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1. Introduction

We denote by C,«, the set of all n x n matrices with complex elements, and

>

by (Cﬁxn
we denote the set of all complex polynomials. Let

Ly={eC: A3 =0={AeC: 2 eR}, NeN

we mean all nonnegative Hermitian matrices from C,x,, n € N. By P

Note that Ly is an algebraic curve. In fact, it is a set of 2N radial rays or a

pencil of N lines with the center at the origin. It is not difficult to verify that

2N—-1

Ly = | {=¢*, = >0} (1)
k=0
N-—1

Ly = |J{z¢*, z e R}, (2)
k=0
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where € = cos & + i sin & is a primitive root of unity of order 2N.

Observe that in the case N =1 we get Ly = R while in the case N = 2 we
get Ly = RU:R.
Set
Lyy = {zt*, 2 >0}, keZ. (3)
We can see that
Lyjgton = Lng, k€E€Z. (4)

Let M () be a Cyxn-valued function on Ly \{0} which is nondecreasing on each
ray Ly i\{0}, K =0,1,...,2N — 1, in the direction from 0 to co. Suppose that
the function M (A) has finite moments

/(A”,(Ag)”,(>\52)”,...,(AgN_l)")dM(A) (A{_ﬁ)n < 00, (5)
Ly :

(}\gl\f‘fl)n

where € = cos QW” + ¢sin QW” is a primitive root of unity of order N. Here and in
what follows the integral over Ly will be understood as a sum of integrals over
each ray Ly, k=0,1,...,2N — 1. The integral over Ly, K =0,1,...,2N —1,

is understood to be improper at zero, i.e.,

/ ...= lim e
Ly 0=+0.J 1y 1 \Us(0)

where Us(0) ={A € C: |\| < d}.

We will show below that there exist functions M (X) such that (5) holds true
but each entry of M()) is not integrable at zero.

Let A € (C]%X ~ - Define the following functional:

v(N)
v(Ae
o(u,v) —/L (u(N), u(Xe), u(Ae?), ..., uAeN"1))dM(N) (: )
v(AeN )
U,(O)
+(u(0), ' (0), " (0),...,uN"D(0)A ! (0) , u,v € P. (6)
» 1) (0)

It is well-defined as it follows from (5). The functional o is bilinear and it is easy
to see that
oAV u(N), v(N) = o(u(N), AVo(N), w0 € P. (7)
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Notice also that
o(w,0) = o(v,u), v € P (8)

o(u,u) >0, uelP. (9)

We assume that the functional ¢ is nondegenerate in the following sense:
o(u,u) >0 (10)

forallu € P: u # 0.

Applying the Gramm—Schmidt orthogonalization method with respect to the
functional o to the sequence 1, X\, A\?,..., A", ..., we obtain a sequence of orthonor-
mal polynomials {p,(A)}22, (pn has degree n and a positive leading coefficient):

Pm(A)
/ ), 2a ) a0, AN AMO) p’“(fg)
pm(AeN )
pm(0)
+(pn(0),21,(0), 91 (0), ..., pN ~1(0)) A plm;(O) =0um,  n,mE Ly
i 2(0)

(11)
Orthonormal polynomials on radial rays (11) have a characteristic property in
terms of a recurrence relation for polynomials. Namely, a set of polynomials
{Pn(N)}5%y (pn has degree n and a positive leading coefficient) satisfies rela-
tion (11) iff it satisfies a recurrence relation (see [1])

N

> @5 k—i (V) + ok jprai (V) + arope(X) = ANpr(N), k€Zy,  (12)
=1

where oy, € C, m,n € Zy : apn > 0,000 € R, and oy, 5, pr which appear
here with negative indices are equal to zero.
Relation (12) can be written in a matrix form

@00 Q@1 @2 e Qo N 0 0 e p[)()\)

«@o,1 1,0 a1,1 <o O N—1 O1,N 0 ce pl()\)

Qo,N QI N-1 Q3 N—2 --- pN()\)
0 a1 N a2 N-1 .- pN+1(>\)
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=\N pN-(A) : (13)

PN+1(A)

We denote the matrix on the left of (13) by .J and p()) := (po()), p1(A), p2(A),...)T.
We can write
TH(N) = AVH(N). (14)

For the history of polynomials which satisfy high-order difference equation (11)
see [1] and References therein.

The aim of our present investigation is threefold. First, we establish some basic
properties of zeros for orthonormal polynomials (11). Note that some bounds
for zeros under certain conditions were obtained in [2]. Second, we introduce a
moment problem related to orthonormal polynomials (11) and obtain necessary
and sufficient conditions for its solvability. Finally, we establish some properties of
orthonormal polynomials (11) in the case when the measure M (\) has symmetries
and show that the moment problem has solutions with some symmetric properties.

Notations. As usual, we denote by R,C,N,Z,7Z the sets of rely, complex,
positive integer, integer, nonnegative integer numbers, respectively, and R stands
for an imaginary axis in the complex plane. Besides the definitions given above,
we should note the following notation. If A € C,«,,, then A* stands for its adjoint,
n € N. If A € C,y, is nondegenerate, then A~ means its inverse. By I,,x, we
denote the matrix (d;;);;—;, and by Oy We denote a matrix of size (n X k)
whose entries are zeros, n,k € N. A superscript T' means a transposition of the
complex numerical vector or matrix.

2. Properties of Zeros

Let {pn(A)}>2, (pn has degree n and a positive leading coefficient) be a se-
quence of orthonormal polynomials which satisfies (11) and therefore satisfies (12).
Substitute A = z in (12) and then take the complex conjugate value

N

Z(akfj,jpkfj(z) + W oy (2) + okopi(2) = 2V pr(2), k€ Zy. (15)
=1

Multiply (12) by pi(2), (15) by px(A) and then do subtraction to get

N

> (@ =550k-i(Npi(2) — b jpe(Npe—i (2)) + (kjPrti (Npr(2)
j=1
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— k(AN (2)) = WY = 2¥)pe(Npi(2), & € Z4. (16)
Set

Apj(A, 2) 2= o it j(Npr(2) — Qo (MNpr+4(2), k€ Zy, j=1,2,...,N.
We can write (16) in the following form:

N

Z(_Akfj,j(%z) + A (AN 2) = (WY —2Np(Npe(2), k€ Zy. (17)
=

Here Ay ; with negative indices are equal to zero.
Summing up relations (17) over all values of k from 0 to m, m € Z,, we get

m

AN —2M)pr(A)pk(2)
0

N m m N m—j m
=D Ak Y Ak =D (Y A+ Ary)
j=1 k=0 k=0 j=1 r=0 k=0
N m
=2 2 A
Jj=1 k=max(m—j+1,0)
where we set 7 :=k —j and % ... = 0if s > ¢.

Hence, we get

m N m
SO =2 (Npe(2) =) > Agjy mE 7y (18)

k=0 J=1 k=max(m—j;+1,0)

From (18) an analog of the Christoffel-Darbou formula [3-4] follows immediately.

Theorem 2.1. Let {p,(\)}°2y (pn has degree n and a positive leading co-
efficient) be a sequence of polynomials which satisfies (12). Then the following
relation holds true:

et o max(mj1,0) (ak,jpk+j(>\)pk(z) — @k jPk(N)Pryj (Z)>
- AN —zZN ’

mel,. (19)
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Passing to the limit in (19) as A — z, we get

m ]\L mﬁ ‘ A, )\’ ;
Z lpi(2))? = lim 2 j=1 2k=max(m—j+1,0) Ak,j (A 2) .
k=0

20
A—z AN —?N ( )
Consider some cases for the position of point z in the complex plane.
1) Case z ¢ Ly. In this case the denominator on the right of (20) has a limit
2Im(z"V) # 0. Notice that the numerator on the right of (20) is a polynomial of
A. Hence, from (20) we get

“ DDV 1,0) Ak,j (2, 2)
2 j=1 2sk=max(m—j+1,0) 41k,j %>

O T (g +1,0) Im( pi (2)pe (2)) o1
N Im(zN) ’ (21)
From (21) it follows that if m > N — 1, then polynomials Py, Pm—1,--->Pm—N+1
have no common roots outside Ly. Note that in the opposite case pg(z) on the
right of (21) would be always equal to zero at such a root what is impossible.
2) Case z € Ly\{0}. In this case the numerator and the denominator on the

right of (20) tend to zero and we can write

m S S ity Ak (A, 2)
Z 2 . j= =max(m—j;+1,0) “ k;5\ "
pan pi(z)]" = Jim NAN-T ’ (22)

where the derivatives are with respect to A.
Hence, we get

m S S st 10) Ak (217)
Z 2 _ Luj= =max(m—j+1,0) “Tk;j

N m
= Y (ks ) - TS () (23)
Jj=1 k=max(m—3j+1,0)
From (23) it follows that if m > N — 1, then polynomials py, Pm—1,- -+ Pm—N+1
and their derivatives have no common roots in Ly\{0}. In the opposite case py(2)
and p}.(z) on the right of (23) would be always equal to zero at such a root what
is impossible.
3) Case z = 0. In this case the numerator and the denominator on the right
of (20) and their derivatives up to the (N — 1)-th derivative tend to zero and we

can write N (V)

m Sy S i11,0) Ap5 (0,0)
2 j=1 Zuk=max(m—j+1,0) “*k;j )

0< kzo |pk (0)| - NI
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N m
1 _ -
=i > (w00 —apl Ope ), (2)
" j=1 k=max(m—j+1,0)

where the derivative of Ay ; is taken with respect to the first argument.
From (24) it follows that if m > N—1, then for polynomials pp,,pm—1, .-
Pm—nN+1 and their N-th derivatives z = 0 is not a common root.

b

Theorem 2.2. Let {p,(A\)}22, (pn has degree n and a positive leading coef-
ficient) be a sequence of polynomials which satisfies (11) or (12). The following
statements are true:

1. N subsequent polynomials have no common roots outside Ly .

2. 2N subsequent polynomials have no common roots.

3. N subsequent polynomials and their derivatives have no common roots in
Ln\{0}.

4. z =0 can not be a common root for N subsequent polynomials and their
N-th derivatives.

Proof. Statements 1, 3, 4 were derived above. Suppose that 2N subsequent
polynomials have a common root zy € C. From (12) it follows that zg is a common
root for all polynomials p,, n € Z,, what is impossible. [

For the case N =1 we get the well-known properties:

1. Polynomials have no roots outside R.

2. Two subsequent polynomials have no common roots.

3—4. A polynomial and its derivative have no common roots.

For the case N = 2 the restrictions on zeros will be weaker and we will
illustrate them below by the examples:

1. Two subsequent polynomials have no common roots outside R U <R

2. Four subsequent polynomials have no common roots.

3. Two subsequent polynomials and their derivatives have no common roots
in (RUiR)\{0}.

4. z = 0 can not be a common root for two subsequent polynomials and their
second derivatives.

Our further considerations were inspired by the considerations of G. Lopez in
[2, p. 128-129].

Theorem 2.3. Let {p,(A\)}22, (pn has degree n and a positive leading coef-
ficient) be a sequence of polynomials which satisfies (11) or (12). Suppose that
pe(A), k> N, is a polynomial which has different roots z1,29,...,2n such that

zjvza,aE(C,jzl,Z,...,N. Then a € R.
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P r oo f. For the polynomial p; from the statement of the theorem we can
write

pr(2) = (2 = a)a(2),

where ¢(z) is a nonzero polynomial of degree k — N. Therefore 2" q(z) = pi(2) +
aq(z). By virtue of (11) and (7) we get

(2" q(2),a(2)) = o(pr(2) + ag(2),4(2)) = ao(q(2),q(2)),

a(q(2), 2" a(2)) = o(q(2), p(2) + aq(2)) = ao(q(2), q(2)),
and
a=a. ]
For the case N = 1 this theorem states that the roots of orthonormal polyno-
mials are real. For the case N = 2 we get: if complex numbers ¢ and —c are zeros

of a polynomial, then ¢ € RU{R. In other words, there are no zeros symmetric
with respect to the origin outside R U R

3. Moment Problems

Consider the following problem on finding a Cyy y-valued function M (\) on
Lx\{0} which is nondecreasing on each ray Ly;\{0}, k¥ =0,1,...,2N —1, in
the direction from 0 to oo, and a matrix A € (C%,X ~ such that

>\l
Ae)
[ 08008 0 0N M ) )
Ly s
(>\8N_1)l
)\l
(ALY
+ (}\k’()\k)/’o\k)//,‘”,(Ak)(N—l))A : = Sk
1(N=1)
(A) o
ke€Z. 1=01,2,...,N—1, (25)

where {sg}rez 1=0,1,2,..,N—1 IS a given set of complex numbers.

We will call this problem the N-dimensional symmetric moment problem in
a Sobolev form.

Suppose that there exists a solution M (\), A of moment problem (25). Notice
that moments (5) are finite. If n = mN +1, m >0, 0 <[ < N — 1, then the
integral in (5) is equal to sp4mn,. Define a functional o as in (6). The functional
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o is bilinear and it satisfies (7)—(9). From (7) it follows that o is uniquely de-
fined by moments {sg}rez ., 1=0,1,2,.,N—1- We will suppose that the functional o
satisfies condition (10). The solutions of moment problem (25) for which the func-
tional o satisfies condition (10) we will call nondegenerate. Define the following
polynomials (see [3, Ch. II]):

o(1,1) a(\1) o(X2,1) ...  o(A"1)
a(1, ) a(A\A) aAZ,N) ... o(AM))
~ a(1,)2) a(\,A2) a(A2, %) ... o(A",\2)
Pn(A) = : : : - :
a(L,A*Y) o\ APTH) o(AZ A L a(A AT
1 A A2 A"
50,0 81,0 820 ..+ Sno
50,1 51,1 821 .. Spi
S0,N—1 SI,N—1 S2,N—1 ... Sp,N-1 ~
— s ) ) ’ R [ N, )\ = 1. 26
SN,0 SN+1,0 SN420 --- SN+4n,0 " po( ) ( )
SN, SN41,1 SN42,1 .-+ SN+4n,1
1 A 2?2 AT
Notice that
a(1,1) a(\, 1) o(A2,1) ...  o(A"1)
a(1, ) a(A,A) a(AZ N ... o(A))
~ a(1,)\?) (X, \?) a(A2,\2) ... oA, A2)
U(pn(A)aAk) = : : : -, :
a1, A" (WA (A2 A L a(Ar AT
o (1, \F) (X, \F) a( A2, N o a(A )
=0, k=0,1,....,.n—1; neN. (27)

Consequently, we get
o(Pn(A),Pk(N) =0, n,k € Zy: n > k.
By virtue of (8) we get

o(Pn(N),Pr(A) =0, n,k €Z4: n#k. (28)
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Set
o(1,1) a(\ 1) o(A2,1) ... o(AM1)
o(l, ) a(A,A) aA2,\) ... o(AM )
A a(1,)?) (X, \?) a(A2,\%) ... a(AM,N2)
a(L,A" ) oA o(AZ A L a(Am AT
o(1,\™) a(A,A™) a2 A . o(A™ D)
50,0 51,0 52,0 i Sn,0
50,1 81,1 52,1 e Sn,1
_| SoN-1 S1L,N-1 S2N-1 ... SnN-1 . nez,,
SN,0 SN+1,0 SN+2,0 --- SN+n,0
SN,1 SN+1,1 SN+2,1 --+ SN+4n,l
SmN,] SmN+1l SmN4+2,0 --- SmN+4n,l
n=mN+I[, meZ,, 0<I<N—1; A q:=1. (29)

The (n + 1) x (n + 1) matrix of moments in (29) we denote by D, n € Z,.
From (8) it follows that matrices D,,, n € Z,, are Hermitian.

Consider an arbitrary nonzero polynomial of degree n € Z u(A) = 3%, ¢; N,
c;€C, j=0,1,...,n: ¢, #0. By virtue of (10) we get
n -
0<o(u,u) =Y cro(N,\b). (30)

j:kil

The matrix and the determinant of a positive quadratic form in (30) are D,, and
A, respectively. Hence, matrices D,, n € Z, are positive definite and

Ap >0, n€Zs. (31)

Notice that the coefficient by A™ of p,(\) is Ap,—1, n € Zy. Therefore p, is
a polynomial of degree n. By virtue of (27) we get

o (Pn(A); Pn(A)) = 0 (Pn(A); A1 A" + gn1(N)) = 0 (pn(A), An1A")

= An—la(ﬁn(A)a An) = An—lAna ne Z-I—a

where ¢,_1(A) is a polynomial of a degree less than n.
Hence,
0(PnyPn) = A1y, n € Z4. (32)
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Set .
i (A) = ——==pn(N), Zy. 33
b ( ) \/mp ( ) ne Ly ( )
By virtue of (28) and (32) we get
U(ﬁnaﬁm) = 5n,ma n,m € Z. (34)

Let {pn(A)}22, be a sequence of orthonormal polynomials obtained by the
Gramm-Schmidt orthogonalization method as before (11).

Theorem 3.1. Let {ry(A\)}5%, and {rn(A)}72, be two sequences of polynomi-
als, degr, = degt, = n, n € Z,, and polynomials have positive leading coeffi-
cients. If

o(rn,rm) = 0(fn,Tm) = Opym, N,M € Ly, (35)

then rp =Ty, N € Zy.

Proof We will apply the induction method similarly as in the proof of
Th. 1.1 from [4, p. 15-16]. By virtue of (35) we get 73 = 72 = ﬁ and therefore
ro =T0-

Suppose that

rj="75,7=02,...,k—1, (36)

for a number k£ € N.
For polynomials rp, 7 we can write

k—1

re(A) = pXF +3 " agri(N), (37)
§=0
k—1

Pe(X) = X+ agri(n), (38)
j=0

where > 0,4 >0, aj,a; € C,j =0,1,...,k— 1.
By virtue of (35)-(38) we obtain

OZU(Tkarj)::U‘O-(Akv’rj)—i_aja ]Ska
Set bj :=o(A\*,r;), 7=0,1,...,k — 1. From the latter relations we get

Journal of Mathematical Physics, Analysis, Geometry, 2008, vol. 4, No. 3 405



S.M. Zagorodnyuk

From (37),(38) we get

k—1
(A Zb ri(N), f(A) = B =Y biri (V). (39)
§=0
Consequently, we obtain
L b
7 = crg, where ¢ := = > 0. (40)
W

By virtue of (35) we derive
1= O-(’rkalrk) = U(’f‘kafk) = |C|20-(Tkark) = |C|27

and hence ¢ = 1. [
By virtue of Th. 3.1 we obtain that

Pn =Pn, NE~L,.

Let us turn to the solving of the moment problem (25).
Let a symmetric moment problem (25) be given. Set

oA ) i= spimni, Bsn €Z4, n=mN+1, m€Z,0<I<N—1. (41)

We extend o linear with respect to the first argument and antilinear with respect
to the second argument to obtain a bilinear functional o (u,v), u,v € P. From (41)
it follows that

o AN = (AN A, kn e Z,. (42)
For arbitrary polynomials u = Z;'l:o aj M, v=">3"2 bA*, 1,70 € Z4, aj, bs € C,
7=0,1,...,r1,5s=0,1,...,7r, we get

ry o T

o (u, AN v) Zzajb oW AVN) =73 " abo (AN, X)) = o (AN u,0).

j=0 s=0 j=0 s=0

Hence, for the functional o condition (7) is true.

Define A, n € Z4 U {—1}, as in (29). Suppose that matrices D,,, n € Z,
defined as after (29) are Hermitian and positive.

Then the quadratic form in (30) is positive and hence condition (10) is true.
Also condition (31) holds true.

Since matrices Dy, n € Z, are Hermitian we get

oAk ) = oW, N\, kyneZ,.
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For arbitrary polynomials u,v as above we can write

71 T2 r1 r2

o(u,v) = ZZa_jbsa(M, ) = ZZa_jbsa(As, M) = o(v,u).

j=0 s=0 j=0 s=0

Hence, for the functional o condition (8) holds true.

Define polynomials {p,(A)}5%, by formula (26). Repeating considerations
after (26) we define polynomials {p, (\) }52, which are orthonormal with respect to
o and coincide with polynomials {p,(A)}72 , constructed by the Gramm-Schmidt
orthogonalization method. Repeating the arguments from the proof of Th. 3 in
[1, p. 131] for the functional o we obtain that polynomials {p,(X)}22, satisfy
recurrence relation (12). By virtue of Th. 2 in [1, p. 128] we get that there exists
M () and A such that orthonormality relation (11) holds true. Define a functional
o1(u,v) by formula (6). This functional has a property

g1 (pnapm) = 5n,ma n,m € Z. (43)

For arbitrary polynomials u, v € P we can write u = Y :L;a;p;(N),
, .
v = Zsi{)bsps()‘)a T, T2 € Z+7 ajabs € (Ca J = 0717'--7T17 s = 0717"'7T27

therefore
1

o(u,v) =Y D abso(pj(N),ps(N) =D Y ajbsdjs

§=0 s=0 §=0 s=0

ry re
= Zzag‘bsm(ﬁf)j()\)aps()\)) = o1(u,v).
7=0 s=0
Hence, the functionals o and o; coincide.
If we write relations (41) using the integral representation of oy = o (6), we
obtain that relations (25) hold true.
From our considerations we get the following theorem.

Theorem 3.2. Let an N-dimensional symmetric moment problem in a Sobolev
form (25) with some {syi}rez,1=012,..N—1 be given. The problem has a non-
degenerate solution iff the matrices Dy, n € Z,, defined as above are Hermitian
and positive definite.

Similarly to the case of the Hamburger moment problem and the Stieltjes
and the Hausdorf moment problems we can set some restrictions on the measure
M, A in (25) to get some "partial" moment problems. In this way we can get
the mentioned above problems and also the complex moment problem on radial
rays [5] and the discrete Sobolev moment problem [6]. Another version of the
symmetric moment problem was presented in [7].
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4. Symmetries

Let a function M, a matrix A, a functional o and orthonormal polynomials
{Pn(N)}52, be such as in Introduction. In the scalar case (N = 1) it is known that
if the measure of orthogonality is symmetric with respect to the origin, then an
orthogonal polynomial p,, n € Z,, has only terms with degrees having the same
parity as n [4, Th. 1.3]. A similar and more interesting situation with symmetries
is in the case of an arbitrary N € N.

Suppose that the function M ()) possesses the following property:

MYy =M(\), 1<I<2N -1, e Ly\{0}, (44)

where £ = cos & + 7 sin %.
Also we will suppose that the matrix A commutes with a diagonal (N x N)
matrix D; := diag(1,&7¢, 672, ... e~ (N=D)

AD; = D,A. (45)

In particular, (45) is true if A is diagonal.
We can write

v(A)
2N—1 o\
o(uyv) = / (), w(e), ..., u(AeN 1)) dM () (:8)
k=0 LNk :
v(AeV 1)
U,(U)
+(u(0),4/(0), ..., uN1(0)) A “(:0)
¥ D(0)
. v(yil)
- / (W), ulyée). ... u(deN amey| TV
k=0 Y LN k-1 :
’U(yélé‘N_l)
UI(O)
+(u(0),4'(0),...,uN"D(0)A v(:o) . wvEP, (46)
v(N_.l)(O)

where we applied the change of variable A = yél; y = X\é~".
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Set
ay) = u(ye'), ly) == v(ye'), y € Ly\{0}. (47)
It is not difficult to verify that
a® (y) = u® (e, 90 (y) = v® (ye")e, y € Ly\{0}. (48)
By virtue of (47),(48) and (45) we can write
v(0)
/ (N-1) v'(0) Ny L (N-1)
(u(0),u'(0), ..., u""7(0))A : = (@(0),a(0), ..., (0))
,U(N—l)(o)
9(0) 5(0)
0'(0 0'(0
+DyAD} O = @, @0 o) o (49)
@(Nf-l)(o) @(Nfl)(o)
If we substitute (49) in (46) and use (44),(47), we get

- 0(y)
~ o N o(ye)

owo)= 3 [ (aate), il )|

k=0 Y Lnk—1 :

o(ye 1)
9(0)
o'(0
+(@(0),4'(0), ..., N (0)A ( b= o (i, )
@(N—ll) (0)
Hence,
a(u(N),v(\) = o(u(Aé),v(\&")), wu,veP. (50)
For the orthonormal polynomials {p,())}5%, we can write
o(pn(A);pm(N)) = U(pn(Aél)apm(Aél)) = nymy, N,M E Ly (51)
Let the polynomial p,(A) have the following form:
(52)

n
pn(A) = Z Mn,j)\] )
=0
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where p,; €C, 7 =0,1,...,n—1; pty, >0, n € Z.
Consequently,

n
Pn(A) = 9N, nezZ,. (53)
=0

Consider the polynomials

n—1
ra(A) 1= E7pn () = pnn A" + D pin € UTIN, n e Z. (54)
j=0

The polynomial r, has degree n and a positive leading coefficient, n € Z. From
(51), (54) it follows that

(N, rm(N) = o (Pn(AE), Pm(AED) = b, mam EZy (D)
By virtue of Th. 3.1 we obtain that
mn(A) =pa(A), 1€ Zy.
Consequently, we get
pn(A) =é"p,(N), neZy. (56)

Let us see what condition (56) means for the coefficients of the polynomial p,,.
Subtract relation (52) multiplied by & from relation (53)

n—1
0= pin;(eY —&™N. (57)
§=0

Consequently, if & — &l £ 0, then png =0,5=0,1,...,n — 1. Therefore
Pn(N) = A + > pn N, € 7. (58)
FE[0,n—1]NZ 4:€l(n=d) =1

From these considerations we obtain the following theorem.

Theorem 4.1. Let M(\), A,o0(-,-) and orthonormal polynomials {pn(X)}oL,
be the same as in Introduction. Suppose that conditions (44),(45) are true. Then
orthonormal polynomials satisfy condition (56) and have the following form:

Pu(N) = fin A" + > fingn kAR n € Z . (59)
ke[1,n]NN: gtk=1
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In particular, if | = N we get

pn(>\) = Nn,n)\n + Z Nn,n—k)\n_ka n € L, (60)
k€[1,n]NN: k 45 even

and if | = 1 we obtain

%]
Pr(N) = X + Y pnn-2ng A" 2V, 0 € Ly (61)
j=1

Let M(X), A be arbitrary, i.e., conditions (44),(45) are not assumed to be true.
Set

v(0)
d(u,v) := (u(0),'(0),...,uN"V(0))A UEO) . wovelP. (62
U(N_‘l)(O)
We can write
2N—1 U((;\))
V(AE
o(u,v) = / (uw(\), u(Xe), ..., u(AeN 1) dM(N) : + d(u,v)
k=0 Y LNk :
v(AeNh)
2N—1 ‘ ‘
=3 [ ), e, ) ule), sl )
k=0 ‘LN k—2;
o]
v(yel
rdM (ye’) (y: N .
v(ye! )
v(y)
2N—-1 . v(ya)
=3 [ el ) Bam e By |
k=0 Y LNk—2j :
v(ye")
+d(u,v), wu,v€P, (63)
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where we applied the change of variable A = ye/ = yé%; y = Ae™J = \&=%,
j €[1,N —1]NN, and Bj is a block matrix

B - ( Ov—jyxj  Tv—j)x(v—j) ) (64)
Ljx; Ojx(n—j)
We change r = k — 2j; k =r —2j in the last sum in (63) and use (4) to get

2N —1-2;

olu,v)= / (u(y),u(ye),. .., u(ye 1)) B;dM (ye’) B}
r=—2j JLN;y
v(y)
* v(g:/e) + d(u,v)
v(ye )
- v((y))
= [ @)l e ) Bames; |
r=0 /LN :
v(yeN )
+d(u,v), u,v€P. (65)
Set
M;(X) :== B;M(Xe/)B}, je€[l,N—1]nN, X € Ly\{0}. (66)

From (65) it follows that the functions M; and A define by (6) the same functional
o as M and A define. In particular, the functions M; and A have the same
moments of form (25) as M and A.

Set
N-1
M) = % MO+ Y M0 ), Ae Ly\{ol. (67)
7j=1

For the functions M and A the same can be said as for the functions M; and A

above. It turns out that the function M (M) has some additional properties which
will be obtained below.

Let the matrix M (X) have the following form: M(\) = (mmk()\))f:c,::lo, A€
Lx\{0}. By direct computation we get that the functions M;, j =1,2,...,N—1
have the following structure:

Mj()‘) = ( C";()\) F](A) )a A € Ly \{0}, (68)
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where
mN,j’N,j(A(?j). mN,j,N,jJrl()\&j). ces mN,j’Nfl(A(?j).
mN_j+1,N_j()\6]) mN_j+1,N_j+1()\6]) [N mN_j+1,N_1()\6])
mN_l,N_j()\aj) mN_l,N_j+1()\6j) mN_LN_l()\aj)
| | | (69)
mN_j,g()\ﬁj)‘ mN_j71()\€]). [N mN_ij_j_l()\aj).
mN,jJrLo()\&]) mN,jJrl,l()\&]) ce mN,jJrl,N,j,l()\&])
Ci(\) = . . . , (70)
mN,L()()\&j) mel,l(Agj) . mel,ijfl(Agj)
m0’0(>\6]:) mo,1 ()\8]) PN mo,N—j—1 ()\8])
m1’0(>\61) m1’1(>\8]) PN mLN,jfl()\é‘])
Fi(A) = : : N : . (71)
mN_j_l,()()\ﬁj) mN_j_Ll()\sj) mN_j_LN_]-_l()\aj)

Let M;(3) = (mUL(0)¥i Ly and F(\) = (s () V5le, A € Ly\{0}. Tet us
calculate my, (). It is easy to see that

vy o J mnejaen—jk(Ael), 0<k<j—1
mis(A) = { mi—jk—j(Ae?),  j<E<N-1 (72)
Therefore
Fen() = ~ N+ S mil o
mk,k( ) = N mk,k( )+ Zl mk,k( )
]:
1 k ‘ N-1 ‘
=5 | M) + > mu i)+ D> my_jekn—jre(Aed)
j=1 j=k+1
WA ‘ N-1 ‘
=5 > i jriA) + > myjr N (M)
=0 j=k+1

k N-1
1
=~ (Z mg,s(AeF7) + Z mt7t()\6N+k_t)>
5=0

t=k+1

my (A7), (73)
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Set
| Nl
=5 2 mer(Ae "), A€ Ly\{0}. (74)
r=0
By virtue of (73) we get
Mk k(X)) = do()\ek), 0<k<N-1. (75)

Consider a number [ € [I,N — 1] N N. Let us calculate elements mgg]kﬂ()\),

0<k<N-—1-1,i.e., the elements on the [-th upper diagonal. It is not difficult
to see that

g MN kN jrki(Ae?),  0<k<j—1
mil N =9 mN—jik—jarn(Aed),  G-I<E<i—1 . (76)
My jk—jri(Ae’), J<ESN-—-1-1
Therefore
- 1 j
mik+1(N) = 5 | k(X)) + > mEﬁ}kH(A)
1 [ ;
=< Y mijpjr(re?)
=0
k+l , N-1 .
+ > mn ik k) + D my kN k(M)
j=k+1 j=k+1+1
k kit .
D oA T+ T m ik jrkri(Ae)
s=0 j=k+1

N-1-
+ Y mt,t+l(>‘5N+k_t)>

t=k+1
1 N—-1-1 k+l )
=N D AT+ Y mn ik kn(0e) | (77)

where s: = k—j,t:=N—7+k.
Hence, we can write

N-1-1
M 1 (A < Z My 41 (A ZmN Iuu( Hlu)), (78)
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where u := —j + k + 1. Set

N—-1-1
( Z mMH +ZmN l+uu u))ﬂ

1<I<N-1, e Ly\{0}. (79)
By virtue of (78) we obtain

Mkst(N) =di(Ae¥), 0<E<N—-1-1, 1<I<N-—1, A€ Ly\{0}. (80)

Consequently, we get that each diagonal of matrix M (M) is defined by a unique
function on Ly \{0} by formulas (75), (80). The solutions M, A of the symmet-
ric moment problem (25) with the matrix M having this property we will call
standard. As it follows from the considerations above, standard solutions always
exist.

Besides the minimization of a number of independent elements in the matrix
function M (X), there is a possibility to minimize the support of M (\). It follows
from the proof of Th. 1 in [1] that M(X) can be replaced by a function ]/M\()\)
(having the same functional ¢ and orthonormal polynomials {p,}>2,) which has
a support on two radial rays (corresponding to arbitrary branches of roots of 1
and —1 of order N).

5. Examples

We will illustrate our results obtained in the previous sections by several ex-
amples of orthogonal polynomials.
1. Consider the following functional:

:%/_ll(u(k) (\/1|7| |A|>( >d)\, woeP.  (82)

Write _1 o= o+ |y ... in (82) and make the change of variable A = —z in
1 1 0
the first addend to get (81)).
Calculate moments (25):

1 1
=2 =0, kE€Zy;
S2k,0 <2k 1 + 2% + %) y S2k+1,0 07 € Ly (83)
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1 1
=0, =2 — , keZy. 84
S2k,1 S$2k+1,1 <2k+3 ok +3+ %> + ( )

Calculate first five polynomials p,, from (26):

10 4

=—)\, pa(A) = —
9824 9824

5a(\) = 3

P3(N) = To1871 266805

31(\) = 3222272 4 2036224 88176896
pe 6471355275 4622396625 1779622700625

Calculate their roots:

(352% — 13),

p1: A =0;
P21 A1 = —0.60944, Ay =~ 0.60944;
P3: A1~ —0.61791, Ay =0, A3 = 0.61791;
Pa: A~ —0.86743, Ay =~ —0.36365,
A2 = 0.36365, Ay ~ 0.86743.
2. Consider the following functional:

aww):/de%m—m)<3ﬁM VFT>( %X)>¢& wvEP. (85)

v

We calculate moments (25):

1 1
—4 n , =0, k€ Zy; 86
52k.0 <2k-+]_ 2k-+].+—§> P10 - (86)
0 - L ke (87)
S = S = — .
2%k,1 y S2k+1,1 43 2k+3+% ; +
Calculate first five polynomials p,, from (26):
2 38
50(A) = 1, 51(A) = TA, fa()) = —(7A2 = 2
po(A) =1, pr(A) = 7A, pa(N) 15(7 15)?
3989 3989
p3(N) = A3 —
P3N = 5750 ~ 8000

_ 355021 ., 571469 ., 3510961
83160000 152460000 8537760000

Pa(N)
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Calculate their roots:
p1: A =05

P2 A1 = —0.60158, Ao =~ 0.60158;
p3: A1 = —0.61237, Ao =0, A3 = 0.61237,
D4 A1 = —0.86572, Ay = —0.35850,
Az = 0.35850, Ay =~ 0.86572.
3. Consider the following functional:
o (uyv) = /Ol(u(x),u(—x))< lfé 1_5% ) < ;E(_AA)) >d>\, v €P, (88)
where @ > 0 is a parameter. Here the integral is understood to be improper at
7Z€ero.

Notice that the elements of the (2 x 2) matrix in (88) are not integrable at
zero if a > 0. However, we can calculate moments (25):

2
S2k0 = Gp 0 52410 = 0, k€ Zy; (89)
2 2a
Sop,1 = 0, Sopy1,1 = %13 + PR keZ,. (90)

Calculate first five polynomials p,, from (26):

) ) _ 1 4 4
po(A) =1, p1(A) =2, p2(A) = 4(a + §)>\2 —30 Ty
(32 32\ (16 32
(M) = <45“Jr 135)A (45“+225> A

i 16 1088 256 32 2176 512
() = (Ea2 VT A 23625> X - <E“2 T 33075t T 55125) X
16 , 1088 256
157 T o375 T 275625
Calculate their roots for ¢ = 1:

p1: AL =0;
P2 AL &~ —0.57735, Ao = 0.57735;
Bs: AL~ —0.72456, Ay = 0, Ag ~ 0.72456;
pg s A1 = —0.86113, g = —0.33998,
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A3 =~ 0.33998, A4 =~ 0.86113.

4. Consider the following functional:

1 7
+—./ u(A)v(N)dA, wu,v € P. (91)
tJo
We calculate moments (25):
1 2+ (—1)F (—1)ki
— — L keZy; 2
S20 = 1T + 1 S0 = g o KELy (92)
(—1)F1§ 1 2 — (—1)F 1
=-— =— keZ,.
LT ok g LT TR T I (93)
Calculate first five polynomials p,, from (26):
i 7 17 13
D = 1 D = 4 —_ = D = — 2 e — , _
p0(>‘) ) p1(>‘) A 92’ p2(>‘) 4>‘ 122)‘ 24’
_ 149 5 343, 7 1459
PN = 1g6% ~ 1aa0™ 31600 T 14400
1501331 ., 132749 . 36943 ., 2746283 . 3110389

Pa(N) A3

~ 181440007 1296000 518400 * 63504000 " * 423360000

Calculate their roots: )
. i
Pri A= 3

D2t A1 = —0.38169 + 0.404767, Az ~ 0.38169 + 0.404764;
P3: AL~ —0.41588 — 0.162897, A2 ~ 0.613547¢, A3 ~ 0.41588 — 0.16289z;
Da: A = —0.67548 4+ 0.09831¢, Aoy ~ 0.236901,
A3 ~ 0.804357, A4 ~ 0.67548 + 0.098314.

Notice that symmetric measures in (82),(85) imply that polynomial p, has
only terms with degrees with the same parity asn, n € Z,. Note that polynomials
po and p4 in the last example have symmetric with respect to 4R roots but not
with respect to the origin. This agrees with Th. 2.3.
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