A we gather that

%(x)y(x) = �
1

�

�
K(x)(y0(x) + z(x))

�
0

;

R(x)z(x) = �
1

�

�
E(x)(z0(x))0 �K(x)(y0(x) + z(x))

�
:
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Therefore, using integration by parts and the fact that

�
y

z

�
2 D(A), we obtain

a = �
1

�

0
@ 1Z

0

�
E(x)z0(x)

�
0

dx�

1Z
0

K(x)(y0(x) + z(x))dx

�

Z 1

0

(r + x)
�
K(x)(y0(x) + z(x))

�
0

dx

�

= �
1

�
(E(0)z0(0)� rK(0)y0(0)):

Thus to each a = 0 there corresponds at most one value of radius. As
n
a
(k)
n

o
n;k

is a countable set, the set of singular values of r is at most countable.

We de�ne

c(k)n =

q
�
(k)
n

a
(k)
n

*�
wT

�T

�
;

 
y
(k)
n

z
(k)
n

!+
;

_c(k)n =
1

a
(k)
n

*�
_wT

_�T

�
;

 
y
(k)
n

z
(k)
n

!+ (18)

and put u(t) = ��(T � t) for t 2 [0; T ]. Then (17) can be rewritten in the formZ T

0

u(t) sin

q
�
(k)
n tdt = c(k)n ;

Z T

0

u(t) cos

q
�
(k)
n tdt = _c(k)n : (19)

Also we have the end conditions (16) equivalent to

TZ
0

u(t)dt = �T and

TZ
0

tu(t)dt = _�T : (20)

Thus the problem of controllability from rest to arbitrary position is equivalent

to the following moment problem.

Moment Problem. Find u 2 L2(0; T ) such that for all n 2 N and k 2 f0; 1g

the conditions

TZ
0

u(t) cos t

q
�
(k)
n dt = _c(k)n

TZ
0

u(t) sin t

q
�
(k)
n dt = c(k)n

TZ
0

u(t)dt = _�T

TZ
0

tu(t)dt = �T :

are satis�ed.
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Once u(t) is found, we also have �(t) =
R t
0
(t� s)u(T � s)ds.

For to solve the stated problem we divide it into three cases.

Case 1: J (0) = J (1) = J .

Using (18), we de�ne

cnk =
�

J

�
_c(k)n + ic(k)n

�
: (21)

Then we can rewrite (19) in the form

TZ
0

u(t) exp

�
i

q
�
(k)
n t

�
=

J

�
cnk

and

TZ
0

u(t) exp

�
�i

q
�
(k)
n t

�
=

J

�
cnk:

(22)

We are going to use Theorem 2. Therefore we replace the last two equations with

the one, where n ranges over the integers. We make some changes. Let

!nk =
J

�

�q
�
(k)
n �

�

2J

�
(23)

and !�m+1; k = �!mk+1 for n;m 2 N and k 2 f0; 1g. In addition to equation (21)

we de�ne c�m+1; k = cmk for m 2 N. Thus

lim
n!�1

j!nk � nj = 0:

According to Theorem 2, there exists a unique solution v to the system of integral

equations
4�Z
0

v(t) exp (i!nkt) dt = cnk; n 2 Z;

if and only if (11) holds.

Now, let us de�ne u1(t) = v

�
�t

J

�
exp

�
�
i�t

2J

�
for t 2 [0; 4J ]. Then the

function u1 is a member of L2(0; 4J) and after standard computation including

changing of variable, we get

4JZ
0

u1(t) exp

�
i

q
�
(k)
n t

�
dt =

J

�
cnk

and
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4JZ
0

u1(t) exp

�
�i

q
�
(k)
n t

�
dt =

J

�
cnk:

Thus for T = 4J the system (22) has the unique solution u1 if and only if (11) is

satis�ed. Let us set T = 4J for a while.

We will show that u1 is in fact a real function. To achieve this we put �rst

u1 = Reu1 + iImu1 and then we notice that

J

�
cnk =

J

�
cnk =

4JZ
0

u1(t) exp

�
i

q
�
(k)
n t

�
dt:

Thus it follows from (22) and the above equation that

2
J

�
cnk = 2

4JZ
0

Reu1(t) exp

�
i

q
�
(k)
n t

�
dt:

Comparing this with (22), we obtain immediately

4JZ
0

Imu1(t) exp

�
i

q
�
(k)
n t

�
dt = 0:

Similarly, we get
4JZ
0

Imu1(t) exp

�
�i

q
�
(k)
n t

�
dt = 0

for all positive integers n and k 2 f0; 1g. Well, we need to show that u1 itself is

a real function. Thus, further on, we put v0(t) = Imu1

�
Jt

�

�
e
it

2 , so we have

4�Z
0

v0(t) exp(i!nkt)dt = 0

for all n 2 Z and k 2 f0; 1g. But because v0 2 L2(0; 4�), this system has the

unique solution (Th. 2). Therefore v0(t) = 0 and Imu1(t) = 0.

From now on let T > 4J . Then the system (22) has a (nonunique this time)

solution u1 2 L2(0; T ). Proceeding like before, we observe that for the integer n

and k 2 f0; 1g the system

�T

JZ
0

v(t) exp (i!nkt) dt = cnk
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has a solution v(t) = u1

�
Jt

�

�
exp

�
it

2

�
for t 2

�
0;
�T

J

�
if and only if (11) is

satis�ed.

We de�ne

u2(t) =

(
u1(t) for 0 � t � 4J ,

0 for 4J < t � T .

Provided (11) is satis�ed, we have u2 2 L2(0; T ) and

TZ
0

u2(t) exp

�
i

q
�
(k)
n t

�
dt =

J

�
cnk;

and
TZ
0

u2(t) exp

�
�i

q
�
(k)
n t

�
dt =

J

�
cnk

for n 2 Z and k 2 f0; 1g. The last equation is equivalent to

TZ
0

u2(t) sin

q
�
(k)
n tdt = c(k)n

and
TZ
0

u2(t) cos

q
�
(k)
n tdt = _c(k)n :

In [7] it is shown that the system�
t; 1; cos t

q
�
(k)
n ; sin t

q
�
(k)
n : n 2 N; k 2 f0; 1g

�
(24)

is minimal in L2(0; T ) for T > 4J . The minimality implies, in particular, the

existence of functions u3, u4 2 L2(0; T ) that satisfy

TZ
0

tu3(t)dt = 1;

TZ
0

u3(t)dt = 0;

TZ
0

tu4(t)dt = 0;

TZ
0

u4(t)dt = 1;

TZ
0

uj(t) sin

q
�
(k)
n tdt = 0;

TZ
0

uj(t) cos

q
�
(k)
n tdt = 0 for j 2 f3; 4g
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for all positive integers n and k 2 f0; 1g.

Now, let

~�T =

TZ
0

tu2(t)dt and
_~�T =

TZ
0

u2(t)dt

and then we put

u(t) = u2(t) +
�
�T � ~�T

�
u3(t) +

�
_�T �

_~�T

�
u4(t)

for t 2 [0; T ]. The de�ned above function u is a member of L2(0; T ) and it solves

the stated Moment Problem.

On the other hand, when we consider the de�nition of cnk and !nk ((18) and

(23), respectively), we get the equivalence of (11) with

1X
n=1

0
@jcn0j2 +

������
cn0 � cn1q
�
(0)
n �

q
�
(1)
n

������
21
A <1: (25)

We conclude our study with the following theorem:

Theorem 4. Provided

1Z
0

s
%(x)

K(x)
dx =

1Z
0

s
R(x)

E(x)
dx and T � 4

1Z
0

s
%(x)

K(x)
dx,

the problem of controllability from the state of rest to arbitrary position is solvable

if and only if the condition (25) is satis�ed.

Case 2: J (1)=J (0) = p
q
is a rational number and p and q are relatively prime

positive odd integers.

Without loss of generality, we may assume that J (1)=J (0) = 
 > 1. Let

!n0 = 

�
�
�

2
+ n�

�
+ "n0 = J (1)

q
�
(0)
n

and

!n1 =
�
�
�

2
+ n�

�
+ "n1 = J (1)

q
�
(1)
n ;

here "n0 = (J (1)=J (0))"
(0)
n and "n1 = "

(1)
n . Still we have "n0, "n1 !1 as n!1.

Let cnk = _c
(k)
n + ic

(k)
n . We de�ne cnk for nonpositive values of n like in Case 1 and

let !�m+1;k = �!mk.

According to Theorem 3, there exists a unique solution v to the systemZ
I


v(t) exp(i!nkt)dt = cnk; n 2 Z; k = 0; 1;
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if and only if (13) holds. Let � = 21+



, T = J (1)� = 2(J (0) + J (1)) and u1(t) =

v(t=J (1)). Then u1 is the solution to the system of integral equations

TZ
0

f(t) exp(i

q
�
(k)
n t)dt = cnk; n 2 Z; k = 0; 1;

if and only if (13) is ful�lled. Similarly as in Case 1, we de�ne u2, u3, u4 and u.

Also the proof that u is a real function is analogous to the one given in Case 1.

Similarly as in Case 1, we notice that (13) is equivalent to

1X
n=1

0
@jcn0j2 + jcn1j

2 +

������
c((1�q)=2)+qn;0 � c((1�p)=2)+pn;1q
�
(0)

((1�q)=2)+qn
�
q
�
(1)

((1�p)=2)+pn

������
21
A <1: (26)

Ultimately, we obtain the following theorem:

Theorem 5. If

1Z
0

s
%(x)

K(x)
dx

, 1Z
0

s
R(x)

E(x)
dx =

p

q
with p, q being relatively

prime odd positive integers and

T � 2

0
@ 1Z

0

s
%(x)

K(x)
dx+

1Z
0

s
R(x)

E(x)
dx

1
A ;

the problem of controllability from the state of rest to arbitrary position is solvable

if and only if the condition (26) is satis�ed.

Case 3: J (1)=J (0) = p
q
is a rational number, p and q are relatively prime

positive integers and exactly one of them is even.

We proceed in the same way as in Case 2 and �nally get the following theorem:

Theorem 6. If

1Z
0

s
%(x)

K(x)
dx

, 1Z
0

s
R(x)

E(x)
dx =

p

q
with p, q being relatively

prime positive integers, from which exactly one is even, and

T � 2

0
@ 1Z

0

s
%(x)

K(x)
dx+

1Z
0

s
R(x)

E(x)
dx

1
A ;

the problem of controllability from the state of rest to arbitrary position is solvable

if and only if the condition (14) is satis�ed.
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5. Final Remarks

We excluded the case when the ratio 
 = J (1))=J (0) was irrational. Well, in

this case the exact controllability was not yet solved even for the homogeneous

beam. The reason is that there is no regularity in the distribution of numbers

n
�[n
] in the interval [0; 1] (in fact, these numbers form a dense subset of [0; 1]).

Neither Ullrich's theorem nor the Ullrich-type theorems deal with these cases and

therefore we do not include them into this paper. A way of dealing with irrational

case of 
 is presented in [2]. Because the (possible) methods used there are totally

di�erent from the ones presented here, we do not include them into this paper.

References

[1] S.A. Avdonin and S.S. Ivanov, Families of Exponentials. Cambridge Univ. Press,

Cambridge, 1995.

[2] S.A. Avdonin and S.S. Ivanov, Riesz Bases of Exponentials and Divided Di�erences.

� Russian Sci. Acad. 13 (2001), Ser. 3, 1�17. (Russian)

[3] J.B. Conway, A Course in Functional Analysis. Springer�Verlag, New York, 1990.

[4] G.M. Fichtenholz, Lectures on Di�erential Calculus. Vol. III. Fizmatgiz, Moscow,

Leningrad, 1960. (Russian)

[5] V.I. Korobov, W. Krabs, and G.M. Sklyar, On the Solvability of Trigonometric

Moment Problems Arising in the Problem of Controllability of Rotating Beams. �

Intern. Ser. Numer. Math. 139 (2001), 145�156.

[6] W. Krabs, On Moment Theory and Controllability of One Dimensional Vibrating

Systems and Heating Processes. Lecture Notes in Control and Information Sciences.

Vol. 173. Springer�Verlag, Berlin, Heidelberg, Budapest, 1992.

[7] W. Krabs and G.M. Sklyar, On Controllability of Linear Vibrations. Nova Science

Publishers, Inc. Huntington, New York, 2002.

[8] W. Krabs, G.M. Sklyar, and J. Wo�zniak, On the Set of Reachable States in the

Problem of Controllability of Rotating Timoshenko Beams. � Z. Anal. und ihre

Anwendungen 22 (2003), No. 1, 215�228.

[9] R.E.A.C. Paley and N. Wiener, Fourier Transforms in the Complex Domain. Amer.

Math. Soc., Providence, RI, 1934; 3rd printing, 1978.

[10] M.A. Shubov, Asymptotic and Spectral Analysis of the Spatially Nonhomogeneous

Timoshenko Beam Model. � Math. Nachr. 241 (2002), 125�162.

[11] M.A. Shubov, Exact Controllability of Damped Timoshenko Beam. � IMA J. Math.

Contr. Inform. 17 (2000), 375�395.

Journal of Mathematical Physics, Analysis, Geometry, 2008, vol. 4, No. 2 317



G.M. Sklyar and G. Szkibiel

[12] M.A. Shubov, Spectral Operators Generated by Timoshenko Beam Model. � Syst.

and Contr. Lett. 38 (1999).

[13] G.M. Sklyar and G. Szkibiel, Spectral Properties of Nonhomogeneous Timoshenko

Beam and its Rest to Rest Controllability. � J. Math. Appl. 338 (2008), 1054�1069.

[14] D. Ullrich, Divided Di�erences and Systems of Nonharmonic Fourier Series. � Proc.

Amer. Math. Soc. 80 (1980), 47�57.

[15] F. Woittennek and J. Rudolph, Motion Planning and Boundary Control for a Ro-

tating Timoshenko Beam. � Proc. Appl. Math. Mech. 2 (2003), 106�107.

318 Journal of Mathematical Physics, Analysis, Geometry, 2008, vol. 4, No. 2


