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We establish some basic properties of zeros for orthonormal polynomials

on radial rays. We introduce a moment problem related to these orthonormal

polynomials and obtain necessary and su�cient conditions for its solvability.

We establish some properties of orthonormal polynomials in the case when

the measure of orthogonality has symmetries and show that the moment

problem has solutions with some symmetric properties.
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1. Introduction

We denote by C n�n the set of all n� n matrices with complex elements, and

by C
�

n�n we mean all nonnegative Hermitian matrices from C n�n , n 2 N. By P

we denote the set of all complex polynomials. Let

LN = f� 2 C : �N � �
N

= 0g = f� 2 C : �N 2 Rg; N 2 N:

Note that LN is an algebraic curve. In fact, it is a set of 2N radial rays or a

pencil of N lines with the center at the origin. It is not di�cult to verify that

LN =

2N�1[
k=0

fx"̂k; x � 0g; (1)

LN =

N�1[
k=0

fx"̂k; x 2 Rg; (2)
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where "̂ = cos �

N
+ i sin �

N
is a primitive root of unity of order 2N .

Observe that in the case N = 1 we get LN = R while in the case N = 2 we

get LN = R [ iR.

Set

LN;k := fx"̂k; x � 0g; k 2 Z: (3)

We can see that

LN;k+2N = LN;k; k 2 Z: (4)

Let M(�) be a C N�N -valued function on LNnf0g which is nondecreasing on each

ray LN;knf0g, k = 0; 1; : : : ; 2N � 1, in the direction from 0 to 1. Suppose that

the function M(�) has �nite moments

Z
LN

(�n; (�")n; (�"2)n; : : : ; (�"N�1)n)dM(�)

0BBB@
�n

(�")n

...

(�"N�1)n

1CCCA <1; (5)

where " = cos 2�
N

+ i sin 2�
N

is a primitive root of unity of order N . Here and in

what follows the integral over LN will be understood as a sum of integrals over

each ray LN;k, k = 0; 1; : : : ; 2N � 1. The integral over LN;k, k = 0; 1; : : : ; 2N � 1,

is understood to be improper at zero, i.e.,Z
LN;k

: : : = lim
Æ!+0

Z
LN;knUÆ(0)

: : : ;

where UÆ(0) = f� 2 C : j�j < Æg.
We will show below that there exist functions M(�) such that (5) holds true

but each entry of M(�) is not integrable at zero.

Let A 2 C
�

N�N
. De�ne the following functional:

�(u; v) =

Z
LN

(u(�); u(�"); u(�"2); : : : ; u(�"N�1))dM(�)

0BBB@
v(�)

v(�")
...

v(�"N�1)

1CCCA

+(u(0); u0(0); u00(0); : : : ; u(N�1)(0))A

0BBB@
v(0)

v0(0)
...

v(N�1)(0)

1CCCA; u; v 2 P: (6)

It is well-de�ned as it follows from (5). The functional � is bilinear and it is easy

to see that

�(�Nu(�); v(�)) = �(u(�); �Nv(�)); u; v 2 P: (7)
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Notice also that

�(u; v) = �(v; u); u; v 2 P; (8)

�(u; u) � 0; u 2 P: (9)

We assume that the functional � is nondegenerate in the following sense:

�(u; u) > 0 (10)

for all u 2 P : u 6= 0.

Applying the Gramm�Schmidt orthogonalization method with respect to the

functional � to the sequence 1; �; �2; : : : ; �n; : : :, we obtain a sequence of orthonor-

mal polynomials fpn(�)g1n=0 (pn has degree n and a positive leading coe�cient):

Z
LN

(pn(�); pn(�"); pn(�"
2); : : : ; pn(�"

N�1))dM(�)

0BBB@
pm(�)

pm(�")
...

pm(�"N�1)

1CCCA

+(pn(0); p
0
n
(0); p00

n
(0); : : : ; p(N�1)

n
(0))A

0BBB@
pm(0)

p0m(0)
...

p
(N�1)
m (0)

1CCCA = Æn;m; n;m 2 Z+:

(11)

Orthonormal polynomials on radial rays (11) have a characteristic property in

terms of a recurrence relation for polynomials. Namely, a set of polynomials

fpn(�)g1n=0 (pn has degree n and a positive leading coe�cient) satis�es rela-

tion (11) i� it satis�es a recurrence relation (see [1])

NX
j=1

(�k�j;jpk�j(�) + �k;jpk+j(�)) + �k;0pk(�) = �Npk(�); k 2 Z+; (12)

where �m;n 2 C ; m; n 2 Z+ : �m;N > 0; �m;0 2 R, and �m;n, pk which appear

here with negative indices are equal to zero.

Relation (12) can be written in a matrix form0BBBBBBBB@

�0;0 �0;1 �0;2 : : : �0;N 0 0 : : :

�0;1 �1;0 �1;1 : : : �1;N�1 �1;N 0 : : :
...

...
...

. . .
...

...
...

. . .

�0;N �1;N�1 �2;N�2 : : : : : : : : : : : : : : :

0 �1;N �2;N�1 : : : : : : : : : : : : : : :
...

...
...

...
...

...
...

. . .

1CCCCCCCCA

0BBBBBBBB@

p0(�)

p1(�)
...

pN (�)

pN+1(�)
...

1CCCCCCCCA
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= �N

0BBBBBBBB@

p0(�)

p1(�)
...

pN (�)

pN+1(�)
...

1CCCCCCCCA
: (13)

We denote the matrix on the left of (13) by J and ~p(�) := (p0(�); p1(�); p2(�); : : :)
T .

We can write

J~p(�) = �N~p(�): (14)

For the history of polynomials which satisfy high-order di�erence equation (11)

see [1] and References therein.

The aim of our present investigation is threefold. First, we establish some basic

properties of zeros for orthonormal polynomials (11). Note that some bounds

for zeros under certain conditions were obtained in [2]. Second, we introduce a

moment problem related to orthonormal polynomials (11) and obtain necessary

and su�cient conditions for its solvability. Finally, we establish some properties of

orthonormal polynomials (11) in the case when the measureM(�) has symmetries

and show that the moment problem has solutions with some symmetric properties.

Notations. As usual, we denote by R; C ;N ;Z;Z+ the sets of rely, complex,

positive integer, integer, nonnegative integer numbers, respectively, and iR stands

for an imaginary axis in the complex plane. Besides the de�nitions given above,

we should note the following notation. If A 2 C n�n , then A
� stands for its adjoint,

n 2 N. If A 2 C n�n is nondegenerate, then A�1 means its inverse. By In�n we

denote the matrix (Æi;j)
n

i;j=1, and by On�k we denote a matrix of size (n � k)

whose entries are zeros, n; k 2 N. A superscript T means a transposition of the

complex numerical vector or matrix.

2. Properties of Zeros

Let fpn(�)g1n=0 (pn has degree n and a positive leading coe�cient) be a se-

quence of orthonormal polynomials which satis�es (11) and therefore satis�es (12).

Substitute � = z in (12) and then take the complex conjugate value

NX
j=1

(�k�j;jpk�j(z) + �k;jpk+j(z)) + �k;0pk(z) = zNpk(z); k 2 Z+: (15)

Multiply (12) by pk(z), (15) by pk(�) and then do subtraction to get

NX
j=1

((�k�j;jpk�j(�)pk(z)� �k�j;jpk(�)pk�j(z)) + (�k;jpk+j(�)pk(z)
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��k;jpk(�)pk+j(z))) = (�N � zN )pk(�)pk(z); k 2 Z+: (16)

Set

Ak;j(�; z) := �k;jpk+j(�)pk(z)� �k;jpk(�)pk+j(z); k 2 Z+; j = 1; 2; : : : ; N:

We can write (16) in the following form:

NX
j=1

(�Ak�j;j(�; z) +Ak;j(�; z)) = (�N � zN )pk(�)pk(z); k 2 Z+: (17)

Here Ak;j with negative indices are equal to zero.

Summing up relations (17) over all values of k from 0 to m, m 2 Z+, we get

mX
k=0

(�N � zN )pk(�)pk(z) =

NX
j=1

mX
k=0

(�Ak�j;j +Ak;j)

=

NX
j=1

(�
mX
k=0

Ak�j;j +

mX
k=0

Ak;j) =

NX
j=1

(�
m�jX
r=0

Ar;j +

mX
k=0

Ak;j)

=

NX
j=1

mX
k=max(m�j+1;0)

Ak;j;

where we set r := k � j and
P

t

s
: : : = 0 if s > t.

Hence, we get

mX
k=0

(�N � zN )pk(�)pk(z) =

NX
j=1

mX
k=max(m�j+1;0)

Ak;j; m 2 Z+: (18)

From (18) an analog of the Christo�el�Darbou formula [3�4] follows immediately.

Theorem 2.1. Let fpn(�)g1n=0 (pn has degree n and a positive leading co-

e�cient) be a sequence of polynomials which satis�es (12). Then the following

relation holds true:
mX
k=0

pk(�)pk(z)

=

P
N

j=1

P
m

k=max(m�j+1;0)

�
�k;jpk+j(�)pk(z)� �k;jpk(�)pk+j(z)

�
�N � zN

;

m 2 Z+: (19)
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Passing to the limit in (19) as �! z, we get

mX
k=0

jpk(z)j2 = lim
�!z

P
N

j=1

P
m

k=max(m�j+1;0)Ak;j(�; z)

�N � zN
: (20)

Consider some cases for the position of point z in the complex plane.

1) Case z =2 LN . In this case the denominator on the right of (20) has a limit

2 Im(zN ) 6= 0. Notice that the numerator on the right of (20) is a polynomial of

�. Hence, from (20) we get

0 <

mX
k=0

jpk(z)j2 =

P
N

j=1

P
m

k=max(m�j+1;0)Ak;j(z; z)

2 Im(zN )

=

P
N

j=1

P
m

k=max(m�j+1;0) Im(�k;jpk+j(z)pk(z))

Im(zN )
: (21)

From (21) it follows that if m � N � 1, then polynomials pm; pm�1; : : : ; pm�N+1

have no common roots outside LN . Note that in the opposite case pk(z) on the

right of (21) would be always equal to zero at such a root what is impossible.

2) Case z 2 LNnf0g. In this case the numerator and the denominator on the

right of (20) tend to zero and we can write

mX
k=0

jpk(z)j2 = lim
�!z

P
N

j=1

P
m

k=max(m�j+1;0)A
0
k;j(�; z)

N�N�1
; (22)

where the derivatives are with respect to �.

Hence, we get

0 <

mX
k=0

jpk(z)j2 =

P
N

j=1

P
m

k=max(m�j+1;0)A
0
k;j(z; z)

NzN�1

=
1

NzN�1

NX
j=1

mX
k=max(m�j+1;0)

�
�k;jp

0
k+j

(z)pk(z)� �k;jp
0
k
(z)pk+j(z)

�
: (23)

From (23) it follows that if m � N � 1, then polynomials pm; pm�1; : : : ; pm�N+1

and their derivatives have no common roots in LNnf0g. In the opposite case pk(z)

and p0
k
(z) on the right of (23) would be always equal to zero at such a root what

is impossible.

3) Case z = 0. In this case the numerator and the denominator on the right

of (20) and their derivatives up to the (N � 1)-th derivative tend to zero and we

can write

0 <

mX
k=0

jpk(0)j2 =

P
N

j=1

P
m

k=max(m�j+1;0)A
(N)

k;j (0; 0)

N !
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=
1

N !

NX
j=1

mX
k=max(m�j+1;0)

�
�k;jp

(N)

k+j
(0)pk(0)� �k;jp

(N)

k
(0)pk+j(0)

�
; (24)

where the derivative of Ak;j is taken with respect to the �rst argument.

From (24) it follows that if m � N�1, then for polynomials pm; pm�1; : : :,

pm�N+1 and their N -th derivatives z = 0 is not a common root.

Theorem 2.2. Let fpn(�)g1n=0 (pn has degree n and a positive leading coef-

�cient) be a sequence of polynomials which satis�es (11) or (12). The following

statements are true:

1. N subsequent polynomials have no common roots outside LN .

2. 2N subsequent polynomials have no common roots.

3. N subsequent polynomials and their derivatives have no common roots in

LNnf0g.
4. z = 0 can not be a common root for N subsequent polynomials and their

N-th derivatives.

P r o o f. Statements 1, 3, 4 were derived above. Suppose that 2N subsequent

polynomials have a common root z0 2 C . From (12) it follows that z0 is a common

root for all polynomials pn, n 2 Z+, what is impossible.

For the case N = 1 we get the well-known properties:

1. Polynomials have no roots outside R.

2. Two subsequent polynomials have no common roots.

3�4. A polynomial and its derivative have no common roots.

For the case N = 2 the restrictions on zeros will be weaker and we will

illustrate them below by the examples:

1. Two subsequent polynomials have no common roots outside R [ iR.

2. Four subsequent polynomials have no common roots.

3. Two subsequent polynomials and their derivatives have no common roots

in (R [ iR)nf0g.
4. z = 0 can not be a common root for two subsequent polynomials and their

second derivatives.

Our further considerations were inspired by the considerations of G. Lopez in

[2, p. 128�129].

Theorem 2.3. Let fpn(�)g1n=0 (pn has degree n and a positive leading coef-

�cient) be a sequence of polynomials which satis�es (11) or (12). Suppose that

pk(�), k � N , is a polynomial which has di�erent roots z1; z2; : : : ; zN such that

zN
j

= a, a 2 C , j = 1; 2; : : : ; N . Then a 2 R.
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P r o o f. For the polynomial pk from the statement of the theorem we can

write

pk(z) = (zN � a)q(z);

where q(z) is a nonzero polynomial of degree k�N . Therefore zNq(z) = pk(z) +

aq(z). By virtue of (11) and (7) we get

�(zNq(z); q(z)) = �(pk(z) + aq(z); q(z)) = a�(q(z); q(z));

�(q(z); zN q(z)) = �(q(z); pk(z) + aq(z)) = a�(q(z); q(z));

and

a = a:

For the case N = 1 this theorem states that the roots of orthonormal polyno-

mials are real. For the case N = 2 we get: if complex numbers c and �c are zeros
of a polynomial, then c 2 R [ iR. In other words, there are no zeros symmetric

with respect to the origin outside R [ iR.

3. Moment Problems

Consider the following problem on �nding a C N�N -valued function M(�) on

LNnf0g which is nondecreasing on each ray LN;knf0g, k = 0; 1; : : : ; 2N � 1, in

the direction from 0 to 1, and a matrix A 2 C
�

N�N
such that

Z
LN

(�k; (�")k ; (�"2)k; : : : ; (�"N�1)k)dM(�)

0BBB@
�l

(�")l

...

(�"N�1)l

1CCCA

+ (�k; (�k)0; (�k)00; : : : ; (�k)(N�1))A

0BBB@
�l

(�l)0

...

(�l)(N�1)

1CCCA
����������
�=0

= sk;l;

k 2 Z+; l = 0; 1; 2; : : : ; N � 1; (25)

where fsk;lgk2Z+;l=0;1;2;:::;N�1 is a given set of complex numbers.

We will call this problem the N -dimensional symmetric moment problem in

a Sobolev form.

Suppose that there exists a solution M(�); A of moment problem (25). Notice

that moments (5) are �nite. If n = mN + l; m � 0; 0 � l � N � 1, then the

integral in (5) is equal to sn+mN;l. De�ne a functional � as in (6). The functional
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� is bilinear and it satis�es (7)�(9). From (7) it follows that � is uniquely de-

�ned by moments fsk;lgk2Z+;l=0;1;2;:::;N�1. We will suppose that the functional �

satis�es condition (10). The solutions of moment problem (25) for which the func-

tional � satis�es condition (10) we will call nondegenerate. De�ne the following

polynomials (see [3, Ch. II]):

~pn(�) =

�������������

�(1; 1) �(�; 1) �(�2; 1) : : : �(�n; 1)

�(1; �) �(�; �) �(�2; �) : : : �(�n; �)

�(1; �2) �(�; �2) �(�2; �2) : : : �(�n; �2)
...

...
...

. . .
...

�(1; �n�1) �(�; �n�1) �(�2; �n�1) : : : �(�n; �n�1)

1 � �2 : : : �n

�������������

=

������������������

s0;0 s1;0 s2;0 : : : sn;0
s0;1 s1;1 s2;1 : : : sn;1
...

...
...

. . .
...

s0;N�1 s1;N�1 s2;N�1 : : : sn;N�1
sN;0 sN+1;0 sN+2;0 : : : sN+n;0

sN;1 sN+1;1 sN+2;1 : : : sN+n;1

...
...

...
. . .

...

1 � �2 : : : �n

������������������
; n 2 N; ~p0(�) = 1: (26)

Notice that

�(~pn(�); �
k) =

�������������

�(1; 1) �(�; 1) �(�2; 1) : : : �(�n; 1)

�(1; �) �(�; �) �(�2; �) : : : �(�n; �)

�(1; �2) �(�; �2) �(�2; �2) : : : �(�n; �2)
...

...
...

. . .
...

�(1; �n�1) �(�; �n�1) �(�2; �n�1) : : : �(�n; �n�1)

�(1; �k) �(�; �k) �(�2; �k) : : : �(�n; �k)

�������������
= 0; k = 0; 1; : : : ; n� 1; n 2 N: (27)

Consequently, we get

�(~pn(�); ~pk(�)) = 0; n; k 2 Z+ : n > k:

By virtue of (8) we get

�(~pn(�); ~pk(�)) = 0; n; k 2 Z+ : n 6= k: (28)
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Set

�n :=

�������������

�(1; 1) �(�; 1) �(�2; 1) : : : �(�n; 1)

�(1; �) �(�; �) �(�2; �) : : : �(�n; �)

�(1; �2) �(�; �2) �(�2; �2) : : : �(�n; �2)
...

...
...

. . .
...

�(1; �n�1) �(�; �n�1) �(�2; �n�1) : : : �(�n; �n�1)

�(1; �n) �(�; �n) �(�2; �n) : : : �(�n; �n)

�������������

=

������������������

s0;0 s1;0 s2;0 : : : sn;0
s0;1 s1;1 s2;1 : : : sn;1
...

...
...

. . .
...

s0;N�1 s1;N�1 s2;N�1 : : : sn;N�1
sN;0 sN+1;0 sN+2;0 : : : sN+n;0

sN;1 sN+1;1 sN+2;1 : : : sN+n;1

...
...

...
. . .

...

smN;l smN+1;l smN+2;l : : : smN+n;l

������������������
; n 2 Z+;

n = mN + l; m 2 Z+; 0 � l � N � 1; ��1 := 1: (29)

The (n + 1) � (n + 1) matrix of moments in (29) we denote by Dn; n 2 Z+.

From (8) it follows that matrices Dn; n 2 Z+, are Hermitian.

Consider an arbitrary nonzero polynomial of degree n 2 Z+ u(�) =
P

n

j=0 cj�
j,

cj 2 C , j = 0; 1; : : : ; n : cn 6= 0. By virtue of (10) we get

0 < �(u; u) =

nX
j;k=1

cjck�(�
j ; �k): (30)

The matrix and the determinant of a positive quadratic form in (30) are Dn and

�n, respectively. Hence, matrices Dn; n 2 Z+ are positive de�nite and

�n > 0; n 2 Z+: (31)

Notice that the coe�cient by �n of ~pn(�) is �n�1, n 2 Z+. Therefore ~pn is

a polynomial of degree n. By virtue of (27) we get

�(~pn(�); ~pn(�)) = �(~pn(�);�n�1�
n + qn�1(�)) = �(~pn(�);�n�1�

n)

= �n�1�(~pn(�); �
n) = �n�1�n; n 2 Z+;

where qn�1(�) is a polynomial of a degree less than n.

Hence,

�(~pn; ~pn) = �n�1�n; n 2 Z+: (32)
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Set

p̂n(�) :=
1p

�n�1�n

~pn(�); n 2 Z+: (33)

By virtue of (28) and (32) we get

�(p̂n; p̂m) = Æn;m; n;m 2 Z+: (34)

Let fpn(�)g1n=0 be a sequence of orthonormal polynomials obtained by the

Gramm�Schmidt orthogonalization method as before (11).

Theorem 3.1. Let frn(�)g1n=0 and fr̂n(�)g1n=0 be two sequences of polynomi-

als, deg rn = deg r̂n = n; n 2 Z+; and polynomials have positive leading coe�-

cients. If

�(rn; rm) = �(r̂n; r̂m) = Æn;m; n;m 2 Z+; (35)

then rn = r̂n; n 2 Z+.

P r o o f. We will apply the induction method similarly as in the proof of

Th. 1.1 from [4, p. 15�16]. By virtue of (35) we get r20 = r̂20 = 1
�(1;1)

and therefore

r0 = r̂0.

Suppose that

rj = r̂j ; j = 0; 2; : : : ; k � 1; (36)

for a number k 2 N.

For polynomials rk; r̂k we can write

rk(�) = ��k +

k�1X
j=0

ajrj(�); (37)

r̂k(�) = �̂�k +

k�1X
j=0

âjrj(�); (38)

where � > 0; �̂ > 0; aj ; âj 2 C ; j = 0; 1; : : : ; k � 1.

By virtue of (35)�(38) we obtain

0 = �(rk; rj) = ��(�k; rj) + aj; j � k;

0 = �(r̂k; r̂j) = �̂�(�k; rj) + âj; j � k:

Set bj := �(�k; rj); j = 0; 1; : : : ; k � 1. From the latter relations we get

aj = ��bj; âj = ��̂bj ; j = 1; 2; : : : ; k � 1:
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From (37),(38) we get

rk(�) = �(�k �
k�1X
j=0

bjrj(�)); r̂k(�) = �̂(�k �
k�1X
j=0

bjrj(�)): (39)

Consequently, we obtain

r̂k = crk; where c :=
�̂

�
> 0: (40)

By virtue of (35) we derive

1 = �(rk; rk) = �(r̂k; r̂k) = jcj2�(rk; rk) = jcj2;

and hence c = 1.

By virtue of Th. 3.1 we obtain that

p̂n = pn; n 2 Z+:

Let us turn to the solving of the moment problem (25).

Let a symmetric moment problem (25) be given. Set

�(�k; �n) := sk+mN;l; k; n 2 Z+; n = mN + l; m 2 Z+; 0 � l � N � 1: (41)

We extend � linear with respect to the �rst argument and antilinear with respect

to the second argument to obtain a bilinear functional �(u; v); u; v 2 P. From (41)

it follows that

�(�k; �N�n) = �(�N�k; �n); k; n 2 Z+: (42)

For arbitrary polynomials u =
P

r1

j=0 aj�
j, v =

P
r2

s=0 bs�
s, r1; r2 2 Z+, aj; bs 2 C ,

j = 0; 1; : : : ; r1, s = 0; 1; : : : ; r2, we get

�(u; �Nv) =

r1X
j=0

r2X
s=0

ajbs�(�
j ; �N�s) =

r1X
j=0

r2X
s=0

ajbs�(�
N�j; �s) = �(�Nu; v):

Hence, for the functional � condition (7) is true.

De�ne �n, n 2 Z+ [ f�1g, as in (29). Suppose that matrices Dn, n 2 Z+,

de�ned as after (29) are Hermitian and positive.

Then the quadratic form in (30) is positive and hence condition (10) is true.

Also condition (31) holds true.

Since matrices Dn, n 2 Z+, are Hermitian we get

�(�k; �n) = �(�n; �k); k; n 2 Z+:
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For arbitrary polynomials u; v as above we can write

�(u; v) =

r1X
j=0

r2X
s=0

ajbs�(�j ; �s) =

r1X
j=0

r2X
s=0

ajbs�(�
s; �j) = �(v; u):

Hence, for the functional � condition (8) holds true.

De�ne polynomials f~pn(�)g1n=0 by formula (26). Repeating considerations

after (26) we de�ne polynomials fp̂n(�)g1n=0 which are orthonormal with respect to

� and coincide with polynomials fpn(�)g1n=0 constructed by the Gramm�Schmidt

orthogonalization method. Repeating the arguments from the proof of Th. 3 in

[1, p. 131] for the functional � we obtain that polynomials fpn(�)g1n=0 satisfy

recurrence relation (12). By virtue of Th. 2 in [1, p. 128] we get that there exists

M(�) and A such that orthonormality relation (11) holds true. De�ne a functional

�1(u; v) by formula (6). This functional has a property

�1(pn; pm) = Æn;m; n;m 2 Z+: (43)

For arbitrary polynomials u, v 2 P we can write u =
P

r1

j=0 ajpj(�),

v =
P

r2

s=0 bsps(�), r1, r2 2 Z+, aj; bs 2 C , j = 0; 1; : : : ; r1, s = 0; 1; : : : ; r2,

therefore

�(u; v) =

r1X
j=0

r2X
s=0

ajbs�(pj(�); ps(�)) =

r1X
j=0

r2X
s=0

ajbsÆj;s

=

r1X
j=0

r2X
s=0

ajbs�1(pj(�); ps(�)) = �1(u; v):

Hence, the functionals � and �1 coincide.

If we write relations (41) using the integral representation of �1 = � (6), we

obtain that relations (25) hold true.

From our considerations we get the following theorem.

Theorem 3.2. Let an N-dimensional symmetric moment problem in a Sobolev

form (25) with some fsk;lgk2Z+;l=0;1;2;:::;N�1 be given. The problem has a non-

degenerate solution i� the matrices Dn; n 2 Z+, de�ned as above are Hermitian

and positive de�nite.

Similarly to the case of the Hamburger moment problem and the Stieltjes

and the Hausdorf moment problems we can set some restrictions on the measure

M;A in (25) to get some "partial" moment problems. In this way we can get

the mentioned above problems and also the complex moment problem on radial

rays [5] and the discrete Sobolev moment problem [6]. Another version of the

symmetric moment problem was presented in [7].
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4. Symmetries

Let a function M , a matrix A, a functional � and orthonormal polynomials

fpn(�)g1n=0 be such as in Introduction. In the scalar case (N = 1) it is known that

if the measure of orthogonality is symmetric with respect to the origin, then an

orthogonal polynomial pn, n 2 Z+, has only terms with degrees having the same

parity as n [4, Th. 1.3]. A similar and more interesting situation with symmetries

is in the case of an arbitrary N 2 N.

Suppose that the function M(�) possesses the following property:

M(�"̂l) = M(�); 1 � l � 2N � 1; � 2 LNnf0g; (44)

where "̂ = cos �

N
+ i sin �

N
.

Also we will suppose that the matrix A commutes with a diagonal (N � N)

matrix Dl := diag(1; "̂�l; "̂�2l; : : : ; "̂�(N�1)l):

ADl = DlA: (45)

In particular, (45) is true if A is diagonal.

We can write

�(u; v) =

2N�1X
k=0

Z
LN;k

(u(�); u(�"); : : : ; u(�"N�1))dM(�)

0BBB@
v(�)

v(�")
...

v(�"N�1)

1CCCA

+(u(0); u0(0); : : : ; u(N�1)(0))A

0BBB@
v(0)

v0(0)
...

v(N�1)(0)

1CCCA

=

2N�1X
k=0

Z
LN;k�l

(u(y"̂l); u(y"̂l"); : : : ; u(y"̂l"N�1))dM(y"̂l)

0BBB@
v(y"̂l)

v(y"̂l")
...

v(y"̂l"N�1)

1CCCA

+(u(0); u0(0); : : : ; u(N�1)(0))A

0BBB@
v(0)

v0(0)
...

v(N�1)(0)

1CCCA; u; v 2 P; (46)

where we applied the change of variable � = y"̂l; y = �"̂�l.
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Set

û(y) := u(y"̂l); v̂(y) := v(y"̂l); y 2 LNnf0g: (47)

It is not di�cult to verify that

û(k)(y) = u(k)(y"̂l)"̂lk; v̂(k)(y) = v(k)(y"̂l)"̂lk; y 2 LNnf0g: (48)

By virtue of (47),(48) and (45) we can write

(u(0); u0(0); : : : ; u(N�1)(0))A

0BBB@
v(0)

v0(0)
...

v(N�1)(0)

1CCCA = (û(0); û0(0); : : : ; û(N�1)(0))

�DlAD
�
l

0BBB@
v̂(0)

v̂0(0)
...

v̂(N�1)(0)

1CCCA = (û(0); û0(0); : : : ; û(N�1)(0))A

0BBB@
v̂(0)

v̂0(0)
...

v̂(N�1)(0)

1CCCA: (49)

If we substitute (49) in (46) and use (44),(47), we get

�(u; v) =

2N�1X
k=0

Z
LN;k�l

(û(y); û(y"); : : : ; û(y"N�1))dM(y)

0BBB@
v̂(y)

v̂(y")
...

v̂(y"N�1)

1CCCA

+(û(0); û0(0); : : : ; û(N�1)(0))A

0BBB@
v̂(0)

v̂0(0)
...

v̂(N�1)(0)

1CCCA = �(û; v̂):

Hence,

�(u(�); v(�)) = �(u(�"̂l); v(�"̂l)); u; v 2 P: (50)

For the orthonormal polynomials fpn(�)g1n=0 we can write

�(pn(�); pm(�)) = �(pn(�"̂
l); pm(�"̂l)) = Æn;m; n;m 2 Z+: (51)

Let the polynomial pn(�) have the following form:

pn(�) =

nX
j=0

�n;j�
j ; (52)
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where �n;j 2 C , j = 0; 1; : : : ; n� 1; �n;n > 0, n 2 Z+.

Consequently,

pn(�"̂
l) =

nX
j=0

�n;j "̂
lj�j; n 2 Z+: (53)

Consider the polynomials

rn(�) := "̂�lnpn(�"̂
l) = �n;n�

n +

n�1X
j=0

�n;j"̂
l(j�n)�j; n 2 Z+: (54)

The polynomial rn has degree n and a positive leading coe�cient, n 2 Z+. From

(51), (54) it follows that

�(rn(�); rm(�)) = �(pn(�"̂
l); pm(�"̂l)) = Æn;m; n;m 2 Z+: (55)

By virtue of Th. 3.1 we obtain that

rn(�) = pn(�); n 2 Z+:

Consequently, we get

pn(�"̂
l) = "̂lnpn(�); n 2 Z+: (56)

Let us see what condition (56) means for the coe�cients of the polynomial pn.

Subtract relation (52) multiplied by "̂ln from relation (53)

0 =

n�1X
j=0

�n;j("̂
lj � "̂ln)�j : (57)

Consequently, if "̂lj � "̂ln 6= 0, then �n;j = 0, j = 0; 1; :::; n � 1. Therefore

pn(�) = �n;n�
n +

X
j2[0;n�1]\Z+:"̂l(n�j)=1

�n;j�
j ; n 2 Z+: (58)

From these considerations we obtain the following theorem.

Theorem 4.1. Let M(�); A; �(�; �) and orthonormal polynomials fpn(�)g1n=0

be the same as in Introduction. Suppose that conditions (44),(45) are true. Then

orthonormal polynomials satisfy condition (56) and have the following form:

pn(�) = �n;n�
n +

X
k2[1;n]\N: "̂lk=1

�n;n�k�
n�k; n 2 Z+: (59)
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In particular, if l = N we get

pn(�) = �n;n�
n +

X
k2[1;n]\N: k is even

�n;n�k�
n�k; n 2 Z+; (60)

and if l = 1 we obtain

pn(�) = �n;n�
n +

[ n
2N ]X
j=1

�n;n�2Nj�
n�2Nj ; n 2 Z+: (61)

Let M(�); A be arbitrary, i.e., conditions (44),(45) are not assumed to be true.

Set

d(u; v) := (u(0); u0(0); : : : ; u(N�1)(0))A

0BBB@
v(0)

v0(0)
...

v(N�1)(0)

1CCCA; u; v 2 P: (62)

We can write

�(u; v) =

2N�1X
k=0

Z
LN;k

(u(�); u(�"); : : : ; u(�"N�1))dM(�)

0BBB@
v(�)

v(�")
...

v(�"N�1)

1CCCA+ d(u; v)

=

2N�1X
k=0

Z
LN;k�2j

(u(y"j); u(y"j+1); : : : ; u(y"N�1); u(y); u(y"); : : : ; u(y"j�1))

�dM(y"j)

0BBB@
v(y"j)

v(y"j+1)
...

v(y"j�1)

1CCCA+ d(u; v)

=

2N�1X
k=0

Z
LN;k�2j

(u(y); u(y"); : : : ; u(y"N�1))BjdM(y"j)B�j

0BBB@
v(y)

v(y")
...

v(y"N�1)

1CCCA
+d(u; v); u; v 2 P; (63)
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where we applied the change of variable � = y"j = y"̂2j ; y = �"�j = �"̂�2j ,

j 2 [1; N � 1] \ N, and Bj is a block matrix

Bj :=

�
O(N�j)�j I(N�j)�(N�j)
Ij�j Oj�(N�j)

�
: (64)

We change r = k � 2j; k = r � 2j in the last sum in (63) and use (4) to get

�(u; v) =

2N�1�2jX
r=�2j

Z
LN;r

(u(y); u(y"); : : : ; u(y"N�1))BjdM(y"j)B�
j

�

0BBB@
v(y)

v(y")
...

v(y"N�1)

1CCCA+ d(u; v)

=

2N�1X
r=0

Z
LN;r

(u(y); u(y"); : : : ; u(y"N�1))BjdM(y"j)B�j

0BBB@
v(y)

v(y")
...

v(y"N�1)

1CCCA
+d(u; v); u; v 2 P: (65)

Set

Mj(�) := BjM(�"j)B�
j
; j 2 [1; N � 1] \ N; � 2 LNnf0g: (66)

From (65) it follows that the functionsMj and A de�ne by (6) the same functional

� as M and A de�ne. In particular, the functions Mj and A have the same

moments of form (25) as M and A.

Set

fM(�) :=
1

N

0@M(�) +

N�1X
j=1

Mj(�)

1A ; � 2 LNnf0g: (67)

For the functions fM and A the same can be said as for the functions Mj and A

above. It turns out that the function fM(�) has some additional properties which

will be obtained below.

Let the matrix M(�) have the following form: M(�) = (mn;k(�))
N�1
n;k=0, � 2

LNnf0g. By direct computation we get that the functions Mj, j = 1; 2; : : : ; N �1

have the following structure:

Mj(�) :=

�
Aj(�) Cj(�)

C�
j
(�) Fj(�)

�
; � 2 LNnf0g; (68)
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where

Aj(�) =

0BBB@
mN�j;N�j(�"

j) mN�j;N�j+1(�"
j) : : : mN�j;N�1(�"

j)

mN�j+1;N�j(�"
j) mN�j+1;N�j+1(�"

j) : : : mN�j+1;N�1(�"
j)

...
...

. . .
...

mN�1;N�j(�"
j) mN�1;N�j+1(�"

j) : : : mN�1;N�1(�"
j)

1CCCA ;

(69)

Cj(�) =

0BBB@
mN�j;0(�"

j) mN�j;1(�"
j) : : : mN�j;N�j�1(�"

j)

mN�j+1;0(�"
j) mN�j+1;1(�"

j) : : : mN�j+1;N�j�1(�"
j)

...
...

. . .
...

mN�1;0(�"
j) mN�1;1(�"

j) : : : mN�1;N�j�1(�"
j)

1CCCA ; (70)

Fj(�) =

0BBB@
m0;0(�"

j) m0;1(�"
j) : : : m0;N�j�1(�"

j)

m1;0(�"
j) m1;1(�"

j) : : : m1;N�j�1(�"
j)

...
...

. . .
...

mN�j�1;0(�"
j) mN�j�1;1(�"

j) : : : mN�j�1;N�j�1(�"
j)

1CCCA : (71)

Let Mj(�) = (m
[j]

n;k
(�))N�1

n;k=0 and fM(�) = (emn;k(�))
N�1
n;k=0, � 2 LNnf0g. Let us

calculate emk;k(�). It is easy to see that

m
[j]

k;k
(�) =

�
mN�j+k;N�j+k(�"

j); 0 � k � j � 1

mk�j;k�j(�"
j); j � k � N � 1

: (72)

Therefore

emk;k(�) =
1

N

0@mk;k(�) +

N�1X
j=1

m
[j]

k;k
(�)

1A
=

1

N

0@mk;k(�) +

kX
j=1

mk�j;k�j(�"
j) +

N�1X
j=k+1

mN�j+k;N�j+k(�"
j)

1A
=

1

N

0@ kX
j=0

mk�j;k�j(�"
j) +

N�1X
j=k+1

mN�j+k;N�j+k(�"
j)

1A
=

1

N

 
kX

s=0

ms;s(�"
k�s) +

N�1X
t=k+1

mt;t(�"
N+k�t)

!

=
1

N

N�1X
r=0

mr;r(�"
k�r); (73)

where s := k � j; t := N � j + k.
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Set

d0(�) :=
1

N

N�1X
r=0

mr;r(�"
�r); � 2 LNnf0g: (74)

By virtue of (73) we get

emk;k(�) = d0(�"
k); 0 � k � N � 1: (75)

Consider a number l 2 [1; N � 1] \ N. Let us calculate elements m
[j]

k;k+l
(�),

0 � k � N � 1� l, i.e., the elements on the l-th upper diagonal. It is not di�cult

to see that

m
[j]

k;k+l
(�) =

8<:
mN�j+k;N�j+k+l(�"

j); 0 � k < j � l

mN�j+k;�j+k+l(�"
j); j � l � k � j � 1

mk�j;k�j+l(�"
j); j � k � N � 1� l

: (76)

Therefore

emk;k+l(�) =
1

N

0@mk;k+l(�) +

N�1X
j=1

m
[j]

k;k+l
(�)

1A
=

1

N

0@ kX
j=0

mk�j;k�j+l(�"
j)

+

k+lX
j=k+1

mN�j+k;�j+k+l(�"
j) +

N�1X
j=k+l+1

mN�j+k;N�j+k+l(�"
j)

1A
=

1

N

0@ kX
s=0

ms;s+l(�"
k�s) +

k+lX
j=k+1

mN�j+k;�j+k+l(�"
j)

+

N�1�lX
t=k+1

mt;t+l(�"
N+k�t)

!

=
1

N

0@N�1�lX
r=0

mr;r+l(�"
k�r) +

k+lX
j=k+1

mN�j+k;�j+k+l(�"
j)

1A ; (77)

where s := k � j, t := N � j + k.

Hence, we can write

emk;k+l(�) =
1

N

 
N�1�lX
r=0

mr;r+l(�"
k�r) +

l�1X
u=0

mN�l+u;u(�"
k+l�u)

!
; (78)
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where u := �j + k + l. Set

dl(�) :=
1

N

 
N�1�lX
r=0

mr;r+l(�"
�r) +

l�1X
u=0

mN�l+u;u(�"
l�u)

!
;

1 � l � N � 1; � 2 LNnf0g: (79)

By virtue of (78) we obtain

emk;k+l(�) = dl(�"
k); 0 � k � N � 1� l; 1 � l � N � 1; � 2 LNnf0g: (80)

Consequently, we get that each diagonal of matrix fM(�) is de�ned by a unique

function on LNnf0g by formulas (75), (80). The solutions M , A of the symmet-

ric moment problem (25) with the matrix M having this property we will call

standard. As it follows from the considerations above, standard solutions always

exist.

Besides the minimization of a number of independent elements in the matrix

function M(�), there is a possibility to minimize the support of M(�). It follows

from the proof of Th. 1 in [1] that M(�) can be replaced by a function cM(�)

(having the same functional � and orthonormal polynomials fpng1n=0) which has

a support on two radial rays (corresponding to arbitrary branches of roots of 1

and �1 of order N).

5. Examples

We will illustrate our results obtained in the previous sections by several ex-

amples of orthogonal polynomials.

1. Consider the following functional:

�(u; v) =

Z 1

0

(u(�); u(��))
�

1
p
�p

� 1

��
v(�)

v(��)

�
d� (81)

=
1

2

Z 1

�1

(u(�); u(��))
�

1
p
j�jp

j�j 1

��
v(�)

v(��)

�
d�; u; v 2 P: (82)

(Write
R 1
�1

::: =
R 0
�1

:::+
R 1
0
::: in (82) and make the change of variable � = �x in

the �rst addend to get (81)).

Calculate moments (25):

s2k;0 = 2

 
1

2k + 1
+

1

2k + 3
2

!
; s2k+1;0 = 0; k 2 Z+; (83)
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s2k;1 = 0; s2k+1;1 = 2

 
1

2k + 3
� 1

2k + 3 + 1
2

!
; k 2 Z+: (84)

Calculate �rst �ve polynomials ~pn from (26):

~p0(�) = 1; ~p1(�) =
10

3
�; ~p2(�) =

4

441
(35�2 � 13);

~p3(�) =
9824

101871
�3 � 9824

266805
�;

~p4(�) =
3222272

6471355275
�4 � 2036224

4622396625
�2 +

88176896

1779622700625
:

Calculate their roots:

~p1 : �1 = 0;

~p2 : �1 � �0:60944; �2 � 0:60944;

~p3 : �1 � �0:61791; �2 = 0; �3 � 0:61791;

~p4 : �1 � �0:86743; �2 � �0:36365;

�2 � 0:36365; �4 � 0:86743:

2. Consider the following functional:

�(u; v) =

Z 1

�1

(u(�); u(��))
�

1 3
p
j�j

3
p
j�j 1

��
v(�)

v(��)

�
d�; u; v 2 P: (85)

We calculate moments (25):

s2k;0 = 4

 
1

2k + 1
+

1

2k + 1 + 1
3

!
; s2k+1;0 = 0; k 2 Z+; (86)

s2k;1 = 0; s2k+1;1 = 4

 
1

2k + 3
� 1

2k + 3 + 1
3

!
; k 2 Z+: (87)

Calculate �rst �ve polynomials ~pn from (26):

~p0(�) = 1; ~p1(�) = 7�; ~p2(�) =
2

15
(7�2 � 38

15
);

~p3(�) =
3989

6750
�3 � 3989

18000
�;

~p4(�) =
355021

83160000
�4 � 571469

152460000
�2 +

3510961

8537760000
:
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Calculate their roots:

~p1 : �1 = 0;

~p2 : �1 � �0:60158; �2 � 0:60158;

~p3 : �1 � �0:61237; �2 = 0; �3 � 0:61237;

~p4 : �1 � �0:86572; �2 � �0:35850;

�3 � 0:35850; �4 � 0:86572:

3. Consider the following functional:

�(u; v) =

Z 1

0

(u(�); u(��))
�

1 + a

�
� a

�

� a

�
1 + a

�

��
v(�)

v(��)

�
d�; u; v 2 P; (88)

where a � 0 is a parameter. Here the integral is understood to be improper at

zero.

Notice that the elements of the (2 � 2) matrix in (88) are not integrable at

zero if a > 0. However, we can calculate moments (25):

s2k;0 =
2

2k + 1
; s2k+1;0 = 0; k 2 Z+; (89)

s2k;1 = 0; s2k+1;1 =
2

2k + 3
+

2a

k + 1
; k 2 Z+: (90)

Calculate �rst �ve polynomials ~pn from (26):

~p0(�) = 1; ~p1(�) = 2�; ~p2(�) = 4(a +
1

3
)�2 � 4

3
a� 4

9
;

~p3(�) =

�
32

45
a+

32

135

�
�3 �

�
16

45
a+

32

225

�
�;

~p4(�) =

�
16

135
a2 +

1088

14175
a+

256

23625

�
�4 �

�
32

315
a2 +

2176

33075
a+

512

55125

�
�2

+
16

1575
a2 +

1088

165375
a+

256

275625
:

Calculate their roots for a = 1:

~p1 : �1 = 0;

~p2 : �1 � �0:57735; �2 � 0:57735;

~p3 : �1 � �0:72456; �2 = 0; �3 � 0:72456;

~p4 : �1 � �0:86113; �2 � �0:33998;
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�3 � 0:33998; �4 � 0:86113:

4. Consider the following functional:

�(u; v) =

Z 1

0

(u(�); u(��))
�

1 �

� 1

��
v(�)

v(��)

�
d�

+
1

i

Z
i

0

u(�)v(�)d�; u; v 2 P: (91)

We calculate moments (25):

s2k;0 =
1

k + 1
+

2 + (�1)k

2k + 1
; s2k+1;0 =

(�1)ki

2k + 2
; k 2 Z+; (92)

s2k;1 =
(�1)k+1i

2k + 2
; s2k+1;1 = � 1

k + 2
+

2� (�1)k+1

2k + 3
; k 2 Z+: (93)

Calculate �rst �ve polynomials ~pn from (26):

~p0(�) = 1; ~p1(�) = 4�� i

2
; ~p2(�) =

7

4
�2 � 17

12
i�� 13

24
;

~p3(�) =
149

180
�3 � 343

1440
i�2 +

7

21600
�+

1459

14400
i;

~p4(�) =
1501331

18144000
�4 � 132749

1296000
i�3 � 36943

518400
�2 +

2746283

63504000
i�+

3110389

423360000
:

Calculate their roots:

~p1 : �1 =
i

8
;

~p2 : �1 � �0:38169 + 0:40476i; �2 � 0:38169 + 0:40476i;

~p3 : �1 � �0:41588 � 0:16289i; �2 � 0:61354i; �3 � 0:41588 � 0:16289i;

~p4 : �1 � �0:67548 + 0:09831i; �2 � 0:23690i;

�3 � 0:80435i; �4 � 0:67548 + 0:09831i:

Notice that symmetric measures in (82),(85) imply that polynomial ~pn has

only terms with degrees with the same parity as n, n 2 Z+. Note that polynomials

~p2 and ~p4 in the last example have symmetric with respect to iR roots but not

with respect to the origin. This agrees with Th. 2.3.
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