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Various practical problems, especially on hydrodynamics, elasticity the-

ory, geophysics and aerodynamics, can be reduced to �nding an optimal

shape of a domain and studying its functionals.

In the paper, the inverse problem with respect to (w.r.t.) domain for

two-dimensional Schrodinger operator and operator L = �2 is considered.

The de�nition of s-functions is introduced. The method of determination of

the domain by a given set of functions is proposed.

The main idea of the paper is to use a one-to-one correspondence between

the convex bounded domains and their support functions and express the

variation of the domain by the variation of corresponding support function.

Key words: Shape optimization, inverse problems, domain variation, con-

vex domains, support function.
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1. Introduction

One of the well-studied classes of inverse problems is a class of inverse spectral

problems. The papers on these problems traditionally are focused on constructing

a function (potential) by given spectral data (scattering data, normalizing num-

bers, eigenvalues) and obtaining the necessary and su�cient conditions providing

unequivocal determination of the desired function. A more detailed review can

be found in [1].

There exists a wide class of practical problems that require the domain to

be determined by some experimental data. For example, it is very important

to �nd the domain of the plate under vibrations from the quantities which may

be measured from distance [2]. There is a number of formulations of the inverse

problem w.r.t. domain for various cases [3�5]. Note that unlike traditional inverse

problems, the inverse problems w.r.t. domains have some special features. First,

these problems require �nding not a function, but a domain. Second, the choosing
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of data (results of measurements) that are su�cient for determination of the

domain is quite a di�cult problem.

In the paper we study an inverse problem w.r.t. domain for two-dimensional

Schrodinger operator. In the end of the paper we put and solve a similar problem

for the operator describing vibrations of the plate.

2. Problem Setting and Preliminary Results

We consider the problem

��u+ q (x)u = �u; x 2 D; (1)

u (x) = 0; x 2 SD; (2)

where q(x) is a di�erentiable nonnegative function satisfying the condition

t
2
q (xt) = q (x) ; t 2 R; 0 =2 D � R

2 is a bounded convex domain, SD 2 C
2 is its

boundary, � is a Laplace operator.

It is known [6, p. 333] that under these conditions the eigenfunctions uj(x)

of problem (1)�(2) belong to the class C2 (D) \ C
1
�
�D
�
, and eigenvalues �j are

positive and, taking into account their multiplicity, may be numbered as �1 �

�2 � : : : .

We denote the set of all convex bounded domains D 2 R
2 by M . Let

K =
n
D 2M : SD 2 _C2

o
;

where _C2 is a class of piecewise twice continuous di�erentiable functions.

De�nition 1. The functions

Jj (x;D) =
jruj (x)j

2

�j
; x 2 D; j = 1; 2; : : : (3)

are said to be s-functions of problem (1)�(2) in the domain D, where uj(x) are

normalized eigenfunctions.

We should �nd a domain D 2 K such that

Jj (x;D) = sj (x) ; x 2 SD; j = 1; 2; : : : ; (4)

where uj (x) is a normalized eigenfunction and, consequently, �j is an eigenvalue

of problem (1)�(2) in the domain D, sj (x) are given continuous functions de�ned

on R
2.

First of all, we give some considerations that led us to this formulation.

It is important to study the dependence of eigenvalues of the operators w.r.t.

domain, because mechanical characteristics of some systems indeed are eigenvalues
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of corresponding operators, which can be expressed by the functionals depending

on domain [7, 8]. One of the steps for studying the properties of these character-

istics is to compute the variation of these functionals w.r.t. domain. But to do

this we should de�ne the space of domains, give a scalar product and a de�nition

for the domain variation in this space.

We use the following known from [12] facts:

a) For any continuous convex and positively homogeneous function P (x) there

exists the only convex bounded set D such that P (x) is a support function of D,

i.e., P (x) = PD (x). The opposite statement is also true.

b) D is found as a subdi�erential of its support function at point x = 0

D = @P (0) =
�
l 2 R

2 : P (x) � (l; x) ; 8x 2 R
2
	
:

It was shown [9] that the pairs (A;B) 2M �M form a linear space with the

operations

(A;B) + (C;D) = (A+ C;B +D) ;

� (A;B) = (�A; �B) ; � � 0;

� (A;B) = (j�jB; j�jA) ; � < 0:

The equivalency in M �M is de�ned by the relation

(A;B) � (C;D); if A+D = B + C:

The class (0; 0), i.e., the set of elements (A;A), A 2M , plays the role of the zero

element in this space. If x = (A;B), then �x = (B;A).

Here A+B is taken in the sense of Minkowsky, i.e.,

A+B = fa+ b : a 2 A; b 2 Bg :

A scalar product is introduced by the following formula:

(a; b) =

Z
SB

P1(x)P2(x)ds;

where

a = (A1; A2) ; b = (B1; B2) ;

P1 (x) = PA1
(x)� PA2

(x) ;

P2 (x) = PB1
(x)� PB2

(x) ;

SB is a unit sphere, PD (x) = max
l2D

(x; l) ; x 2 R
2 is a support function of the

domain D.

We call the obtained space ML2.
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For any �xed D 2 M , the eigenvalue �j of problem (1)�(2) is de�ned in the

same way as in ([10, p. 182])

�j = infI (u;D) ; (u; up) = 0; p = 1; j � 1;

where

I (u;D) =

R
D

h
jru (x)j2 + q (x) u2 (x)

i
dxR

D

u2 (x) dx
:

Thus, we can consider �j as a functional of D 2 K and note it as �j(D).

The following formula is obtained (see [9, p. 98]) for the �rst variation of the

functional �j (D) in the space ML2

Æ�j (D) = �max
uj

Z
SD

jruj(x)j
2
ÆPD (n(x)) ds; (5)

where jruj (x)j
2 =

2P
i=1

�
@u(x)
@xi

�2
, n(x) is an outward normal to SD in the point x,

max is taken over all eigenfunctions corresponding to the eigenvalue �j when it

is multiple. Here and later on all eigenfunctions are taken normalized.

Using (5), the following formula can be obtained for the eigenvalues of (1)�(2)

in the domain D

�j (D) =
1

2
max
uj

Z
SD

jruj(x)j
2
PD (n(x)) ds: (6)

Indeed, let us take D0 2 K; D (t) = t �D0; t > 0:

By uj we de�ne the j-th eigenfunction of (1)�(2) corresponding to the do-

main D0. Then

��uj (x) + q (x) uj (x) = �juj (x) ; x 2 D0:

This relation may be written in the following form:

�

1

t2
�x

t
uj

�
x

t

�
+

1

t2
q

�
x

t

�
uj

�
x

t

�
=

�j (D0)

t2
uj

�
x

t

�
; x 2 D (t) : (7)

Since the function

~uj (x) = uj

�
x

t

�
; x 2 D (t)

satis�es the relation

�~uj(x) =
1

t2
�uj

�
x

t

�
; (8)
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then the conditions t2q (tx) = q (x) and (8) imply

��~uj (x) + q (x) ~uj (x) =
�j (D0)

t2
~uj (x) ; x 2 D (t) :

It shows that ~uj (x) is an eigenfunction corresponding to the eigenvalue �j (t) =
�j(D0)

t2
of problem (1)�(2) in the domain D(t). Using (5), we can write

�j (t+�t)� �j (t) = �j (D (t+�t))� �j (D (t))

=
R

SD(t)

jru (x)j2
�
PD(t+�t) (n (x))� PD(t) (n (x))

�
ds+ o (�t) ; x 2 SD(t)

: (9)

If the support function PD(t) (x) of the domain D (t) is di�erentiable with

respect to t; then dividing both sides of (9) by �t we obtain

�
0
j(t) = �max

uj

Z
SD(t)

jruj (x)j
2
P
0
D(t)(n(x))ds; (10)

where P 0
D(t)

(x) = @
@t
PD(t) (x).

Thus

�2
�j (D0)

t3
= �

1

t2
max
uj(x)

Z
SD

���ruj �x
t

����2 PD0
(n (x)) ds; x 2 SD:

Taking t = 1, we get (6).

As we can see from (6), the boundary values of function jruj (x)j
2 uniquely

de�ne the eigenvalue �j .

From (6), taking into account (4), we obtainZ
SD

sj (x)PD (n (x)) ds = 2; j = 1; 2; : : : : (11)

This is the basic relation for solving the problem under consideration.

N o t e. Since we take s-functions as given data, then consider them in some

concrete cases. For one-dimensional case

�u
00 + q (x) u = �u; (12)

u(a) = u(b) = 0; (13)

where q (x) = c
x2
; c � 0; 0 =2 (a; b) � R, s-functions are

u2jx(a)

�j
= Jj (a) ;
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u2jx(b)

�j
= Jj (b) :

Thus (11) takes the form

Jj (b) � b� Jj (a) � a = 2; j = 1; 2; : : : : (14)

Then put a = 0, i.e., consider problem (12)�(13) in the interval (0; b). For this

case, from (9) we get the following:

Corollary. If a = 0, then all s-functions of (12)�(13) satisfy the condition

Jj (b) =
2

b
; j = 1; 2; : : : : (15)

This formula allows one to solve the inverse problem: Let a set of functions

sj (x), j = 1; 2; : : : , be given. In this case the problem of �nding a domain

satisfying (4) is reduced to determining point b, what is possible by using (15).

As it was noted in the corollary, all s-functions satisfy (15) which is equivalent

to the one condition. This condition is su�cient for �nding point b. Indeed, we

see from (15):

b =
2

Jj (b)
:

Similarly, if b = 0, then we have

a = �

2

Jj(a)
:

Note that if Jj (x) � cj , x 2 SD, cj = const, j = 1; 2; : : : , then, as it follows

from (15), they all are equal to each other for all j = 1; 2; : : : .

In two-dimensional case, from (11) it follows that if functions Jj(x;D) are

constant, then

Jj (x;D) � 1
mesD

; j = 1; 2; : : : (see [9]).

Now we prove the lemma that will be used later on.

Lemma. Let f (x) be a continuous function de�ned on the unit sphere SB.

Then for any D1; D2 2 KZ
SD1+D2

f(n(x))ds =

Z
SD1

f(n(x))ds+

Z
SD2

f(n(x))ds; (16)

where D1 +D2 is taken in the sense of Minkowsky, i.e.,

D1 +D2 = fx : x = x1 + x2; x1 2 D1; x2 2 D2g :
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P r o o f. It is known [11] that f (x) may be continuously positive-homogene-

ously extended over the whole space and presented as a limit of di�erence of two

convex functions

f (x) = lim
n!1

[gn (x)� hn (x)] : (17)

First, consider

f(x) = g(x)� h(x); (18)

where g (x) ; h (x) are convex positively homogeneous functions.

As was mentioned above, there exist domains G and H such that

g (x) = PG (x) ; h (x) = PH (x) : (19)

Considering (18), (19), we getR
SD1+D2

f (n (x)) ds =
R

SD1+D2

[g (n (x))� h (n (x)) ds]

=
R

SD1+D2

PG (n (x)) ds�
R

SD1+D2

PH (n (x)) ds:

(20)

For any D1; D2 2 K the following relation is valid [9]:Z
SD1

PD2
(n (x)) ds =

Z
SD2

PD1
(n (x)) ds: (21)

From (20) we obtainZ
SD1+D2

f (n (x)) ds =

Z
SG

PD1+D2
(n (x)) ds�

Z
SH

PD1+D2
(n (x)) ds:

Since PD1+D2
(x) = PD1

(x) + PD2
(x) [12], then, applying (21) again, we get

(16).

The lemma is proved.

3. Main Results

Now we consider the main problem of the paper, that is the construction of

D by a given set of functions sj (x) ; j = 1; 2; : : : .

Let B � R
2 be a unit ball with the center at the origin and the boundary

SB . By 'k (x) ; k = 1; 2; : : : , we denote some basis in C (SB)-space of the func-

tions that are continuous in SB. These functions may be continuously positive-

homogeneously extended to B

~'k(x) =

(
'k

�
x
kxk

�
� kxk ; x 2 B; x 6= 0;

0; x = 0:
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One can check that these functions are continuous and satisfy the positive

homogeneity condition

~'k (�x) = � ~'k (x) ; � > 0:

Without loss of generality, we can denote ~'k (x) by 'k (x).

Thus we obtain the set of continuous positively homogeneous functions de�ned

on B.

As we noted above, each continuous positively homogeneous function 'j (x)

may be presented as

'k (x) = lim
n!1

h
g
k
n (x)� h

k
n (x)

i
; (22)

and there exist the domains Gk
n and H

k
n, satisfying the mentioned above proper-

ties, such that

g
k
n (x) = PGkn

(x) ; h
k
n (x) = PHk

n
(x) :

We say that Gk
n and H

k
n are basic domains. Thus

'k (x) = lim
n!1

h
P
Gkn

(x)� P
Hk
n
(x)

i
: (23)

For the sake of simplicity, let us assume

'k (x) = PGk (x)� PHk (x) ; (24)

where Gk and H
k are closed bounded convex domains.

Since n (x) 2 SB for any x 2 SD, we can decompose PD (x) as

PD (x) =

1X
k=1

�k'k (x) ; x 2 SB; �k 2 R; k = 1; 2; : : : : (25)

Thus, to determine PD (x) we have to �nd the coe�cients �k; k = 1; 2; : : : .

Theorem 1. Let a set of functions sj(x), j = 1; 2; : : : , be given. Then the

coe�cients �k, k = 1; 2; : : : , of the support function of the domain D, for which

(4) is valid, satisfy the equation

1X
k;m=1

Ak;m (j)�k�m = 2; j = 1; 2; : : : ; (26)

with the coe�cients

Ak;m (j) =

Z
S
Gk

sj (x) [PGm (n (x))� PHm (n (x))] ds

�

Z
S
Hk

sj (x) [PGm (n (x))� PHm (n (x))] ds:

(27)
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P r o o f. Formulas (24)�(25) imply

PD(x) =

1X
k=1

�k(PGk(x)� PHk(x)); x 2 SB: (28)

Denote the set of all indexes, for which �k � 0 (resp. �k < 0), by I+ (resp. I�).

Then the relation (28) may be written as

PD (x)�
P
k2I�

�kPGk (x) +
P
k2I+

�kPHk (x)

=
P
k2I+

�kPGk (x)�
P
k2I�

�kPHk (x) ; x 2 SB :
(29)

From last, taking into account the properties of support functions [12],

we obtain

D �

X
k2I�

�kG
k +

X
k2I+

�kH
k =

X
k2I+

�kG
k
�

X
k2I�

�kH
k
:

By formula (29) and Lem. 1 we haveZ
SD

sj(x)PD(n(x)dx +

Z
P

k2I�

(��k)SGk

sj(x)PD(n(x))dx

+

Z
P

k2I+

�kSHk

sj(x)PD(n(x)dx =

Z
P

k2I+

�kSGk

sj(x)PD(n(x))dx

+

Z
P

k2I�

(��k)SHk

sj(x))PD(n(x))dx:

This representation and formula (11) implyZ
SD

sj(x)PD(n(x)dx

=

1X
k=1

�k

2
64 Z
S
Gk

sj (x)PD(n(�))dx �

Z
S
Hk

sj(x)PD(n(x)dx

3
75 = 2:
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Substituting (25) into this formula we obtain (26) with the coe�cients (27).

The theorem is proved.

We assumed that the problem considered had a solution in general case.

For some interesting cases, where the functions sj (x) ; j = 1; 2; : : : , are de�ned

as experimental data, this problem always has a solution. The function PD (x) is

constructed with the help of (26) using (25).

As noted above, the domain D is uniquely de�ned by its support function

PD (x). Suppose that (26) has the only solution providing convexity of the support

function of D.

Let us show that the expressions
jruj(x)j

2

�j
, j = 1; 2; : : : , for (1)�(2) in the

constructed with the help of formula (25) domain D are s-functions. Indeed, if
�D is a domain, in which problem (1)�(2) has s-functions given by formula (25),

then representing D by formulae (25) we get the equation (26) with the same

coe�cients. From the assumption that this equation has the only solution it

follows that D = D.

If (16) has more than one solution, then the desired domain is one of those

constructed by (18) using these solutions, providing convexity of P (x).

This algorithm is constructed under the assumption (24). In a general case,

when ' (x) has the form of (22), Ak;m (j) turns into

Ak;m (j) = lim
n!1

2
664
Z

S
Gkn

sj (x)
�
PGmn (n (x))� PHm

n
(n (x))

�
ds

�

Z
S
Hkn

sj (x)
�
PGmn (n (x))� PHm

n
(n (x))

�
ds

3
775 :

Now consider the transverse vibrations of the plate.

Let D 2 R
2 be a domain of the plate with the boundary SD 2 C

2.

It is known [2] that the function ! (x1x2; t) describing the transverse vibra-

tions of the plate satis�es the equation

!x1x1x1x1 + 2!x1x1x2x2 + !x2x2x2x2 + !tt = 0: (30)

Assuming the process stabilized, we look for a solution � eigenvibration in

the form

! (x1; x2; t) = u (x1; x2) cos�t;

where � is an eigenfrequency.
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Substituting this representation into (30), we arrive to

�2
u = �u; x 2 D; (31)

where �2 = ��.

For various cases various boundary conditions may be given. In the case under

consideration we deal with a squeezed plate with the boundary conditions

u = 0;
@u

@n
= 0; x 2 SD: (32)

Let

K =
n
D 2M : SD 2 _C2

o
;

where _C2 is a class of piecewise twice continuous di�erentiable functions.

De�nition 2. The functions Jj (x;D) =
j�uj(x)j

2

�j
, x 2 R

2, j = 1; 2; : : : , are

called s-functions of (31)�(32) in the domain D.

We should �nd a domain D 2 K such that

Jj (x;D) = sj(x); x 2 SD; j = 1; 2; : : : ; (33)

where uj (x) is an eigenvibration, and �j is an eigenfrequency of (31)�(32) in the

domain D, sj (x), j = 1; 2; : : : , are given continuous functions de�ned in R
2.

In [9], for the eigenfrequency of the squeezed plate under transverse vibrations

the following formula is obtained :

�j =
1

4
max
uj

Z
SD

j�uj(x)j
2
PD(n(x))ds; (34)

where PD (x) = max
l2D

(l; x) ; x 2 R
2 is a support function of D, and max is taken

over all eigenvibrations uj corresponding to eigenfrequency �j . (As we see from

(33), the boundary values of the function j�uj (x)j
2 uniquely de�ne �j). From

(34) and (33) we getZ
SD

sj (x)PD (n (x)) ds = 4; j = 1; 2; : : : :

From the above consideration we can conclude that the following theorem is

proved.
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Theorem 2. Let a set of functions sj (x) ; j = 1; 2; : : : , be given. Then the

coe�cients of support function of domain D of the plate, for which (33) is valid,

satisfy the equation

1X
k;m=1

Ak;m (j)�k�m = 4; j = 1; 2; : : : ;

with the coe�cients

Ak;m (j) = lim
n!1

2
664
Z

S
Gkn

sj (x)
�
PGmn (n (x))� PHm

n
(n (x))

�
ds

�

Z
S
Hkn

sj (x)
�
PGmn (n (x))� PHm

n
(n (x))

�
ds

3
775 :
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