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Let v(z) be a subharmonic function of order p > 0, and Fr(v) be the
limit set in the sense of Azarin. Let z be fixed and I(2) = {u(z) : u € Fr(v)}.
We prove that I(z) is either a closed interval or a semiclosed interval which
does not contain its infimum.
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The following definitions are needed to state our main result. The definition
and properties of proximate order p(r) in the sense of Valiron can be found in [1].
We denote V (r) = ("),

A subharmonic function v is of proximate order p(r) if

— v(2)
MLV <

Let v(z) be a subharmonic function of proximate order p(r), p = limp(r) €
(0,00) (r — o0), and let
v(tz)

R0

be a trajectory of Azarin of subharmonic function v. The limit set of Azarin Fr(v)

is defined as a set of functions given by

u() = lim vy, (2

for some sequence (ty), t, — +00.
The limit is taken in the sense of distributions. This means that

T [[ o, @) = [ [ uedm(e)
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for any test function ¢, where ms is a two-dimensional Lebesgue measure.
Let

—v(rew) * v(rew) L v(reig)

=1 =1 = 1 f———=

MO = ey RO = s ey e B ey
rell

where E C (0,00) runs over all sets of zero linear density which is defined by

densE — lim BesENO,r))
00 'S

The function A is called an indicator of function v and the function A is called
a lower indicator of function v. In 1979 V.S. Azarin [2] proved that

H(z) :=sup {u(z) : u € Fr(v)} = h(0)r’, z =re?,

H(z) :=inf{u(z) : u € Fr(v)} = h(0)r’.

See [3] for other properties of the limit set.
Denote I(z) = {u(z) : u € Fr(v)}. We prove the following refined version of
Azarin’s theorem.

Theorem 1. For each z, (h(0)r?,h(0)r?] is a subset of 1(z), and I(z) is
a subset of [h(0)r?, h(0)rr].

We give an example of a subharmonic function v such that h(0)r?€I(z) for
some z. The case h(0)r” € I(z) is possible as well.

Proof of Theorem 1. Denote
u(tz)

(Fru)(z) = “2

V.S. Azarin [2] proved that F;(Fr(v))(z) C Fr(v). The map F; : Fr(v) — Fr(v)
is one-to-one. We denote H(z):=sup{u(z): u € Fr(v)}, H(z):=inf{u(z):
u € Fr(v)}. We have

u(tz)
tP

H(tz) = sup{u(tz) : u e Fr(v)} =1 Sup{ Cu € Fr(v)} =tPH(z).
Thus H(re?) = rPH(e"). Analogously, H(re") = rPH(e). For every ¢ > 0
there exists (see, for example, [2]) a number R such that v(re®) < (h(0) +¢)V (r)
is valid for r € [R, 00) and for any 6.

Consequently,

<
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~
=
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.
>
~
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~
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It is known [1] that

V(tr)
V(t)

where the double arrow means a uniform convergence on the given set. Hence
there exist numbers R; > 0 and ag € (0, 1) such that

vi(2) < h(O) +2¢, z € C(e?, ap), t > Ry. (1)

=", 0<a<r<b< oo,

Here C(e'?, ) is an open disk centered at e with the radius cp. Let u be
an arbitrary function from Fr(v). It follows from the definition of fine topology
[4] that the set E = {z: u(z) > u(e??) — ¢} is a fine neighborhood of €. Then
there exists a compact set K such that K ¢ E N C(e, ag) and capK > 0.
Therefore there exists a positive measure v such that v(K) > 0, supp(v) C K,

and the potential
//ln|z—§|d1/ ¢)

is continuous ([5], corollary to Th. 3.7).

Further we need the following results. Let v, (2) be a sequence of subharmonic
functions converging in the sense of distributions to a distribution w. Then w is
a regular distribution and may be represented by a subharmonic function w(z).
We recall that the distribution T'

7o = [[ 1G0dm o),

where f is a locally integrable function, is called a regular distribution. Let p, and
i be the Riesz masses of v, and w, respectively. We have u,, = %Avn, p= %Aw,
where A is the Laplace operator. Differentiation is continuous in the space of
distributions. It follows that u, — w in the sense of distributions. Theorem 0.4
[5] states that pu, converges weakly to u as a sequence of Radon measures. This
means that (un,p) — (i, ) for any continuous compactly supported function ¢.
In addition, if a compact set K is Jordan measurable with respect to the measure
p (this means that p(0K) = 0), then u, converges weakly to p as a sequence of
elements of the Banach space C*(K). This means that (uy, @) — (i, @) for any
function ¢ which is continuous on K. If K = B(zy, R) and u(0B(z,R)) = 0,

then
hm / In |z — |dun(C // In |z — {|du(C)
ZO:

ZO:

in the sense of d1str1but10ns. We have the Riesz representamon

// In |z — Cldpn(C) + un(2),
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where uy, is a harmonic function in disk C(zp, R) = {2z : |2z — 20| < R}. It is clear
that (u,) is a convergent sequence in the sense of distributions. Then the sequence
(up) is uniformly convergent on every compact set K C C(zg, R) by Th. 4.4.2 ([6]).
Thus, modulo the uniformly convergent sequence (u,) of harmonic functions, the
(vy) is a sequence of potentials, and so many classical results from potential theory
may be extended to (v,). In particular,

ﬁ&[ﬂMWM”:ﬂ%@”@' 2)

The proof of an analogous proposition for potentials appeared in [5, Th. 3.8].
Now we have

(u(ew) - 6) v(K) < //u(z)dl/(z) < (h(H) + 25) v(K).

The left-hand side follows from the inequality u(z) > wu(e’?) — ¢ for z € K,
and the right-hand side follows from (1). This gives u(e’?) < h(f) for any u €
Fr(v), H(e'?) < h(8).

Further we prove that there exists a function ug € Fr(v) such that ug(e
h(#). Since

ie)

iﬂ)

—v(re
h(9) = lim, V(r)

then there exists a sequence (t,), t, — 00 as n — oo, such that the sequence of
real numbers v, (e?) converges to h(f) as n — oo.

The set {v(z): t € 0,00} is compact in the sense of distributions, see [7,
Th. 2.7.1.1]. Hence we can find a subsequence t,, such that v, (z) — uo(z) in
the sense of distributions.

According to the principle of ascent (for potentials it is Th. 1.3 [5]),

h(0) = Tim vy, (") < ug(e®) < H(e").
k—oo 'k
This yields . .
h(8) = H(e"”), uo(e”) = h(6).

Our next step is to prove the inequality u(e®?) > h(6) for u € Fr(v). Let
u € Fr(v) and ¢ > 0. It is evident that we may assume h(f) > —oo. Since u is
upper semicontinuous, then there exists o € (0,1) such that u(z) < u(e”) + ¢
for z € B(e¥,a). Let t,, — 0o as n — oo be such a sequence that v;, — u as
a sequence of distributions. Then, for a € (0, 1)

1+«
Mn/MW%—%W%ﬁ%O (3)
n—oo

11—«
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Using the similar arguments as those used to prove (2), one can reduce the
proposition to the following. Let a sequence p,, of Borel measures in disk B(zy, R)
converge weakly to a measure u. Then the real sequence

14+a

o= [ | [] mlte® = clatu, ~ ()] at

l1-«a B(20,R)

converges to zero.

We have
14+«
o= [[ | [ i1 dlat | dn - )0
B(ZO ,R) 1-a
where

halt) =sign [ [ nlte” = Cldun — (C).
B(z0,R)

The function hy(t) is measurable and |hy(¢)| < 1. Consider a family of functions

14a
Hy(¢) = / ho(£) In |t — Cldt, n=1,2, ..
11—«
The inequality
14a
)] < [ [mee — ¢l
11—«

shows that the family H,(¢) is uniformly bounded in B(zp, R).
Further,

1+« .
te'? — ¢y
[Ha(G2) = Ha(G) < [ [Inlizg—rl dt
11—«
1+a . i
/ 0 =2 =)
= max - 3
tel — ¢ 7 et — (o
11—«
14+a |C C | 1+a |< C |
< n (14152 =6l Y 4 / 1+ 52750 Y — 7+ T
< (e gty o (e gy e
120 11—«
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In the integral J; we introduce a new variable r by the formula r = [te?? —(;].

We obtain -
Ji = /m <1 + M) dv(r),
T
0

where v(r) = mes ([(1 — @)e?, (1 + a)e?’] N B(¢1, 7).

The function v(r) is constant in [R,o0), where R = max (|(1 — a)e® — (] ,
(1 4+ a)e? — ¢ ). The inequality v(r) < 2r is obvious. From the properties given
above it follows that

R R
_ |C2—C1|> ( |C2—C1|>
I = 1n(1+7 dv(r) <2 [ (142250 4.

= =

It can be shown by integrating by parts. The integral J5 is estimated in a similar
way. Be specific about what estimates show equicontinuity Hy,(¢). Arzela—Ascoli’s
theorem gives a compactness of the family H,({). Consequently, the sequence

on= [ Q) = 1)(0)
B

(ZO’R)

converges to zero. Formula (3) is proved.

IfA,={te[l-a,1+q]: ‘u(tew) — vy, (tew)‘ > ¢}, then mes(A4,) — 0 as
n — oo. If B(e) = {r € (0,00) : v(re?) < h() — e}, then the formula for h(6)
gives that the linear density of B(g) is zero.

For a € (0,1) we denote

B, — {t €ll—a,1+a]: (h(0)—¢) “//((t;t)) > (tew)} .
Ift € By, then .
o (1) = 2225 < o) - o) 0.

v(tnte”) < (h(0) — ) V(tnt).
It follows that t,t € B(e), t,Bn C B(e), mes(t,By) < mes(B(e) N[(1 — a)ty,
(14 a)ty]), and

mes(B,) < mes (B(g) N[0, (1 4+ «a)ty])
n;) = tn .

Now the property that density of B(e) is zero implies mes(B,) — 0 as n — oc.
We have
V(tnt)

(Q(G) — 8) m <y, (tew) < u(teig) + u(tew) — vy, (tew) < u(ew) +2¢e
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fort €1 —a,1+4a]\ (A, U By). The convergence

V(tnt)
V(tn)

=tP,tel —a,l+a

leads to the inequality

Vitat)  ho) — 2

(1(6) ) 775 >

for sufficiently large n and small a. Thus we obtain the claimed inequality u(e®)
> h(0).
Now is the final step of the proof. With @ fixed, we denote
(14a)r

A(r,a) = L /v(tew)dt.

r

The function A(r, «) is continuous and bounded in the variable r € [1,00). Then
the limit set, i.e., the set of all subsequential limits, of A(r,«) as r — 400 is
a closed interval J(a) = [A(a), B(a)]. We claim that

14+«

J(a) = / u(te®)dt : u € Fr(v) p . (4)

1

In fact, let
1+

L o i0
ala) = nhﬁngo A(rp,a) = nhﬁngo / vy, (te'”)dt.
1

In addition, we may assume that v, (2) — wu(z) in the sense of distributions.
Then the equality
14+« 14+«

lim /vrn(tew)dt: /u(tew)dt,

n—00
1 1

1+« )
which is a special case of (2), gives a(a) = [ wu(te?)dt. Clearly, for any u € Fr(v)

1
1+«

the value of integral [ wu(te’)dt belongs to the interval J(a). Relation (4) is
1
proved. Note that it also follows from the results obtained by V.S. Azarin [2].

According to Theorem 2 [§],

lim Ale) = h(), lim ———= = h(0).

a—=+0 B a—+0 o
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If h(0) < h < h(6), then the inequalities

Ala) (1+a)Ptt -1 - B(a)
a (p+ 1D a

are valid for all sufficiently small a. Therefore there exists a strictly positive
number « and a function u € Fr(v) such that

(1+a)ft' -1 o 0
)
1
1+a

/ (u(tei") - htﬂ) dt = 0.

1

We claim that there exists tg € [1,1 + «] with u(tpe?) = htf). Consider the
function w(z) = u(z) — h|z|?. Further we will assume that 6 is fixed and consider
w(te?) as a function in variable £. We have either w(te?) = 0 almost everywhere
on the interval [1,1 + «] or the function w(te?) has strictly positive and strictly
negative values on this interval. In the first case to is obtained. We consider
the second case. The function w(te?) is upper semicontinuous. Hence the set
E = {t >0: w(tew) < 0} is open. Under the assumption F is nonempty, the set
E meets the interval [1,1 + a]. We have

E = (ak,by),
k=1

where (ag, b) is a disjoint system of intervals. There exists k such that (ag, bg) N
[1,1 4+ a] # @. The point aj or the point by necessarily belongs to the interval
(1,14 ), assume that by € (1,1+a). Because b,€EE, the inequality w(bge??) >0
is valid. The function w(z) is continuous in fine topology. Hence there exists
a fine neighborhood G of bye? such that

w(bpe) = lim  w(z).
z — byet?
zeG

According to the theorem of Lebesgue and Beurling ([4, Prop. IX.6]), the point
bre'? is a limit point for the set G'N (are', bre?). This gives w(bre?) < 0 and
then w(bre®) = 0. Thus by, is the required point #5. For the function
u(toz)

t

uM (z) = € Fr(v)

we have u) (&) = h.
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Now the assertions of the theorem follow from the above. The theorem is
proved.

We produce a subharmonic function v such that h(0) = H(1)€I(1) and con-
struct the limit set of Azarin of this function in the form

Fr(v) = {u(2) : t € (0,00)}. (5)

Consider the function

1 z
a(z)—zﬁln 1_1—6*"
n=1
We have
1
a(z) = (Z >ln|z|+z +O(m>,z—>oo.
n=1

On every interval
(o0, 1—e 1), (1 —eh1— e*’H) Ck=1,2,...,(1,00),

the function a(z) is strictly concave since

" 1 1
Y=L ST
Let 2, € (L —e™,1 — e ™" !) be such a point that
a(wn) = max {a(z) : z€ (1-e" 1)}

Then the function a(z) increases on the interval (1 —e™", z,) and decreases
on the interval (mn, 1-— e_”_l). First we prove the relation

a(zn) = a(1) (6)

asn—)oo.Letszl—%(1+%)6_k.Wehave

a(l) —a(&) = Z—ln

n=1

From the inequalities
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1 1 1\ o, 12

§<n§k 5<n<k €
o) o)
1 1 1\ . . 1
n=k+1 n=k+1

it follows that a(&x) — a(l), as k — oo. Since & € (1 —e k1 - e‘k_l), then

a(xk) = a8,
lim a(zg) > a(l).

k— o0

The upper semicontinuity of the function a(z) yields

lim a(z;) < lima(z) < a(1),
k—o00 z2—1
and (6) follows.
Introduce p and p; with 0 < p < p; < 1. It follows from (6) that

a(wy)

— > —0Q.
bt

—a = inf
Let 3y be the number in the interval (0,1 — %) such that a(fy) = —afBh".

The existence of By follows from the inequality a1 (t) = a(t) + at?* > 0 in the
right neighborhood of zero and the inequality aq(¢) < 0 in the left neighborhood
of 1 — 1. The function a;(t) is strictly concave on the interval [0, (1 — 1)), and
a1(0) = 0. Any strictly concave function has at most two zeros. This proves that
Bo is unique. We choose ¢ > 2« and denote

1 _
A1:(50,1—E), Ap = (zp_1,1—e ¥, E=2,3,....

Let s be the unique point ¢ € Ay such that a(t) = —ct”'. We denote as(t) =
a(t) + ct”* and consider the case k > 2.

We have ag(zp_1) > 0, a(t) < 0 in the left neighborhood of 1 — e7*.
This shows that sp exists. Analogously, there exists s € (1 — e‘k+1,xk_1)
such that as(s1x) = 0. The function ay(t) is strictly concave in each interval
(1 —e k1 — e_k). This proves that s; is unique. The existence and unique-
ness of s is proved in the same way as for .

We have a(z) = ReA(z),

Az) = i%ln (1 - _zen> :

n=1
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o0

1 1
N =S -
(2) Zn?’z—l—i-e_n

A level-line of a(z) is a real-analytic curve if it does not meet zeros and poles of
X (z). We wish to find zeros of A'(z). The following identity holds

= 1
o) —
Im\'(2) = —yz o v (7)
n=1

It gives that all zeros of \'(z) are real. Now it is easy to verify that the set of
zeros of X (2) is {z,, n=1,2,...}.

Let o} be the unique point in the interval (1 — e‘k,xk) such that a(oy) =
a(sk). The inequality a(z) < a(sk) is realized on the interval (sj, o). From the
identity g—;(z) = —ImX(z) and (7) it follows that the function a(z,y) strictly
increases on (0, 00) and strictly decreases on (—o0,0) in the variable y. Therefore
there exist functions y;(z) > 0 and y2(x) < 0 on the interval (s, o) such that

a(z, y1(2)) = alsk), a(z,y2(z)) = alsk).

The collection of curves z = z + iyi(x), z = = + iys(x), = € (sk,0k), and
points z = s, z = oy is a closed Jordan curve Lj that is a level curve of a(z).
It is a real analytic curve. Let G} be a bounded domain with boundary L.

oo
Let u(z) be a function such that u(z) = a(z) if z€ |J Gg, and u(z) = a(sg)
k=1
if z € Gi. The function u(z) is subharmonic. It is important for us that the
inequalities
u(z) > —czt, u(z) > —cz’ (8)

are realized on the semi-axis (0, 00).
Consider the Azarin trajectory of function w,

u(tz)

u(z) = o t € (0,00).

One can prove that u;(z) — 0 in the sense of distributions when ¢ — 0 or
t — 00.
Theorem 9 [3] asserts that there exists a subharmonic function v of order p
such that
Fr(v) = {u(2) : t € (0,00)} U{0}.

It follows from (8) that
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In addition,

) =28 e

Sk

as k — oo.

This gives H(1) = —¢, H(1)€I(1). The function v is a required example.
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